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Abstract

This paper presents a method for the automatic synthe-
sis of asynchronous circuits from Petri net specifications.
The method is based on a structural encoding of the sys-
tem in such a way that a circuit implementation is always
guaranteed. Moreover, a set of transformations is presented
for the subclass of Free-Choice Petri nets that enables the
exploration of different solutions. All transformations pre-
serve the property of free-choiceness, thus enabling the use
of structural methods for the synthesis of asynchronous cir-
cuits. Preliminary experimental results indicate that the
quality of the circuits is comparable to that obtained by
methods that require an exhaustive enumeration of the state
space.

This novel synthesis method opens the door to the synthe-
sis of large control specifications generated from hardware
description languages.

1. Introduction

In the last few years, there has been an increasing in-
terest in asynchronous circuits. Potential advantages, such
as modularity, absence of clock skew problems, average
performance and low power, have encouraged many re-
searchers and designers to devote some efforts in under-
standing and proposing techniques for asynchronous circuit
design [9].

If some unanimity exists about asynchronous circuits, it
is that they are difficult to design. The absence of clock does
not allow a discrete abstraction of time and, therefore, the
behavior of any signal at any instant can be relevant for the

�This work has been partially funded by CICYT (TIC 98-0410 and TIC
98-0949), ACiD-WG (ESPRIT 21949), a grant by Intel Corporation, and
CIRIT (1999SGR-150 and 2000FI-00472).

correctness of the circuit. A significant effort has been spent
in studying and proposing automatic synthesis techniques
that can alleviate the burden of designing asynchronous cir-
cuits. This paper focuses on techniques for the synthesis of
control circuits.

Currently, there are several academic tools that work at
the logic level and attempt to optimize the resulting cir-
cuit by using variations of the state-of-the-art Boolean min-
imization techniques [12, 6, 22]. Given that asynchronous
circuits are typicallymodeled as concurrent systems, the ex-
isting synthesis approaches often suffer from the state ex-
plosion problem derived from concurrency.

A crucial problem of most asynchronous logic synthesis
tools is that they are not always capable of deriving an im-
plementation from the specification. The main reason for
that is that some of the implementation properties must be
ensured by transforming the specification. And this task is
performed automatically by using heuristics that cannot ex-
plore the complete space of configurations.

Direct translation methods that do not exploit the power
of Boolean minimization have also been proposed [11, 4, 1,
17]. This type of strategies guarantees an implementation
by construction, but does not exploit the potential optimiza-
tions that can be performed at logic level. Typically, the size
of the obtained circuits is linear on the size of the specifica-
tion.

There have been few attempts to combine both ap-
proaches [25, 15]. However, direct translationmethods usu-
ally generate circuit structures that cannot be locally trans-
formed to derive succinct representations of the same be-
havior. For this reason, the results obtained by these meth-
ods are comparable to peephole optimizations realized on
the original structures.

Nowadays, the knowledge of asynchronous techiques
have reached a level of maturity that have enabled some re-
searchers to face the problem of synthesis from Hardware
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Description Languages (HDLs), such as Verilog [3, 19] or
VHDL [27]. This new trend also implies dealing with con-
trol circuits that are both large and well-structured.

Due to the aforementioned state explosion problem,
there exist severe limitations on the size of the specifications
that can be handled by existing synthesis tools. However,
the fact that control specifications derived from HDLs tend
to be well-structured opens the door to use techniques that
do not require an explicit representation of the state space.

This paper presents some contributions into that direc-
tion, with the aim that automatic synthesis techniques based
on the presented theoretical results will be proposed in
the future. The concurrent model used in this paper is
based on Petri nets [21]. The main contribution consists
in proposing a set of structural transformations of the spec-
ification that guarantees an implementation of the behavior
without explicitly enumerating the state space of the sys-
tem. The transformations are proposed for the subclass
of Free-choice Petri nets. This subclass seems to be a
good trade-off between the expresiveness power required by
well-structured control specifications and the methods that
can manipulate them without suffering from the size of the
state space.

Moreover, the presented transformations preserve the
structural properties of the specification, thus enabling the
use of logic synthesis techniques that do not require an ex-
plicit representation of the state space [24].

The paper is organized as follows. Section 2 describes
previous and related work. Section 3 presents basic defini-
tions and background used along the paper. The encoding
method and its properties is presented in Section 4. The
property-preserving transformations are described in Sec-
tion 5. Finally, Section 6 illustrates the method with an ex-
ample and reports some preliminary results.

2. Related work and overview

Signal Transition Graphs (STGs) [26, 5] are interpreted
Petri nets used for the specification and synthesis of asyn-
chronous controllers. In STGs, transitions represent rising
and falling signal transitions, denoted by positive and nega-
tive events (e.g. a+, a�). Several techniques that circum-
vent the state explosion problem have been proposed for the
synthesis fromSTGs. However, most of them onlywork for
marked graphs, a very restrictive class of specifications that
cannot model choice behaviors [13].

To the best of our knowledge, the only work in this area
that has covered the synthesis of specifications with Free-
choice Petri nets was presented in [24]. Besides allowing
the specification of choice, Free-choice Petri nets also have
nice structural properties that enable the use of polynomial
algorithms to analyze their behavior [10].

Unfortunately, none of the methods mentioned before

has been able to effectively tackle the problem of finding
an encoding of the specification that guarantees an imple-
mentation. Even the known structural methods working for
some subclasses of STGs rely on the fact that heuristics
with affordable computational cost will find a solutionwith
high probability [29, 23].

The encoding problem is illustrated in Figure 1. Given
a specification (Figure 1(a)), each state of the reachability
graph is assigned a binary vector that represents the value
of each signal at that state (Figure 1(b)). For a circuit to be
derived from the specification, it is required that the value of
the signals can uniquely distinguish non-equivalent states.
In this example, there are two states that cannot be distin-
guished by their codes (shadowed in the figure). Solving
the state encoding problem is usually performed by adding
new signals in the specification that preserve implementa-
tion properties. Doing so is not an easy task [7].

The method presented in this paper has been inspired on
previous work for the direct synthesis of circuits from Petri
nets. One of the relevant techniques was proposed in [28],
where a set of cells that mimic the token flow in Petri nets
was designed. The circuit was built by abutting the cells and
producing a structure isomorphic to the Petri net. This type
of cells, called David cells, were initially proposed in [8].

Figure 2 depicts a very simple example on how these
cells can be abutted to build a distributor that controls the
propagation of activities along a ring. The behavior of one
of the cells in the distributor can be summarized by the fol-
lowing sequence of events:

� � � ! ci�1 �| {z }
i-th cell
excitation

! ai + ! âi�| {z }
i-th cell setting

!

! âi�1 + ! ai�1 � ! ci�1+| {z }
(i� 1)-th cell resetting

! ci �| {z }
(i+ 1)-th cell
excitation

! � � �

In [28], each cell was used to represent the behavior of
one of the transitions of the Petri net. The approach pre-
sented in this paper is based on encoding the system by in-
serting a new signal for each place with a behavior similar
to a David cell. With such an encoding approach, two goals
are achieved:

� A solution for the encoding problem is guaranteed at
the expense of over-encoding the states of the system.

� The structural properties of the specification are pre-
served, thus enabling the use of transformations to op-
timize the resulting circuit.

In the forthcoming sections, the encoding method and a
set of optimizing transformations are discussed.
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Figure 1. (a) STG, (b) Encoded graph (<dsr,dtack,ldtack,d,lds>), (c) Structurally encoded STG.
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Figure 2. Distributor built from David cells [14].

3. Petri Nets and Signal Transition Graphs

The theory presented in this paper holds for the class of
consistent and deterministic Signal Transition Graphs with
an underlying Free-choice live and safe Petri net and ini-
tial home marking. The necessary definitions to support the
theory are next presented.

3.1. Petri Nets

A Petri Net (PN) is a 4-tuple� = hP; T ;F ;M0i, where
P is the set of places, T is the set of transitions,F � (P �
T ) [ (T � P) is the flow relation, and M0 is the initial
marking. A marking of a PN is an assignment of a non-
negative integer to each place. If k is assigned to place p
by marking M (denoted M (p) = k), we will say that p is
marked with k tokens. Given a node x 2 P [T , its post-set
and pre-set are denoted by �x and x� respectively.

A path in a PN is a sequence u1 : : :ur of nodes such that
8i; 1 � i < r : (ui; ui+1) 2 F . A path is called simple if
no node appears more than once on it.

A transition t is enabled in a markingM when all places
in �t are marked. When a transition t is enabled, it can fire
by removing a token from each place in �t and putting a to-
ken to each place in t�. A markingM 0 is reachable fromM

if there is a sequence of firings t1t2 : : : tn that transformsM
intoM 0, denoted byM [t1t2 : : : tniM 0. A sequence of tran-
sitions t1t2 : : : tn is a feasible sequence if it is firable from
M0. The set of reachable markings fromM0 is denoted by
[M0i. A marking is a home marking if it is reachable from
every marking of [M0i.

A place in a PN is redundant if its elimination does not
change the behavior of the net. A PN is place-irredundant
if it does not have redundant places.

A PN is live iff every transition can be infinitely enabled
through some feasible sequence of firings from any marking
in [M0i. A PN is safe if no marking in [M0i assigns more
than one token to any place. A Free-Choice Petri net is a
PN such that if (p; t) 2 F then �t � p� � F , for every
place p [10]. In the rest of the paper, we will deal with
Free-choice live and safe Petri nets (FCLSPN).

Checking for liveness, safeness and redundant places can
be done in polynomial time for Free-choice Petri nets [10].

3.2. Signal Transition Graphs

A Signal Transition Graph (STG) [26] is a triple
h�; A;�i, where � is a PN, A is a set of signals, par-
titioned into input signals (AI), output signals (AO), and
internal signals (AINT ), and � is the labeling function
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� : T ! (A � f+;�g) [ f"g, where all transitions not
labeled with the silent event (") are interpreted as signal
changes. Rising and falling transitions of a signal a 2 A

are denoted by a+ and a�, respectively, while a� denotes
a generic rising or falling transition1.

An example of STG is shown in Figure 1(a). For sim-
plicity, those places that only have one predecessor and one
successor transition are not depicted. In that case, the to-
kens are held on the corresponding arcs.

3.3. Observational equivalence

The notion of observational equivalence, as defined by
Milner [18], with respect to a set of observable events is
relevant in this paper. Informally, two systems are observa-
tionally equivalent if their behavior cannot be distinguished
by interacting with them. When necessary, we will consider
observational equivalence with respect to input and output
signals (not internal), or with respect to all signals. The fol-
lowing definitions assume observational equivalence with
respect to all signals.

An STG is deterministic if the firing of two different
transitions with the same label in a marking M 2 [M0i
leads to observational equivalent markings.

A signal is said to be enabled in a markingM if there is a
marking M 0 which is observationally equivalent to M and
a transition of the signal is enabled in M 0 (as a particular
case, M = M 0).

3.4. Concurrency and ordering relations

A pair of transitions ti; tj 2 T are said to be concur-
rent if there is a markingM 2 [M0i such thatM [tjtii and
M [titji. The concept of concurrency can be extended to
signals. Two signals a and b are said to be concurrent if
there are two transitions with labels a� and b� that are con-
current.

An STG is non-autoconcurrent if it does not con-
tain any pair of concurrent transitions of the same signal.
An STG satisfies the consistency condition if it is non-
autoconcurrent and the signal changes in every feasible se-
quence of signal transitions alternate. This last condition
restricts the feasible sequences: the change 0 ! 1 (1! 0)
can only be followed by the change 1! 0 (0! 1) for each
signal appearing in a feasible sequence.

3.5. Encoding

Each marking of an STG is encoded with a binary vector
of signal values by means of a labeling function� : [M0i !
f0; 1gjAj. All markings must be consistently encoded by

1Along this paper, we will often use the label of a transition to denote
the transition itself.

�, i.e. no marking M can have an enabled rising (falling)
transition a+ (a�) if �(M )a = 1 (�(M )a = 0).

Figure 1(b) depicts the set of reachable states derived
from the STG in Figure 1(a), with the corresponding en-
coding.

An STG is said to satisfy the complete state coding
(CSC) property if, when the same binary code is assigned
to two different markings, the set of internal and output sig-
nals enabled at each marking is the same. The STG in Fig-
ure 1(a) does not satisfy the CSC property, since there are
two different markings with the code 10101, and two output
transitions, d+ and lds�, only enabled in one of them.

A more restrictive property, called unique state cod-
ing (USC), holds if all reachable markings are assigned a
unique binary code, i.e., 8M1;M2 2 [M0i : M1 6� M2 )
�(M1) 6= �(M2), where � denotes observational equiva-
lence.

The CSC property is a necessary condition for the cor-
rect implementation of an STG specification. When the
CSC condition holds, the events that the circuit must pro-
duce at each reachable state are uniquely determined by the
binary code of the state itself.

3.6. Synthesis of speed-independent circuits

Here, we briefly sketch how a circuit can be derived
from an STG. This theory is valid for the class of speed-
independent circuits, which are correct when assuming that
all components of the circuit can have any delay [20].

If we call a1; : : : ; an the signals of the circuit, each non-
input signal x can be implemented by a gate that realizes
a logic function fx. The logic function is defined for each
binary vector v 2 f0; 1gn as follows:

fx(v) =

8>><
>>:

1 if 9M : �(M) = v ^ (some x+ enabled inM _

(�(M)x = 1 ^ no x� enabled inM))
0 if 9M : �(M) = v ^ (some x� enabled inM _

(�(M)x = 0 ^ no x+ enabled inM))
� if 6 9M : �(M) = v

In case the CSC property does not hold, the previous
definition is ambiguous, since a binary vector could be
found for which there are two different markings that would
make fx equal to 0 and 1 simultaneously.

The previous function is incompletely specified. For
those vectors in which fx(v) = �, the function may take
any value, since those vectors will never appear in any
reachable state of the system. This set of vectors define the
don’t care set of the function, which is extremely important
for an efficient Boolean minimization.

4. Structural Encoding

This section presents a transformation applied to STGs.
The features of this transformation are the following:
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� It guarantees the USC property.

� It preserves free-choiceness.

� It preserves consistency, liveness, safeness, initial
home marking and observational equivalence with re-
spect to the input and output signals.

� It has linear complexity on the size of the STG.

This is the first method that guarantees a solution for the
encoding problem and tackles the problem in linear com-
plexity for the class of FCLSPNs. The transformation is
based on the insertion of a signal for each place of the STG
that mimics the token flow on that place.

Althought the encoding transformation does not require
the net to be free choice, it preserves this property. This is
important in our framework to enable the use of structural
methods for synthesis.

The transformations will be presented as a rule to be ap-
plied to the transitions of the STG. Before the application
of the Structural Encoding, the set of signals of the STG
has been augmented with one signal sp for each place p of
the STG. In order to simplify the presentation of the rules
and the corresponding proofs, we will use silent transitions
on the definition of the rules.

4.1 Encoding transformation

Let S = hhP; T ;F ;M0i; A;�i be an STG with under-
lying FCLSPN and initial home marking. The Structural
Encoding of S derives the STGEnc(S) in which a new in-
ternal signal sp has been created for each place p 2 P, and
the transformation rule described in Figure 3 has been ap-
plied to each transition t 2 T . The new transtions appearing
in Enc(S), labelled with sp�, will be called E-transitions
along the paper.

Let us now prove properties on Enc(S).

Proposition 4.1 Enc(S) is free-choice.

Proof: Every new place p appearing in Enc(S) has
j�pj = jp�j = 1 by construction. The original places in �t

and t� keep the same flow relations with the rest of the net.
Therefore, the underlying PN of Enc(S) is free-choice. 2

Proposition 4.2 Enc(S) is live, safe, has initial home
marking and is observational equivalent to S with respect
to the input and output signals.

Proof: The transformation for structural encoding is a
trivial combination of a set of transformations proposed by
Berthelot that preserve liveness, safeness and home mark-
ing [2]. These transformations also preserve the behavior
condition, i.e. each conflict resolution in Enc(S) is per-
formed by some observable transition.

1. Create the silent transitions "1 and "2.

2. For each place p 2 �t, create a new transition with label
sp� and insert new arcs and places for creating a simple
path from "1 to "2 , passing through sp�.

3. For each place p 2 t�, substitute the arc (t; p) by the arc
("2; p), create a new transition labeled as sp+ and insert
new arcs and places for creating a simple path from t to "1 ,
passing through sp+.

t

sq1+

sqm+

p1

pn

p1

qm

q1

qm

q1

pn

t

ε1 ε2

sp1−

spn−

Figure 3. Transformation rule for each transi-
tion t 2 T .

From the behavior condition, it immediately follows that
observational equivalence is also preserved. 2

Proposition 4.3 Enc(S) is consistent.

Proof: Given that the observational equivalence is pre-
served, consistency directly holds for the signals already in
S. It only remains to prove that it also holds for the E-
transitions of the new inserted signals.

By construction, the new sp signalsmimic the token flow
in places. Given that the dynamic behavior corresponds to
a safe PN, no more than two consecutive rising or falling
transitions can occur for these signals. 2

Proposition 4.4 Enc(S) has the USC property.

Proof: We will prove that each marking of Enc(S) is
uniquely identified by a binary vector of all signals. Fig-
ure 4 depicts a fragment ofEnc(S) that results from apply-
ing the transformation rule to a transitionwith p1 : : : pn, and
q1 : : : qm as predecessor and successor places, respectively.
Without loss of generality, we will assume that the label
of the transition is x+, and that place qi has one successor
transition with label y+. With two exceptions that will be
discussed later, the marking of all places in the picture can
be uniquely determined as follows:

M(ai) = 1 , sqi = 0 ^ sp1 = � � � = spn = 1 ^ x = 1

M(bi) = 1 , sqi = 1 ^ sp1 = � � � = spn = 1 ^ x = 1

M(ci) = 1 , spi = 1 ^ sq1 = � � � = sqm = 1 ^ x = 1

M(di) = 1 , spi = 0 ^ sq1 = � � � = sqm = 1 ^ x = 1

M(qi) = 1 , sqi = 1 ^ y = 0 ^ x = 1

When defining the previous equations, it is important to
use the fact that the STG is safe, consistent and that transi-
tions of the same signal cannot be concurrent. We will only
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Figure 4. Place encoding to guarantee USC.

prove the equality for M (ai). The other equalities can be
proved in a similar way.

)
M (ai) = 1 implies sqi = 0, since sqi+ is enabled. Oth-

erwise the STG would not be consistent. M (ai) = 1 also
implies sp1 = � � � = spn = 1, since the liveness and safe-
ness of the STG imply that "1 has not fired after x+ has
fired. Therefore, none of the spi� transitions has fired yet,
while all spi+ transitions already fired before x+. Finally,
M (ai) = 1 clearly implies x = 1.
(

By the consistency of signal x, the only markings in
which sp1 = � � � = spn = 1 and x = 1 correspond to
markings in which some tokens are held in the places after
x+ but before sp1�: : : spn�. The fact that sqi = 0 implies
that place ai has a token.

As mentioned before, there are two exceptions in which
the binary code does not uniquely identify the marking.
One exception corresponds to the submarkings in which
M (b1) = � � � = M (bm) = 1 and M (c1) = � � � =
M (cn) = 1, respectively. These submarkings are only sep-
arated by a silent transition, "1, that makes them observa-
tionally equivalent. Therefore, the USC property is still
preserved. The other exception corresponds to the submark-
ings separated by "2. 2

4.2 Preserving the Input/Output Interface

Preserving the observational equivalence with respect to
the input and output signals of the specification is not suf-
ficient to guarantee a correct implementation of a system.
When one wants to implement a module of a system as a
circuit, the input/output interface for that module is typi-
cally fixed a priori. From the point of view of the circuit,
the environment can be considered as another module with
mirrored signals (input and outputs of the circuit are outputs
and inputs of the environment).

Since the environment must be considered as an already
implemented system that cannot change its interface, the
causality relations between the outputs of the circuit and the
inputs of the environment must be preserved. In practice,
this means that if the firing of an output signal may enable
an input signal, then this causality must be preserved along
any transformation of the specification.

The previous condition has been formalized under the
notion of I/O equivalence [16]. This paper will not describe
the details of this equivalence. However, a set of constraints
on the STGs are imposed to allow the use of another trans-
formation that preserves I/O equivalence.

In particular, an io-STG is defined as an STG with the
following constraints: (a) any choice place (with more than
one successor) must only precede transitions of input sig-
nals; (b) the firing of one input signal cannot immediately
enable the firing of another input signal.

First condition indicates that choices are only decided by
the environment. Second condition imposes the fact that the
predecessors of input transitions are always output transi-
tions. With these constraints, the transformation rule shown
in Figure 5 can be applied to any transition of a non-input
signal. For input transitions, the previous transformation
presented in Figure 3 is applied.

ε2ε1 t

sq1+

sqm+

p1

pn

p1

qm

q1

qm

q1

pn

t

sp1−

spn−

Figure 5. Transformation rule for non-input
signals to preserve the I/O interface.

Note that the two transformations only differ on the lo-
cation of the E-transitions. For non-input signals, the E-
transitions precede the transformed transition. In this way,
the creation of new causality relations from E-transitions to
input transitions is avoided and, thus I/O equivalence pre-
served.

The proofs for preserving free-choiceness, liveness, safe-
ness and observational equivalence are similar to those pre-
sented in the previous section when applied to the class of
io-STGs.

Figure 6 depicts an example of the structural encoding
by applying the transformations presented in this section.

5. Design space exploration

Even though the encoding method previously presented
guarantees an implementation of the system, the insertion
of an internal signal for each place may be too costly, in
size and performance, for the final circuit.

This section presents a kit of structural transformations
that aim at the exploration of the design space. Behind these
transformations, we assume to have a synthesis framework
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that can evaluate the cost of the implementation in polyno-
mial complexity on the size of the specification [24]. This
framework is also capable of detecting CSC conflicts with
low complexity [23]. The transformations are mainly meant
to deal with the new inserted E-transitions.

The kit of transformations we present are not new in
the literature. They have been proposed by other authors
(see [2, 21, 10]) or can be obtained by combining several of
those transformations. The ones that have been used in this
work are next described. All of them preserve the relevant
properties of the STGs required for this work.

x+

y+y-

z+

x-

p1 p2 p5

p3

p4 p6
p7

z-

=)

x+

s1-

s3+

s2-

x-

s2+ s5+

p5

p3 p6

s4+

s3-

s5-

y+

z-

s4- s6-

p7

s1+

s7-

s7+

y-

p4

p1
p2

s6+

z+

Figure 6. Structural encoding (x is input and
y and z are outputs).

Concurrency reduction. Given two concurrent transitions,
ti and tj, such that �(�ti) \ �(�tj) 6= ;, concurrrency is
reduced by including two places that force an alternation on
the firing of the two transitions (see Figure 7(a)).
Increase of concurrency. Given two ordered transitions, ti
and tj, such that t�i =

�tj = fpg, two parallel branches are
created so that they can be fired concurrently. This trans-
formation can be obtained by combining some of the ones
presented in [21] (initially proposed in [2]). The transfor-
mation is shown in Figure 7(b).
Elimination of signal. Given one of the internal signals of
the STG, it can be eliminated by changing the label of all
transitions of that signal and making them silent ("). This
transformation is only accepted when the removal of the
signal does not create CSC conflicts in the specification.
Elimination of silent transitions. Some of the transforma-
tions may insert silent transitions in the specification. By
removing them, the size of specification can be reduced and
the synthesis algorithms sped-up. However, the elimination
the transition requires the substitution of n+m places (pre-
decessor and successor) by n � m places (see Figure 7(c)).
Heuristics can be used to determine when the elimination
can be useful.
Eliminationof redundant places. Some of the places may

be eliminated without changing the behavior of the net. Lin-
ear programming techniques can be used to determine when
places are redundant [2, 10].

On top of this kit of transformations, a search engine is
expected to explore the design space. Greedy heuristics or
optimization techniques such as simulated annealing, ge-
netic algorithms or tabu search can be used to explore dif-
ferent configurations. All these techniques require a fast
estimation of the cost of the explored configurations. The
cost function can be efficiently supported by the polyno-
mial algorithms that can be typically used to manipulate
free-choice Petri nets.

6. Example and experimental results

The transformations presented in this paper have been
applied to well-known specifications from the literature of
asynchronous circuit design.

Currently, no search engine is still available to apply the
transformations automatically. Instead, they are appliedme-
chanicallywith the intervention of the designer that, at each
step, chooses a transformation that intuitively leads to a bet-
ter implementation.

In more detail, the synthesis strategy consists of the fol-
lowing steps:

1. Apply the encoding transformations on all transitions,
as explained in Section 4.

2. Iteratively and greedily apply the transformation elimi-
nation of signal to all internal signals as far as no CSC
conflicts appear. In general, some of the internal sig-
nals will remain in the specification.

3. Iteratively apply transformations and evaluate the im-
plementation cost of the new specification. Accept
any transformation that produces a cost improvement.
The cost is evaluated as the number of literals of the
Boolean equations implementing the circuit.

4. Stop when no transformation can be applied to im-
prove the cost of the circuit.

Given that the previous method has not been automated
yet, the application of the transformations at each step has
not been done in an exhaustive manner. Structural meth-
ods are used for checking CSC and deriving boolean equa-
tions [24].

The results have been compared with those obtained by
the tool petrify [6], that does an explicit enumeration of the
state space, thus suffering from the state explosion problem.

6.1. A case study: adfast

This example corresponds to specification of an
analogic-to-digital fast converter with three input signals
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Figure 7. (a) Concurrency reduction, (b) increase of concurrency, (c) transition elimination.

(Da, La and Za) and three output signals (Dr, Lr and Zr).
The specification is shown in Figure 8(a). This STG does
not have the CSC property. The tool petrify automatically
inserts two signals to solve CSC conflicts.

Figure 8(d) shows the STG after being transformed by
the structural encoding rules. The new internal signals
s0 : : : s14 correspond to the 15 places in the initial speci-
fication.

From the STG in Figure 8(d), internal signals are greed-
ily removed until CSC conflicts appear. The resulting STG
and the corresponding equations (35 literals) are shown in
Figure 9(a). Figure 9(b) reports one of the intermediate so-
lutions (31 literals) explored after obtaining the solution in
Figure 9(a).

Figures 8(b) and 8(c) depict the final STG, the Boolean
equations and the circuit after applying the transformations
and doing logic synthesis. This solution, which has been
obtained mechanically, is identical to the one generated by
petrify.

6.2. Experimental results

The synthesis strategy described above has been applied
to a set of benchmarks. Initially, none of the specifications
had the CSC property. The results are reported in Table 1.

The columns labeled with “petrify” indicate the charac-
teristics of the circuit obtained by the tool petrify. The num-
ber of inserted signals to solve CSC conflicts and the num-
ber of literals of the Boolean equations are reported.

The columns labeled with “struct. encoding” report the
characteristics of the circuit after having applied steps 1 (en-
coding) and 2 (elimination of internal signals) of the synthe-
sis strategy. It is interesting to observe that the number of
signals required to solve CSC conflicts when using the “lo-
cal” encoding provided by the places is significantly larger
than the number of signals required when “global” encod-
ing methods are used.

The results of the final circuit, after having explored the
design space with the set of transformations, are reported
in the columns labeled “str. enc. + optim.”. It can be

petrify struct. encoding str. enc. + optim.

benchmark states #CSC lit. #CSC lit. #CSC lit.

adfast 44 2 14 5 35 2 14

vme-fc-read 14 1 8 2 14 1 8

nak-pa 56 1 18 3 35 1 18

m-read1 1882 1 38 2 43 1 40

m-read2 8932 8 68 13 95 10 70

duplicator 20 2 18 5 36 3 18

mmu 174 3 29 7 53 3 34

seq8 36 4 47 22 147 4 47

Table 1. Experimental results.

observed that the quality of the solution can be highly im-
proved by playing with the concurrency of the internal sig-
nals. In many cases, the obtained result is the same as the
one generated by petrify. In other cases, the results are sim-
ilar but with more internal signals than the ones inserted by
petrify(e.g. master-read2, duplicator). This corroborates a
known fact that states that the reduction of internal signals
does not always implies an improvement on the quality of
the circuit.

The most important fact that can be deduced from this
table is that the method proposed in this paper can compete
with the existing synthesis tools. Moreover, for the class of
FCLSPNs, this method can guarantee and produce an im-
plementation in extremely low CPU times2. Until now, no
other methods are known that can guarantee an implemen-
tation for STGs with underlying FCLSPNs.

7. Conclusions

Methods for the synthesis of systems whose complexity
does not depend on the size of the state space are crucial to
face the design of complex asynchronous circuits.

This paper has presented an approach for the synthesis
of asynchronous controllers from STGs. The main features

2The lack of automation in the application of the transformations did
not allow a fair report of CPU times. However, this fact became evident in
previous works in this area [24]
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Figure 8. adfast

of the method are: (1) an implementation is guaranteed and
(2) the complexity of the method is polynomial on the size
of the specification.

This work is a first step towards a complete automation
of the design flow through the exploration of multiple con-
figurations that preserve some equivalence with the original
specification. This exploration should allow to find good
trade-offs between the size of the implementation and its
performance.
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