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Abstract

The aim of this work is to give a characterization of the Shapley-
Shubik power index for (3,2)-simple games. We generalize to the set of
(3,2)-simple games the classical axioms for power indices on simple games:
transfer, anonymity, null player property and efficiency. However, these
four axioms are not enough to uniquely characterize the Shapley-Shubik
index for (3,2)-simple games. Thus, we introduce a new axiom to prove
the uniqueness of the extension of the Shapley-Shubik power index in this
context. Moreover, we provide an analogous axiom to characterize also
the Banzhaf index for (3,2)-simple games.

Keywords: Games with abstention; Power indices; Axioms; Voting.

1 Introduction

In classical cooperative theory, simple games are used to model voting sit-
uation. However in a simple game players can vote only either yes or no,
while in many real-life voting procedure voters are allowed to have other opin-
ions. For instance, it is possible to take into account the possibility of ab-
stention. A theoretical model for game with abstention was introduced in
[Felsenthal and Machover [1997]] and extended to voting rules with several lev-
els of approval in input and different levels of output, called (j, k)-games in
[Freixas and Zwicker [2003]]. A voting procedure with abstention can be seen as
a (3,2)-simple games: voters can choose among three different options (namely,
voting yes, abstaining and voting no) and the outcome is 0 or 1.

The Shapley-Shubik index, presented in [Shapley and Shubik [1954]], and
the Banzhaf index, defined independently in [Penrose [1946]] and in [Banzhaf [1964]],
are the most well-known and widely accepted ways to measure the power of play-
ers in simple games. Two indices analogous to these ones have been defined for
(3,2)-simple games to measure the power of players also in this specific voting
situation. In particular the Shapley-Shubik power index for (3,2)-simple games
was defined by [Felsenthal and Machover [1997]] and extended to (j, k) games
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in [Freixas [2005b]]; while the Banzhaf index for (3,2)-simple games is discussed
in [Felsenthal and Machover [1998]] and for (j, k) games in [Freixas [2005a]].

A classical axiomatization of these two power indices for simple games has
been provided in [Dubey [1975]] and in [Dubey and Shapley [1979]]. The axioms
used to characterize the indices are anonymity, transfer, null player, efficiency
for the Shapley-Shubik index, and Banzhaf total power for the Banzhaf index.
The aim of this work is to provide a characterization for the Shapley-Shubik
and the Banzhaf indices for (3,2)-simple games, extending the classical axioms
from simple games to (3,2)-simple games. However, as we shall discuss, these
classical axioms generalized in the context of (3,2)-simple games are not enough
to uniquely characterize the indices on the space of (3,2)-simple games. It is
necessary to add another property to describe the behavior of the power index
on unanimity games.

The Shapley-Shubik and the Banzhaf indices can be defined on unanimity
games and then extended to the family of simple games using the transfer axiom,
actually this property holds for any semivalue, as discussed in [Carreras et al. [2003]]
and in [Bernardi and Lucchetti [2015]]. The behavior on unanimity games is
crucial in order to uniquely characterize an index. The axioms we propose com-
pare the power of a player in a unanimity game when votes “yes” in a minimal
winning tripartition and when he abstains in the same situation, i.e. all other
players do not change their vote. We give different conditions for the differ-
ences of power in the two situations and use these conditions to deduce the
Shapley-Shubik and the Banzhaf index for (3,2)-simple games, respectively.

The paper is organized as follows. In next section we introduce some pre-
liminaries and definitions. In section 3 we discuss axioms. In section 4 we prove
the characterization of the Shapley-Shubik index for (3,2)-simple games and the
independence of the axioms used. The analogous results for the Banzhaf index
for (3,2)-simple games are discussed in section 5. Section 6 concludes the work.

2 Preliminaries and Definitions

A game with abstention is a model of a voting situation in which players have
three different possibilities: voting “yes”, voting “no”, and abstaining. This is a
generalization of the standard model of simple games in which players can only
vote in support of or against the status quo.

Given a finite set of players N , in simple games the set 2N represents the
set of all coalitions. Actually any coalition T ∈ 2N can be seen as a bipartition
(T1, T2) in which T1 = T and T2 = N rT . We can view a coalition T as the set
of players supporting a decision and the coalition N r T as the set of players
against it. Analogously, in the context of (3,2)-simple games we consider the set
3N of all tripartitions. By tripartition we denote any element S = (S1, S2, S3),
where S1, S2, S3 are mutually disjoint subsets of N such that S1 ∪S2 ∪S3 = N ,
any Si can be empty. An element S = (S1, S2, S3) ∈ 3N describes a voting
situation in which the players in Si are voting at “level i” of approval. It is
supposed that level 1 is the highest, level 2 is the intermediate, and level 3 is
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the lowest. Hereafter, with the idea of modelling a voting situation, we will say
that players in S1 are voting “yes”, players in S2 are abstaining, players in S3

are voting “no”.
A partial order ⊆ on the set 3N is defined as follows. If S, T ∈ 3N , then

S ⊆ T means S1 ⊆ T1 and S2 ⊆ T1 ∪T2. We use S ⊂ T if S ⊆ T and S 6= T . In
other words, a tripartition S is contained in the tripartition T if players in T are
voting as in S or some of them are increasing their level of support. This means
that S can be transformed into T by shifting one or more players to higher
levels of approval. For instance1 (a, b, c) ⊆ (ab, c, ∅), the second tripartition is
obtained by the first one when player b changes from abstaining to voting “yes”
and player c switches from voting “no” to abstaining. The tripartition (∅, ∅, N)
is the minimum of the order ⊆, while the maximum is the tripartition (N, ∅, ∅).

A (3,2)-simple game is a pair (N, v) in which N is the set of players (or
voters) and v : 3N → {0, 1} is the value function such that:

• it is monotonic, i.e. if S ⊆ T then v(S) ≤ v(T );

• v(∅, ∅, N) = 0 and v(N, ∅, ∅) = 1.

We denote with TN the set of all (3,2)-simple games on the finite set N .

As for simple games, any game v ∈ TN can be described by the set of winning
tripartitions W(v) = {S ∈ 3N : v(S) = 1} or by the set of minimal winning
tripartitions Wm(v) = {S ∈ 3N : v(S) = 1, v(T ) = 0,∀T ⊂ S}.

[Unanimity game] For any tripartition S 6= (∅, ∅, N), the unanimity game
uS is defined as

uS(T ) =

{
1 if S ⊆ T
0 otherwise.

Given a tripartition S = (S1, S2, S3) and a player a /∈ S3 we denote with S↓a
the tripartition in which player a decreases his or her support of one level

S↓a =

{
(S1 r {a}, S2 ∪ {a}, S3) if a ∈ S1

(S1, S2 r {a}, S3 ∪ {a}) if a ∈ S2.

Of course, there is also the possibility that player a ∈ S1 switches from support-
ing a decision to vote against it

S↓↓a = (S1 r {a}, S2, S3 ∪ {a}).

In an analogous way, given S and a player a /∈ S1, we define the tripartition in
which a increases the support

S↑a =

{
(S1 ∪ {a}, S2 r {a}, S3) if a ∈ S3

(S1, S2 ∪ {a}, S3 r {a}) if a ∈ S3

1To simplify the notation we omit the braces to denote the sets in a tripartition, for instance
the informal notation (a, b, c) stands for ({a}, {b}, {c}).

3



and if a ∈ S3

S↑↑a = (S1 ∪ {a}, S2, S3 r {a}).

It is possible to characterize some players according to their role in the game.
In the following definition we describe players that do not have influence at all
in a voting situation: either they support or not a proposal, they can not change
the outcome of the game. [Null player] A player a ∈ N is null in the game v
if v(S) = v(S↓↓a) for any tripartition S such that a ∈ S1. Note that a is a
null player if and only if it holds v(S) = v(S↓a) for any tripartition S such that
a ∈ S1 ∪S2. Note also that the previous definition is equivalent to say that a is
a null player if a ∈ S3 for any S ∈ Wm(v).

In the context of simple games, that describe a voting situation, one of the
key point is to evaluate the power of players, in order to establish how their
vote influences the outcome of the game. For this reason, in simple games,
the interesting class of solution concepts is the one of power indices. In the
following we define this family on the set of (3,2)-simple games and then focus
on the extension of two main power indices.

[Power index] A power index for (3,2)-simple games is a function ψ : TN →
Rn, that assigns to every game v a vector in which the ath component is a
measure of the power of player a in the voting system described by v.

As for simple games, there are different power indices for (3,2)-simple games
to capture different properties. The well-known Banzhaf [Banzhaf [1964]] and
Shapley-Shubik [Shapley and Shubik [1954]] power indices have an equivalent in
the context of (3,2)-simple games, as defined in [Felsenthal and Machover [1997]]
and [Freixas [2005a]].

[Banzhaf index for (3,2)-simple games] For any game v ∈ TN and any player
a ∈ N , define ηa(v) as the number of yes-no swings for player a, that is

ηa(v) = |{S : a ∈ S1 and v(S)− v(S↓↓a) = 1}|.

The Banzhaf index for (3,2)-simple games is then given by

βa(v) =
ηa(v)

3n−1
.

The Shapley-Shubik power index for (3,2)-simple games was introduced in
[Felsenthal and Machover [1997]] using the idea of roll-calls. Let QN be the
space of all the permutation of N , and let 3N be the set of all tripartitions of
N . The ternary roll-call space RN is defined as

RN = QN × 3N .

Each roll-call R is given by a queue qR and a tripartition R, that is R = (qR,R)
where qR represents the order in which players are voting and R represents how
each one of them is voting. For instance, qR(a) = i means that a is the ith to
vote and a ∈ R1 means that a is voting “yes”. The number of the elements in
RN is n!3n.
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A player a is said to be pivotal in R for the game v (and we write piv(R, v))
if after a’s vote the outcome is decided, no matter what the players after a in
qR are going to vote.

[Shapley-Shubik index for (3,2)-simple games] For any v ∈ TN and any player
a ∈ N , the Shapley-Shubik index for (3,2)-simple games is defined as

φa(v) =
|{R ∈ RN : a = piv(R, v)}|

3nn!
. (1)

For the purpose of this paper we introduce some notation related to roll-
calls. Consider the set of roll-calls RN ; for any player a ∈ N , we define the
following subsets which form a partition of RN :

Ryesa = {R : a ∈ R1} ={roll-calls in which player a votes “yes”}
Rabsa = {R : a ∈ R2} = {roll-calls in which player a abstains}
Rnoa = {R : a ∈ R3} = {roll-calls in which player a votes “no”}

Thus,
RN = Ryesa ∪Rabsa ∪Rnoa

and |Ryesa | = |Rabsa | = |Rnoa | = n!3n−1

Given a player a and a roll-call R = (qR,R) /∈ Rnoa , we define the roll-call R↓a
in which players are in the same order as in R, all players in N r {a} vote as
in R, while a decreases the support of one level

R↓a = (qR,R↓a).

Note that if R ∈ Ryesa , then R↓a ∈ Rabsa ; if R ∈ Rabsa , then R↓a ∈ Rnoa .
We also define the roll-call in which a decreases the support of two levels,

changing the vote from “yes” to “no”: if R ∈ Ryesa , then R↓↓a ∈ Rnoa is

R↓↓a = (qR,R↓↓a)

For a roll-call R ∈ Ryesa we analogously define R↑a = (qR,R↑a) and if
R ∈ Rnoa we define R↑↑a = (qR,R↑↑a).
Note that, for instance, if R ∈ Ryesa we have: (R↓a)↑a = R, which shows that
there is a one-to-one correspondence between Ryesa andRabsa with these changes.
In addition, from (R↓↓a)↑↑a = R, the one-to-one correspondence of the three
sets Ryesa ,Rabsa ,Rnoa follows.

We also introduce the following sets, for any player a ∈ N and any game v:

Ya,v ={R ∈ Ryesa : a = piv(R, v) }
Aa,v ={R ∈ Rabsa : a = piv(R, v) }
Na,v ={R ∈ Rnoa : a = piv(R, v) }.
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and the following subsets of Aa,v and Na,v:

AYa,v = {R ∈ Aa,v : R↑a ∈ Ya,v} AY a,v = {R ∈ Aa,v : R↑a /∈ Ya,v}
NYa,v ={R ∈ Na,v : R↑↑a ∈ Ya,v} NY a,v ={R ∈ Na,v : R↑↑a /∈ Ya,v}.

Thanks to the previous notation, the Shapley-Shubik index as defined in (1) can
be written as

φa(v) =
1

3nn!
[|Ya,v|+ |Aa,v|+ |Na,v|]

or as

φa(v) =
1

3nn!

[
|Ya,v|+ |AYa,v|+ |AY a,v|+ |NYa,v|+ |NY a,v|

]
.

Lastly, given two games v, w ∈ TN , we define the following games:

Disjunction: the game v ∨ w is defined as (v ∨ w)(S) = max{v(S), w(S)}

Conjunction: the game v ∧ w is defined as (v ∧ w)(S) = min{v(S), w(S)}.

Let us make some remarks about these operations:

W (v ∨ w) = W (v) ∪W (w) and W (v ∧ w) = W (v) ∩W (w);

if Wm(v) = {S1, . . . , Sk} then v = uS1
∨ · · · ∨ uSk

;

given two unanimity games uS and uT , then their conjunction is still a unanimity
game and in particular uS ∧ uT = uZ with Z1 = S1 ∪ T1, Z2 = (S2 ∪ T2) r Z1

and Z3 = N r (Z1 ∪ Z2).
In Table 1 the Shapley-Shubik and the Banzhaf indices are computed for all

the (3,2)-simple games (up to isomorphism) on N = {1, 2}.

3 Axioms for power indices for (3,2)-simple games

3.1 Classical axioms for (3,2)-simple games

In the following, ψ : TN → Rn is a power index for (3,2)-simple games.

Anonymity The index ψ satisfies anonymity if for all game v ∈ TN , any
permutation π of N and any a ∈ N

ψa(v) = ψπ(a)(πv)

where (πv)(S) = v(π(S)).

Null Player The index ψ satisfies the null player axiom if given a null player
a in the game v, then

ψa(v) = 0.

Transfer The index ψ satisfies transfer if for any v, w ∈ TN

ψ(v) + ψ(w) = ψ(v ∧ w) + ψ(v ∨ w).
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Wm S-S index Bz index

1 (12, ∅, ∅) ( 1
2 ,

1
2 ) ( 1

3 ,
1
3 )

2 (1, 2, ∅) ( 2
3 ,

1
3 ) ( 2

3 ,
1
3 )

3 (1, 2, ∅) and (2, 1, ∅) ( 1
2 ,

1
2 ) ( 2

3 ,
2
3 )

4 (1, 2, ∅) and (2, ∅, 1) ( 1
6 ,

5
6 ) ( 1

3 ,
1
3 )

5 (1, ∅, 2) (1, 0) (1, 0)

6 (1, ∅, 2) and (2, ∅, 1) ( 1
2 ,

1
2 ) ( 2

3 ,
2
3 )

7 (1, ∅, 2) and (∅, 12, ∅) ( 5
6 ,

1
6 ) (1, 23 )

8 (1, ∅, 2) and (∅, 2, 1) ( 1
3 ,

2
3 ) ( 1

3 ,
2
3 )

9 (∅, 12, ∅) ( 1
2 ,

1
2 ) ( 2

3 ,
2
3 )

10 (∅, 1, 2) (1, 0) (1, 0)

11 (∅, 1, 2) and (∅, 2, 1) ( 1
2 ,

1
2 ) ( 2

3 ,
2
3 )

12 (1, ∅, 2) and (2, ∅, 1) and (∅, 12, ∅) ( 1
2 ,

1
2 ) ( 2

3 ,
2
3 )

Table 1: Shapley-Shubik and Banzhaf indices for (3,2)-simple games with two
players.

Efficiency The index ψ satisfies efficiency if for any v ∈ TN∑
a∈N

ψa(v) = 1.

Banzhaf Total Power The index ψ satisfies Banzhaf total power if for any
v ∈ TN ∑

a∈N
ψa(v) =

1

3n−1

n∑
a=1

∑
S∈3N
a∈S1

[v(S)− v(S↓↓a)].

As for simple games, both Shapley-Shubik and Banzhaf indices for (3,2)-
simple games satisfy anonymity, null player and transfer. Moreover, the Shapley-
Shubik index for (3,2)-simple games satisfies also efficiency, while the Banzhaf
index for (3,2)-simple games satisfies the tautological Banzhaf total power ax-
iom. However, as we will discuss later on, these axioms are not sufficient to
characterize the Shapley-Shubik and the Banzhaf indices for (3,2)-simple games.

The Shapley-Shubik index for (3,2)-simple games satisfies the anonymity,
the null player, the transfer and the efficiency axioms.

Let us consider the different properties.

Anonymity Let π be a permutation of N . Given a roll-call R = (qR,R),
define π(R) = (π(qR), π(R)). This means that if π(a) = b then b votes in
π(R) in the same position and in the same level of approval of a in R.
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If a is pivotal in the game v for the roll-call R, then π(a) is pivotal in the
game πv for the roll-call π(R). Then

φa(v) =
|{R : a = piv(R, v)}|

3nn!
=
|{π(R) : πa = piv(πR, πv)}|

3nn!
= φπ(a)(πv).

So the Shapley-Shubik index for (3,2)-simple games satisfies the anonymity
axiom.

Null player If a is a null player in a game v, there is not a roll-call R such
that a = piv(R, v). Then φa(v) = 0.

Transfer Let v and w be two (3,2)-simple games, then consider the following
sets of roll-calls:

A = {R : a is pivotal in v and in w}
B = {R : a is pivotal in v but not in w}
C = {R : a is pivotal in w but not in v}.

Note that A and B form a partition of the set of roll-calls for which a
is pivotal in v, while A and C form a partition of the set of roll-calls for
which a is pivotal in w. Note also that A is the set of roll-calls for which
a is pivotal in the game v ∧w, while A,B,C form a partition of the set of
roll-calls in which a is pivotal in the game v ∨ w. For any a ∈ N we have

φa(v) =
|A|+ |B|

3nn!
φa(w) =

|A|+ |C|
3nn!

φa(v ∨ w) =
|A|+ |B|+ |C|

3nn!
φa(v ∧ w) =

|A|
3nn!

.

Thus φ(v ∨ w) + φ(v ∧ w) = φ(v) + φ(w) and the Shapley-Shubik index
satisfies the transfer axiom.

Efficiency In every roll-call there is one and only one player that is pivotal,
from the definition of the Shapley-Shubik index in (1), we get that it
satisfies efficiency.

As it is well-known these axioms for simple games are independent and they
fully characterized the Shapley-Shubik index for simple games. This is not true
for (3,2)-simple games. For instance, let φ̄ be the standard Shapley-Shubik index
for simple games. Then consider the index ϕ for (3,2)-simple games defined as
ϕ(v) = φ̄(V ) where V is the simple game associated to the (3,2)-simple game v
and defined as

V (S) = 1 if and only if v(S,N r S, ∅) = 1.

Then ϕ satisfies the anonymity, null player, transfer and efficiency axioms
for (3,2)-simple games since the Shapley-Shubik index satisfies them on sim-
ple games, but it is different from φ, for instance ϕ(u(a,b,∅)) = (1, 0) while

φ(u(a,b,∅)) =
(
2
3 ,

1
3

)
.

8



The Banzhaf index for (3,2)-simple games satisfies the anonymity, the null
player, the transfer and the Banzhaf total power axioms.

Let us consider the different properties.

Anonymity The Banzhaf index for (3,2)-simple games satisfies anonymity:
actually if a ∈ N and a is yes-no swinger for tripartition S, then it is clear
that πa is a yes-no swinger for πS.

Null player If a is a null player in the game v, then v(S) = v(S↓↓a) for all
S ∈ 3N such that a ∈ S1. So βa(v) = 0.

Transfer Let v and w be two (3,2)-simple games and V and W be the set of
their winning tripartitions, then consider the following sets:

A = {S ∈ 3N : a ∈ S1, S ∈ V rW,S↓↓a /∈ V }
B = {S ∈ 3N : a ∈ S1, S ∈W r V, S↓↓a /∈W}
C = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a ∈W r V }
D = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a ∈ V rW}
E = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a /∈ V ∩W}.

Note that the sets A,C and E form a partition for the set of yes-no swings
of a in v; B,D and E form a partition for the set of yes-no swings of a
in w. All the five sets form the set of yes-no swings for player a in v ∨ w,
while E is the set of swings for player a in v ∧ w. So the Banzhaf index,
which counts the number of yes-no swings, satisfies the transfer axiom.

Banzhaf total power This axiom is trivially satisfied from the definition of
the Banzhaf index.

Again, anonymity, null player, transfer and Banzhaf total power are inde-
pendent axioms on simple games, but the Banzhaf index for (3,2)-games is not
uniquely determined using only these four. For instance, let β̄ be the standard
Banzhaf index for simple games, consider the index ϕ for (3,2)-simple games
defined as ϕ(v) = β̄(V ) where V is the simple game associated to the game v
and defined as V (S) = 1 if and only if v(S,N r S, ∅) = 1 . Then ϕ satisfies
the anonymity, null player, transfer and Banzhaf total power axioms since the
Banzhaf index satisfies them on simple games, but it is different from β, for
instance ϕ(u(a,b,∅)) = (1, 0) while β(u(a,b,∅)) =

(
2
3 ,

1
3

)
.

As we have seen, these classical axioms are not enough to characterize the
Shapley-Shubik and the Banzhaf indices on the space of (3,2)-simple games. We
are going to propose two new axioms in order to uniquely determine these two
indices.

3.2 A new axiom for the Shapley-Shubik index for (3,2)-
simple games

Let us introduce another index for (3,2)-simple games, that we use to state the
new axiom for the Shapley-Shubik index for (3,2)-simple games. Given v ∈ TN ,
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let W(v) be the set of its winning coalitions. Then the structural decisiveness
index is defined as the map δ : TN → R

δ(v) = 3−n|W(v)|.

This index is assumed to provide a measure of the formal effectiveness of the
game to pass decisions without taking into account either the personality of
concrete agents or their preferences as to a particular proposal versus the status
quo. For example, let us consider the unanimity game uS with S = (S1, S2, S3)
and a ∈ S1; then

δ(uS) =
2s2

3s1+s2
δ(uS↓a) = 2δ(uS) δ(uS↓↓a) = 3δ(uS).

We can now discuss the axiom we have to introduce to describe the behavior
of the index on unanimity game.

Yes-abstain loss on unanimity games An index ψ satisfies the yes-abstain
loss on unanimity games if for any tripartition S ∈ 3N with a ∈ S1 it
holds:

ψa(uS)− ψa(uS↓a) = ψa(uS↓a)− δ(uS↓↓a)

s1 + s2
. (2)

In the following, we denote with f(uS) =
δ(uS↓↓a)
s1+s2

, so that the previous equation
can also be written as

ψa(uS)− ψa(uS↓a) = ψa(uS↓a)− f(uS).

In order to prove that the Shapley-Shubik index for (3,2)-simple games sat-
isfies the yes-abstain loss on unanimity games, we have to focus on unanimity
games. In particular, from now on, we fix a tripartition S with a ∈ S1 and
consider the game uS . We want to compute φa(uS) and then compare it with
φa(uS↓a).

Let uS be a unanimity game, then player a ∈ S1 is pivotal in the roll-call
R ∈ Rnoa if and only if a is pivotal in the roll-call R↑a ∈ Rabsa .

A roll-call is winning in the game uS if and only if all players belonging
to S1 are voting “yes” and all players belonging to S2 are not voting “no”.
If a ∈ S1 is pivotal by voting “no” in the roll-call R, then the outcome of R
is negative. The roll-call R↓a represents the same situation of R with the only
difference that player a abstains instead of voting no. But a is still pivotal
abstaining and fixing as negative the outcome of the roll-call.
Analogously, if player a is pivotal by abstaining, in the same situation a is also
pivotal by voting “no”.

Lemma 3.2 implies that |Aa,uS
| = |Na,uS

|, but also |AYa,uS
| = |NYa,uS

| and
|AY a,uS

| = |NY a,uS
|, because of the one-to-one correspondence among each

pair of the sets Ryesa , Rabsa , and Rnoa .
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Let uS be a unanimity game, if player a ∈ S1 is pivotal in the roll-call
R ∈ Ryesa , then a is pivotal in the roll-call R↓a ∈ Rabsa and in the roll-call
R↓↓a ∈ Rnoa

A roll-call is winning in the game uS if and only if all players belonging
to S1 are voting “yes” and all players belonging to S2 are not voting “no”.
If a ∈ S1 is pivotal in the roll-call R by voting “yes”, this means that after a’s
vote the outcome is positive and all the other players in S1 and S2 voted before
a. This also means that after a only some of the players belonging to S3 are
going to vote, but they are null players and can not be pivotal.
In the roll-call R, a is the last player who has the power to change the outcome
of the game, thus a is pivotal also in R↓↓a voting “no” and in R↓a abstaining.

The converse is not true. For instance consider the tripartition S = (a, b, c)
and the game uS . In any roll-call in which a is the first to vote, he is pivotal
abstaining or voting “no”. On the other hand if a votes “yes” as first player,
then b is pivotal: if she votes “no” the outcome is negative, while if she abstains
or votes “yes” the outcome is positive.

Note that by definition |AYa,uS
| ≤ |Ya,uS

| and |NYa,uS
| ≤ |Ya,uS

|. Lemma
3.2 implies that |Ya,uS

| ≤ |AYa,uS
| and |Ya,uS

| ≤ |NYa,uS
|. Thanks to these

considerations and Lemma 3.2 we have |Ya,uS
| = |AYa,uS

| = |NYa,uS
|.

Hence, from the previous remarks, the Shapley-Shubik index on the una-
nimity (3,2)-simple game uS of player a ∈ S1 is

φa(uS) =
1

3nn!

(
|Ya,uS

|+ |Aa,uS
|+ |Na,uS

|
)

=
1

3nn!

(
|Ya,uS

|+ |AYa,uS
|+ |AY a,uS

|+ |NYa,uS
|+ |NY a,uS

|
)

=
1

3nn!

(
3|Ya,uS

|+ 2|NY a,uS
|
)

(3)

It is possible to calculate the value |Ya,uS
| thanks to the following lemma.

A player a ∈ S1 is pivotal in the game uS for the roll-call R ∈ Ryesa if and
only if all players in (S1 r {a}) ∪ S2 are before him in qR, they vote “yes” if
they belong to S1, and they vote “yes” or abstain if they belong to S2.

In particular

|Ya,uS
| = 2s23s3

(s1 + s2 + s3)!

s1 + s2

A roll-call is winning in the game uS if and only if all players belonging to
S1 are voting “yes” and all players belonging to S2 are not voting “no”. Thus
if a player a ∈ S1 is pivotal in the roll-call R ∈ Ryesa , he is the last player of the
set S1 ∪S2 to vote and he is the last player that has the possibility to influence
the outcome and fix it as positive. All the players before him were not pivotal,
so they voted “yes” if they belong to S1, they abstained or voted “yes” if they
belong to S2.

To prove the second part of the thesis, we have to count the number of
roll-calls R ∈ Ya,uS

. Actually, if j = 0, . . . , s3, player a can vote j positions

11



players in S1 and in S2
not pivotal

and j players in S3

s3 − j players in S3
can vote anything(

s3
j

)
(s1 + s2 + j − 1)!2s23j (s3 − j)!3s3−j

(s1 + s2 + j)th

a

Figure 1: Roll-calls in which a ∈ S1 is pivotal by voting “yes”

after that all the players in S1 r {a} ∪ S2 voted. This means that j players
belonging to S3 vote before a and s3 − j players belonging to S3 vote after a.
There are

(
s3
j

)
different ways to choose the j players, then (s1 +s2 + j−1)!2s23j

possibilities for the players before a and (s3 − j)!3s3−j for the players after a.
Hence,

|Ya,uS
| =

s3∑
j=0

(
s3
j

)
(s1 + s2 + j − 1)!2s23j(s3 − j)!3s3−j

=2s23s3
(s1 + s2 + s3)!

s1 + s2
.

We can now discuss how the power of player a changes when a decreases
the support of one level. We evaluate the Shapley-Shubik index for (3,2)-simple
games of player a ∈ S1 in the unanimity game uS↓a, generated by the tripartition
(S1 r {a}, S2 ∪ {a}, S3).
Firstly note that if a is pivotal by abstaining in uS↓a, then in the same situation
a is pivotal also by voting “yes”; this means that |AY a,uS↓a | = 0. Then observe

that if R /∈ AY a,uS
and a is pivotal in R for uS , then a is pivotal in R also for

uS↓a. This means that Ya,uS↓a = Ya,uS
and

AYa,uS↓a = AYa,uS
AY a,uS↓a = ∅

NYa,uS↓a = NYa,uS
NY a,uS↓a = NY a,uS

.

Hence,

φa(uS↓a) =
1

3nn!

(
3|Ya,uS

|+ |NY a,uS
|
)
. (4)

Finally, to establish how the index changes when a player switches from
voting “yes” to abstaining in a unanimity game, we compare equations (3) and
(4) and get the following:

φa(uS)− φa(uS↓a) =
1

3nn!
|NY a,uS

|

To compare the difference with something we can explicit, we also get the fol-
lowing equality

2φa(uS↓a)− φa(uS) =
3

3nn!
|Ya,uS

|

12



that can be re-written as

φa(uS)− φa(uS↓a) = φa(uS↓a)− 3

3nn!
|Ya,uS

|.

From this result and Lemma 3.2 we obtain the following.
The Shapley-Shubik index satisfies the yes-abstain loss on unanimity games.

4 The characterization of the Shapley-Shubik
index for (3,2)-simple games

We can now state the main theorem to characterize the Shapley-Shubik index
for (3,2)-simple games. We also prove the independence of the five axioms we
are going to use, so all of them are necessary in order to uniquely characterize
the Shapley-Shubik power index for (3,2)-simple games.

[Shapley-Shubik index for (3,2)-simple games] Let ψ : TN → Rn be an index
for (3,2)-simple games, then ψ satisfies the anonymity, null player, transfer,
efficiency and yes-abstain loss on unanimity games axioms if and only if ψ is
the Shapley-Shubik index for (3,2)-simple games.

In Lemma 3.1 and in Proposition 3.2 it is proved that the Shapley-Shubik
index for (3,2)-simple games satisfies all the axioms, we just need to prove that
only one index satisfies all of them.
So, let ψ be an index that satisfies the hypothesis. We will prove that it is
uniquely determined on a game v, using induction on the number of minimal
winning tripartitions of v.

First, suppose that |Wm(v)| = 1. Then v = uS for some tripartition S ∈ 3N

and S 6= (∅, ∅, N). We again use induction on the number of elements in S2.

|S2| = 0 Then S = (S1, ∅, NrS1) for some S1 ⊆ N . All players in S3 = NrS1 are
null players, so if c ∈ S3: ψc(uS) = 0, on the other hand all players in S1

have the same role, thus, thanks to the anonymity and efficiency axioms
we have ψa(uS) = 1

s1
, for any a ∈ S1.

|S2| = t+ 1 Suppose now that the thesis is true for any tripartition T such that |T2| ≤
t, we want to prove it for a tripartition S such that |S2| = t+1. Given the
tripartition S = (S1, S2, S3), there exist a player p ∈ S2 and a tripartition
T = (T1, T2, T3) such that T↓p = S and |T2| = t. Since ψ satisfies the
yes-abstain loss on unanimity games:

ψp(uS) = ψp(uT↓p) =
1

2
[ψp(uT ) + f(uT )]

then the induction hypothesis and anonymity imply that ψb(uS) is uniquely
determined for all players b ∈ S2.
Thanks to anonymity and efficiency:

s1ψa(uS) + s2ψb(uS) = 1,

13



so we can determine ψa(uS) for a ∈ S1. All players in S3 are null, so
ψc(uS) = 0 if c ∈ S3.
Thus, ψ coincides with the Shapley-Shubik power index for (3,2)-simple
games for any unanimity game uS .

Now, suppose that the thesis holds for any game v such that |Wm(v)| ≤ k−1;
we need to prove it for v such that |Wm(v)| = k.
If Wm(v) = {S1, . . . , Sk}, then v = uS1 ∨ uS2 ∨ · · · ∨ uSk , since ψ satisfies the
transfer axiom:

ψ(v) = ψ(uS1) + ψ(uS2 ∨ · · · ∨ uSk)− ψ(uS1 ∧ uS2 ∧ · · · ∧ uSk).

The conjunction of unanimity games is still a unanimity game, so all games in
the right-hand side of the previous equation have a number of minimal winning
tripartitions smaller than |Wm(v)|. Using the induction hypothesis, ψ coincides
with the Shapley-Shubik index for all of them and this ends the proof.

Now, that we proved that the Shapley-Shubik power index for games with
abstention is uniquely characterized by the five axioms we can show how these
axioms allow to compute the index for every unanimity game by means of a
recursive procedure.

Consider the unanimity game uS with the set S3 of people voting no. Then
consider the game uT 0 where T 0 = (∅, N r S3, S3). For every player a ∈ S3

thanks to null player we have φa(uT 0) = 0, for every a ∈ N r S3 thanks to
anonymity and efficiency it holds

φa(uT ) =
1

n− s3
.

Then consider the game uT 1 where T 1 = (p,N r (S3 ∪ p), S3)) for some player
p ∈ S1. Thanks to (2) we can compute φp(uT 1), then for any a 6= p ∈ N r S3,
φa(uT 1) can be computed using efficiency and players in S3 are still null players.

It is clear that this process can be reiterated until we reach the games uS
and establish the value for all players in S1 and S2 using the yes-abstain loss on
unanimity games and efficiency.

4.1 Independence of the axiom for the Shapley-Shubik
power index for (3,2)-simple games

The five axioms for (3,2)-simple games are independent. We are going to give
examples of power indices for (3,2)-simple games that satisfy only four of them,
as summarized in Table 2.

Not anonymity Consider the index ψ1 defined on unanimity games as
follows.

• If s3 = n− 2 then for any two players a and b such that a < b,

– if S = (ab, ∅, N r {a, b}), then

ψ1
a(uS) =

1

2
+ ε, ψ1

b (uS) =
1

2
− ε

14



Anonymity Null Transfer Efficiency New axiom

ψ1 - X X X X
ψ2 X - X X X
ψ3 X X - X X
ψ4 X X X - X
ϕ X X X X -

Table 2: Independence of the axioms that characterize the Shapley-Shubik index
for (3,2)-simple games

– if S = (a, b,N r {a, b}), then

ψ1
a(uS) =

2

3
+
ε

2
, ψ1

b (uS) =
1

3
− ε

2

– if S = (b, a,N r {a, b}), then

ψ1
a(uS) =

1

3
+
ε

2
, ψ1

b (uS) =
2

3
− ε

2

– if S = (∅, ab,N r {a, b}), then

ψ1
a(uS) =

1

2
+
ε

4
, ψ1

b (uS) =
1

2
− ε

4

where ε > 0;

• if s3 6= n − 2, ψ1(uS) = φ(uS) where φ is the Shapley-Shubik index for
(3,2)-simple games.

Then extend ψ1 to TN using transfer.
It is clear that this index satisfies null player and efficiency. It also satisfies

the yes-abstain loss on unanimity games, because it coincides with the Shapley-
Shubik index for (3,2)-simple games when s3 6= n − 2 and if s3 = n − 2 the
yes-abstain loss on unanimity games is satisfied by the definition of ψ1, as it is
easy to check. However, ψ1 does not satisfy anonymity, because for instance

ψ1
a(u(ab,∅,Nr{a,b}))− ψ1

b (u(ab,∅,Nr{a,b})) = 2ε 6= 0.

Not null player Consider the index ψ2 defined on unanimity games as
follows.

• If S = (∅, a,N r {a}) for some a ∈ N , then

ψ2
a(uS) = 1− ε, ψ2

b (uS) =
ε

n− 1

for any b 6= a, with ε > 0;
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• if S = (a, ∅, N r {a}) for some a ∈ N , then

ψ2
a(uS) = 1− 2ε, ψ2

b (uS) =
2ε

n− 1

for any b 6= a, with ε > 0;

• for any other S ∈ 3N , ψ2(uS) = φ(uS) where φ is the Shapley-Shubik
index for (3,2)-simple games.

Then extend ψ2 to TN using transfer.
It is clear that this index satisfies anonymity and efficiency. It also satisfies the
yes-abstain loss on unanimity games since it coincides with the Shapley-Shubik
index on unanimity games such that s3 6= n− 1 and if s3 = n− 1 and a ∈ S1

2ψ2(uS↓a)− ψ2(uS) = 1 = f(u(a,∅,Nr{a})).

However, ψ2 does not satisfy null player: any b 6= a is a null player in the game
u(∅,a,Nr{a}) but ψ2

b (u(∅,a,Nr{a})) = ε
n−1 6= 0.

Not transfer Consider the index ψ3 defined as ψ3(uS) = φ(uS) for any
unanimity game uS and for any other game v

ψ3
a(v) =

{
0 if a is a null player
1
k otherwise

where k = |{p ∈ N : p is not a null player in v}|.
The index ψ3 satisfies the null player, the anonymity, and the efficiency axioms;
it also satisfies the yes-abstain loss on unanimity games, since it coincides with
the Shapley-Shubik index on unanimity games. From the definition of ψ3(v) it
is clear that this index does not satisfy the transfer axiom.

Not efficiency Consider the index ψ4 defined on unanimity game as

ψ4
a(uS) =


1 if a ∈ S1

1
2 + 2s2−1

3s1+s2−1(s1+s2)
if a ∈ S2

0 if a ∈ S3

and extended to TN using transfer. Then ψ4 satisfies anonymity, null player
and transfer. It also satisfies the yes-abstain loss on unanimity games since for
any tripartition S with a ∈ S1:

2ψ4
a(uS↓a) = 2

[1
2

+
2s2−1

3s1+s2−1(s1 + s2)

]
= 1 +

2s2

3s1+s2−1(s1 + s2)

= ψ4
a(uS) + f(uS)
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However, ψ4 does not satisfy efficiency, for instance ψ4(u(N,∅,∅)) = (1, . . . , 1) so
that

∑
a∈N ψ

4(u(N,∅,∅)) = n 6= 1.

Not yes-abstain loss on unanimity games As we examined in Remark
3.1, the index ϕ, that is Shapley-Shubik index for simple games computed on
the simple games associated to the game with abstention, satisfies null player,
anonymity, transfer, and efficiency, but does not satisfy the yes-abstain loss on
unanimity games.

5 A similar approach for the Banzhaf index for
(3,2)-simple games

We now consider the Banzhaf index for (3,2)-simple games and characterize
this index, as we did in the previous sections with the Shapley-Shubik index
for (3,2)-simple games. Let us start with a preliminary lemma that shows how
simple it is to compute the Banzhaf index for (3,2)-simple games on unanimity
games. This lemma will be used in the following to prove the new axioms we are
going to introduce in order to characterize the Banzhaf index for (3,2)-simple
games.

Let S 6= (∅, ∅, N) be a tripartition of N , then the Banzhaf index for (3,2)-
simple games on the unanimity games uS is

βp(uS) =


3δ(uS) if p ∈ S1

3
2δ(uS) if p ∈ S2

0 if p ∈ S3.

From the previous lemma, it follows, in particular, that if a ∈ S1 and b ∈ S2,
it holds

βa(uS) = 2βb(uS).

We have to compute ηa(uS) for any player a ∈ N . Assume first that a ∈ S1.
Remember that uS(T ) = 1 if and only if S1 ⊆ T1 and S2 ⊆ T1 ∪ T2. Note
that if a ∈ S1 ∩ T1, the condition uS(T ) = 1 implies uS(T↓↓a) = 0. Moreover, if
a ∈ S1, the conditions a ∈ T1 and uS(T ) = 1 are equivalent to S ⊆ T . Hence,

ηa(uS) = |{T ∈ 3N : a ∈ T1, uS(T )− uS(T↓↓a) = 1}|
= |{T ∈ 3N : a ∈ T1, uS(T ) = 1}|
= |{T ∈ 3N : S ⊆ T}| = 2s23s3 .

Suppose now a ∈ S2. Analogously we have

ηa(uS) = |{T ∈ 3N : a ∈ T1 and S ⊆ T}| = 2s2−13s3 .

Finally, assume a ∈ S3. Players in S3 are null, so βa(uS) = 0.
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Since the Banzhaf index for (3,2)-simple games is given by

βa(uS) =
ηa(uS)

3n−1

and n = s1 + s2 + s3, we have the thesis.
In the [Dubey and Shapley [1979]] characterization of the Banzhaf power

index for simple games, the Banzhaf total power axiom is introduced in order
to replace efficiency, that is used for the Shapley-Shubik power index. However,
the Banzhaf total power axiom is not a convincing axiom; some subsequent
axiomatic characterization of the Banzhaf power index avoided this axiom, see
for instance [Laurelle and Valenciano [2001], Lehrer [1988], Albizuri [2001]].

We want to follow the classical approach and use the same set of axioms to
characterize the Shapley-Shubik and the Banzhaf indices for (3,2)-simple games.
However, we will replace the Banzhaf total power with a weaker condition that
refers only to unanimity games.

Total power on unanimity games An index ψ satisfies the total power on
unanimity games if for any tripartition S 6= (∅, ∅, N)∑

a∈N
ψa(uS) =

3

2
(2s1 + s2)δ(uS)

The Banzhaf index for (3,2)-simple games satisfies the total power on una-
nimity games axiom.

The thesis follows from anonymity and Lemma 5.
As we have previously done for the Shapley-Shubik index on (3,2)-simple

games, it is necessary to add another axiom in order to uniquely characterize the
Banzhaf index on (3,2)-simple games. The new axiom defined in equation (2),
describes what a player is losing when passing from voting “yes” to abstaining;
we introduce the following axiom to describe a different idea: the power of player
a does not change in the game uS and in uS↓a.

Yes-abstain null loss on unanimity games An index ψ satisfies the yes-
abstain null loss axiom if for any unanimity game uS and a ∈ S1 it holds

ψa(uS) = ψa(uS↓a).

We immediately have the following result. Consider the unanimity game uS
with a ∈ S1. Then the Banzhaf index on (3,2)-simple games satisfies the yes-
abstain null loss axiom and in particular

βa(uS) = βa(uS↓a).
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5.1 Characterization of the Banzhaf index for (3,2)-simple
games

Let ψ : TN → Rn be an index for (3,2)-simple games, then ψ satisfies anonymity,
null player, transfer, total power on unanimity games and yes-abstain null loss
if and only if ψ is the Banzhaf index for (3,2)-simple games.

We already proved that the Banzhaf index for (3,2)-simple games satisfies
all these properties, so we just need to prove that if ψ is a power index that
satisfies the hypothesis, then it is uniquely determined. We use induction on
the number of minimal winning tripartitions of the game v.

Suppose that |Wm(v)| = 1, then v = uS for some tripartition S. So we start
proving that ψ coincides with the Banzhaf index on unanimity games.

We again use induction, this time on the cardinality of S2.

|S2| = 0. Then S = (S1, ∅, N r S1) for some S1 ⊆ N . Then players in S3 = N r S1

are null, so ψc(uS) = 0 for all c ∈ S3. Players in S1 are symmetric and
thanks to anonymity and total power on unanimity game, if a ∈ S1

βa(u(S1,∅,NrS1)) =
1

s1

2s12−1

3s1−1
=

1

3s1−1
.

So, ψ is uniquely determined on unanimity games with s2 = 0 and it
coincides with the Banzhaf index for (3,2)-simple games.

|S2| = t+ 1. Suppose now that the thesis is true for any tripartition T such that |T2| ≤
t, we want to prove this for a tripartition S such that |S2| = t+ 1. Given
a tripartition S = (S1, S2, S3) such that |S2| = t + 1, there exist a player
p ∈ S2 and a tripartition T = (T1, T2, T3) such that T↓p = S and T2 = t.
Since ψ satisfies yes-abstain null loss:

ψp(uS) = ψp(uT↓p) = ψp(uT ),

then the induction hypothesis and anonymity imply that ψb(uS) is uniquely
determined for all players b ∈ S2.
Using again anonymity and the total power on unanimity game:

s1ψa(us) + s2ψb(uS) = (2s1 + s2)
2s2−1

3s1+s2−1

with a ∈ S1 and b ∈ S2. So, we can determine ψa(uS) for a ∈ S1. Thanks
to null player we have that ψc(uS) = 0 if c ∈ S3. Thus, ψ coincides with
the Banzhaf index for (3,2)-simple games for any unanimity game uS .

We suppose that the thesis holds for any game v such that |Wm(v)| ≤ k−1,
and prove it for v such that |Wm(v)| = k.
If Wm(v) = {S1, . . . , Sk}, then v = uS1 ∨ uS2 ∨ · · · ∨ uSk , since ψ satisfies the
transfer axiom:

ψ(v) = ψ(uS1) + ψ(us2 ∨ · · · ∨ uSk)− ψ(uS1 ∧ uS2 ∧ · · · ∧ uSk)
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Anonymity Null Transfer Total power Yes-abstain

γ1 - X X X X
γ2 X - X X X
γ3 X X - X X
γ4 X X X - X
γ5 X X X X -

Table 3: Independence of the axioms that characterize the Banzhaf index for
(3,2)-simple games

The conjunction of unanimity games is still a unanimity game, so all games on
the right-hand side of the previous equation have a number of minimal winning
tripartitions smaller than |Wm(v)|. Using the induction hypothesis, ψ coincides
with the Banzhaf index for (3,2)-simple games for all of them and this ends the
proof.

5.2 Independence of the axiom for the Banzhaf index for
(3,2)-simple games

The five axioms for (3,2)-simple games used in Theorem 5.1 are independent.
We are going to give examples of power indices on (3,2)-simple games that
satisfy only four of them, as summarized in Table 3.

Not anonymity Consider the index γ1 defined on unanimity games as
follows.

• If s3 = n− 2 then for any two players a and b such that a < b,

– if S = (ab, ∅, N r {a, b}), then

γ1a(uS) =
1

3
+ ε, γ1b (uS) =

1

3
− ε;

– if S = (a, b,N r {a, b}), then

γ1a(uS) =
2

3
+ ε, γ1b (uS) =

1

3
− ε;

– if S = (b, a,N r {a, b}), then

γ1a(uS) =
1

3
+ ε, γ1b (uS) =

2

3
− ε;

– if S = (∅, ab,N r {a, b}), then

γ1a(uS) =
2

3
+ ε, γ1b (uS) =

2

3
− ε;

where ε > 0.
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• If s3 6= n−2, γ1(uS) = β(uS) where β is the Banzhaf index for (3,2)-simple
games.

Then extend γ1 to TN using transfer.
This index satisfies null player, total power on unanimity games and yes-abstain
null loss. However, γ1 does not satisfy anonymity, because for instance

γ1a(u(ab,∅,Nr{a,b})) 6= γ1b (u(ab,∅,Nr{a,b})).

Not null player Consider the index γ2 defined on unanimity games as
follows.

• If S = (∅, a,N r {a}) or S = (a, ∅, N r {a}) for some a ∈ N , then

γ2a(uS) = 1− ε γ2b (uS) =
ε

n− 1

for any b 6= a and with ε > 0;

• for any other S ∈ 3N , γ2(uS) = β(uS) where β is the Banzhaf index for
(3,2)-simple games.

Then extend γ2 to TN using transfer.
This index satisfies anonymity, total power on unanimity games and yes-abstain
null loss. However, γ2 does not satisfy null player: any b 6= a is a null player in
the game u(∅,a,Nr{a}) but γ2b (u(∅,a,Nr{a})) = ε

n−1 6= 0.

Not transfer Consider the index γ3 defined as γ3(uS) = β(uS) for any
unanimity game uS and for any other game v

γ3a(v) =

{
0 if a is a null player
1
k otherwise

where k = |{p ∈ N : p is not a null player in v}|.
The index γ3 satisfies the null player and the anonymity axioms. It also satisfies
the total power on unanimity games and the yes-abstain null power, since it
coincides with the Banzhaf index on unanimity games. From the definition of
γ3(v) it is clear that this index does not satisfy the transfer axiom.

Not total power on unanimity games Consider the index γ4 defined on
unanimity game as

γ4a(uS) =

{
1

s1+s2
if a ∈ S1 ∪ S2

0 if a ∈ S3

and extended to TN using transfer.
The index γ4 satisfies anonymity, null player, and yes-abstain null loss. However,
γ4 satisfies efficiency instead of total power on unanimity game.
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Not yes-abstain null loss Consider the index γ5 defined on unanimity
game as

γ5a(uS) =

{
2s1+s2
s1+s2

2s2−1

3s1+s2−1 if a ∈ S1 ∪ S2

0 if a ∈ S3

and extended TN using transfer.
The index γ4 satisfies anonymity, null player, and total power on unanimity
games. However, it does not satisfy yes-abstain null loss:

γ5a(uS) =
2s1 + s2
s1 + s2

2s2−1

3s1+s2−1
6= 2s1 + s2 − 1

s1 + s2

2s2

3s1+s2−1
= γ5a(uS↓a).

6 Conclusion

In this work we provide an axiomatization for the Shapley-Shubik index for
(3,2)-simple games. The definition of this index in Felsenthal and Machover’s
seminal work is given as the expected probability under the discrete uniform
distribution of each player of being pivotal in the roll-call space. Thus, there
was a bargaining interpretation of this index but there was not, in that original
paper, an axiomatic characterization of the index and the list of the properties
that it satisfies.

Our work focus on the classical axiomatization of the Shapley-Shubik and the
Banzhaf indices for simple games, due to [Dubey [1975]] and [Dubey and Shapley [1979]],
respectively, and generalize these approaches to the family of (3,2)-simple games.
The characterizations we give for the two indices have a very similar structure
and they can be of future interest in order to define new indices for (3,2)-simple
games analogous to probabilistic values and semivalues defined for cooperative
and simple games, as in [Dubey et al. [1981] ] and [Monderer and Samet [2002]].

Moreover, it can be of future interest to study other axiomatizations of power
indices for (3,2)-simple games, not related to the behavior on unanimity games,
as done in [Freixas and Lucchetti [2016]] and in [Bernardi [2017]] only for the
Banzhaf index for (3,2)-simple games.

Finally, the axiom we introduce, together with anonymity and efficiency, al-
lows to compute the Shapley-Shubik index for (3,2)-simple games on unanimity
games using a recursive formula. Thus, using the transfer property it is possible
to compute the value for any game, without explicitly use the definition and
count the number of roll-calls in which a player is pivotal. Further research
could be addressed to compute the Shapley-Shubik index (3,2)-simple games
for any (3,2)-simple game by means of a direct formula.
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