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a b s t r a c t

The energy sector is highly dependent on climate variability for electricity generation, maintenance
activities and demand. In recent years, a few climate services have appeared that provide tailored in-
formation for the energy sector. In particular, seasonal climate predictions of wind speed have proven
useful to the wind power industry. However, most of the service users are ultimately interested in
forecasts of electricity generation instead of wind. Although power generation depends on many factors
other than wind conditions, the capacity factor is a suitable indicator to quantify the impact of wind
variability on production. In this paper a methodology to produce seasonal predictions of capacity factor
for a range of turbine classes is proposed for the first time. The strengths and weaknesses of the method
are discussed and the forecast quality is evaluated for an application example over Europe.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The energy sector is heavily impacted by atmospheric variability:
energy demand and supply are conditioned by atmospheric condi-
tions at several time scales ranging from small-scale turbulence
through day-aheadweather or seasonal anomalies and up to climate
change impacts [14,43]. Renewable generation from hydro, solar
and wind power installations is specially sensitive to seasonal or
multiannual climate oscillations and long-term trends [28,48].
Recent improvements in the field of climate prediction make it now
possible to inform in advance of anomalous conditions for the
months to come (i.e. seasonal prediction) [12,31]. Anticipating the
future variability of energy sources beyond the first two weeks al-
lows to take calculated, precautionary actions with potential cost
savings. To foster the usage of those predictions, in 2015 the World
Meteorological Organization (WMO) included energy as one of the
priority areas in the Global Framework for Climate Service (GFCS)
[23,52]. The GFCS set the basis for understanding user needs in
terms of climate knowledge and building applications that trans-
form climate model outputs to fulfill those specific user needs. Since
then a few climate services have appeared that provide specific
information for assisting decision making in the energy sector [6].
One of such examples is the RESILIENCE prototype
r Ltd. This is an open access article
(resilience.bsc.es), developed specifically for the wind power in-
dustry under the EUPORIAS project [7,46]. In RESILIENCE the value
of seasonal forecasts of wind speed issued one to three months
ahead was explored according to the needs of various stakeholders
in the sector: wind farm owners, operation andmaintenance (O&M)
teams, energy traders and transmission system operators (TSO).

The needs of those different user profiles regarding seasonal
outlooks was explored through stakeholder interviews in EUPO-
RIAS and S2S4E projects ([16,38,41]). After analysing 22 interviews
and 69 survey responses, the needs of the wind energy sector
proved to be quite diverse. For example, O&M teams need to
perform maintenance activities under weak winds for safety rea-
sons. For that purpose wind forecasts are directly useful and some
recent research has already shown skill for seasonal wind pre-
dictions in some regions [3,9,46]. But most of the remaining
stakeholders use the wind speed forecasts as a proxy to anticipate
wind power generation either at site or country level: TSOs need to
schedule alternative generation sources in advance to guarantee
power supply, traders want to forecast power prices, owners need
to be ready for cash flow shortages in case of mince revenues, and
even O&M teams try to minimize generation losses due to turbine
stoppings. Therefore direct forecasts of wind power generation
would be beneficial to those stakeholders, as indicated in the in-
terviews and surveys. However, efforts to transform seasonal pre-
dictions of wind speed to generation forecasts have received little
attention so far and have only been considered very preliminarily in
the work of MacLeod et al. [30].
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While forecasts of wind power generation at lead times from
minutes and hours to a few days ahead have been produced with
very advanced methodologies (e.g. dynamical downscaling, ma-
chine learning or statistical downscaling [17]), a number of diffi-
culties make the provision of generation forecasts at seasonal
timescales challenging. Climate models have more complexity than
weather models as they simulate and couple the different com-
ponents of the climate system (atmosphere/hydrosphere/cryo-
sphere/land surface/biosphere) and therefore demand enormous
amounts of computational resources. This limits the effective
temporal and spatial scales of the climate predictions that are
currently available. Besides, climate predictions are affected by
different sources of uncertainty than weather forecasts. Therefore
some advanced methodologies that have been used with weather
forecasts cannot be directly employed with climate model outputs.
For instance, dynamical downscaling might be computationally
prohibitive, and statistical downscaling usually requires long
observational records that are scarce. Additionally, the vast differ-
ences among technologies that extract kinetic energy from the
wind and convert it to electricity complicate physical approaches
for computing wind power production. This paper explores all
those challenges and difficulties, identifies gaps and provides
reasonable choices whenever that is possible. The decisions are
guided by the view of producing an indicator that can be computed
from publicly available state-of-the-art seasonal prediction sys-
tems, covers the whole globe, is useful for estimating power pro-
duction at wind farm level and general enough to serve any
technology.

The paper is organized as follows: section 2 describes the in-
dicator and the technological challenges. The limitations of sea-
sonal forecasts to produce generation forecasts are presented in
section 3. In section 4 the potential of the methodology is explored
through an application example over Europe. Finally some con-
clusions are provided in section 5.

2. An indicator of wind power generation that is suitable for
any kind of wind farm

2.1. Capacity factor

Wind power generation of a single wind farm depends on many
factors. The most important ones are the number of installed tur-
bines and the turbine model ewhich determine the maximum
power that can be produced (also known as installed capacity)e
altogether with the wind blowing at the site. Ideally, we are
interested in an indicator as general as possible, that accounts for
the impact of wind speed variations and is useful to as many
stakeholders as possible. Therefore different turbine types and
wind farm sizes should be accommodated. In conversations with a
co-designer from the industry (an important wind power producer
and project developer) the capacity factor was selected as a suitable
indicator of wind power generation. The capacity factor (CF) is a
widespread performance indicator in the whole energy sector that
allows fair comparisons between power plants of different sizes
and types. It is a typical way of assessing the relative performance
or usage of any generating power plant. For a given period of time, it
is defined as the ratio of total produced energy (Eprod) to the
maximum production that could be achieved if the plant were
operating at full (installed) capacity during all the time (Emax).
Simple calculus shows that CF can also be computed as the average
produced power (P) normalized by the installed capacity (Cinst).

CF ¼ Eprod
Emax

¼ P
Cinst

(1)
CF is typically expressed as a percentage, and can be also
interpreted as the percentage of time that the plant would have to
be working at full capacity to produce the same amount of energy
actually produced. This amount of time is also known as equivalent
hours, and sometimes used in the industry, although CF is more
prominent.

For conventional technologies, typically the capacity factor de-
pends on factors like the availability and cost of fuel, the electricity
demand, the needs of the grid operator or the market prices,
because the power output can be adjusted at discretion according
to the needs of the plant operator. But in the case of renewable
energies like wind or solar, the fuel cannot be directly controlled
(nor stored for later usage as hydropower allows), and as the fuel
has no cost, all the produced energy is fed into the grid without
further considerations. So, the generation in wind and solar plants
depends almost exclusively on meteorological factors such as wind
or irradiation. These meteorological factors have a natural vari-
ability, and hence the power output from these plants is said to be
intermittent and non-dispatchable. In this sense, capacity factor of
an already installed wind farm measures how efficient the mete-
orological conditions have been for producing energy during a
specific period.

The capacity factor is therefore independent from the number of
turbines and their nameplate capacity, which is a desirable prop-
erty. However it does depend on the efficiency of the specific tur-
bine at extracting energy from the wind at different speeds (see
section 2.2). The total generation of awind farm during a period can
be easily derived from its capacity factor just by multiplying it by
the installed capacity and the number of hours in the period of
interest.

Etot ¼ CF�Cinst�t (2)
2.2. Computing capacity factor

There are multiple approaches to computing capacity factors.
Power producers and TSOs simply obtain it directly from metering
records of the energy that is fed into the grid and use equation (1).
This capacity factor takes into account all energy losses in the wind
farm and is therefore called net capacity factor [5]. An other
approach is to estimate a theoretical capacity factor that would be
achieved if there were no losses at all, i.e. all available wind was
converted into energy according to turbine specifications. This is
referred as gross capacity factor. The typical way of computing the
gross capacity factor is using manufacturer-provided power curves
that relate power output to steady 10-min winds blowing at hub
height. Capacity factor can easily be derived from power curve
values dividing the power output by the nominal capacity of the
turbine.

It is important to understand differences between gross and net
capacity factors. The main element that impacts gross generation is
the flow speed that the blades receive, although other flow prop-
erties affect the turbine performance, namely wind shear, wind
veer, turbulence and air density. If the flow is not steady and ho-
mogeneous through all the swept area the generation will slightly
differ from the values provided in power curves [8,15,35,44].
Changes in air density (through temperature, humidity and pres-
sure variations) also modify the available kinetic energy that goes
through the swept area and can produce generation differences of
up to 5% [49]. In this study we will neglect all the turbulence and
shear effects and assume a standard density of 1.225 kg m�3, which
is the density reported in most power curves.

The list of factors affecting net generation, i.e. losses of all kinds,
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is long and diverse: downtime due to maintenance or failures, grid
curtailments, environmental curtailments (e.g. presence of birds or
bats), electrical transport and conversion losses, icing conditions,
accretion of dust or mosquitoes, blade degradation due to abrasion,
control strategies, wakes from obstacles or nearby turbines,
etcetera. Those losses vary greatly from one wind farm to another,
and even from one period to another. Differing wind farm designs,
country regulations, O&M strategies, risk appetites and other fac-
tors make big differences in the final losses. Just as a reference, total
losses might be in the range of 7.8%e37% with a typical value of
18.5% [5]. In view of this diversity of losses, and for the sake of
generality, an indicator of gross generation has been selected. Then
each user is allowed to subtract the losses deemed necessary in
order to obtain net generation estimates.
2.3. Handling a diversity of wind turbines

There are in the market several manufacturers offering a wide
range of turbines, and each of them is suited for maximum effi-
ciency at specific wind conditions. Since the advent of industrial
wind turbines in the 1980's there has been a technological race to
build taller turbines, with bigger rotor diameters and more
powerful generators. However we are interested here solely in their
efficiency in extracting energy from the wind, i.e. their normalized
power curves. The international standard IEC-61400-1 [25] defines
four classes of turbines suited for an average annual wind speed of
10, 8.5, 7.5 and 6m s�1 at hub height respectively (see Table 1). The
meanwind speed is used in these standard to estimate the extreme
50-year gust that the turbine will receive, so all turbines of this
class have to withstand such gusts. Classes are further subdivided
by the turbulence in the site, which also impacts structural loads.

Typically turbines of type III are lighter than type II or I for the
same nameplate capacity, because they do not have to withstand
heavy loads. Therefore, they can produce energy with weaker
winds. Conversely, turbines of type I are heavy, and they only
produce energy with stronger winds. In general turbines of the
same IEC class have similar normalized power curves, and this gives
a chance to provide a simplified approach to a diversity of turbine
models.

From a sample of more than two-hundred turbine models, five
have been selected to represent the different IEC classes. Capacity
factors have been computed using those five power curves and will
then be up to the users to select the one that most closely matches
their turbine power curve. A first screeningwas carried out to select
the most representative technologies. Several conditions were
imposed: (a) consider only pitch-regulated turbines (i.e. the blade
angle can be adjusted), (b) with nominal capacities around 2MW,
(c) available for installation at 100m hub height (within the range
95e105m), and (d) from the manufacturers with highest market
shares in Europe: Vestas, Enercon and Siemens-Gamesa. Class IV is
barely used in the industry, and Class S is for special designs not
fitting any other class, so they have been discarded. Note that some
Table 1
Turbine classes defined in IEC-61400-1.

Class Description Annual average wind spee

Ia high wind & high turbulence 10.0
Ib high wind & low turbulence 10.0
IIa medium wind & high turbulence 8.5
IIb medium wind & low turbulence 8.5
IIIa low wind & high turbulence 7.5
IIIb low wind & low turbulence 7.5
IV very low wind 6.0
S special e
turbines can be certified as Class I and II or II and III at the same
time, so we selected five turbines (see Table 2 and Fig. 1).

All the selected turbines start to turn and produce energy
around 3 or 4 m s�1 (cut-in speed). However, there are substantial
differences in the wind speeds at which the five turbines reach the
nominal power (rated speed). In the steeper section of the power
curves, around 8 or 10 m s�1, differences of capacity factor reach
more than 50%. It is also important to notice differences in the cut-
out speed, i.e. the speed at which the turbine has to stop turning for
safety reasons and stops producing energy (cut-out speed): the
Vestas turbines for class II/III and class III stop producing at 20
m s�1 while the others still produce energy up to 25 m s�1. Cut-out
values are very important for sensitivity because small variations of
wind produce ramps in capacity factor from 100% to 0%. Notice that
there exist class III turbines with cut-out speeds of 25 m s�1, but
these ones were selected to represent the widest range of differ-
ences amongst power curves.
3. Limitations of climate predictions to produce seasonal
forecasts of capacity factor

Several centers produce operational climate predictions for the
next months to come [20]. Typical settings cover up to six months
ahead with some of the systems extending even one year ahead.
These predictions are produced with coupled atmosphere/ocean/
ice/land models. Although the atmosphere is very chaotic in nature
and predictable only up to a few days ahead, the evolution of ocean
temperatures, soil humidity, snow cover or sea ice extent evolves
much slowly and in turn forces the atmosphere. This provides a
chance to anticipate mean-state atmospheric anomalies [40]. To
account for uncertainty, the predictions are repeated many times
with slightly distinct but equally plausible initial conditions. This
provides a set of ensemble members from which probabilities of
occurrence of different situations can be estimated. Moreover, each
prediction system is accompanied with a retrospective set of pre-
dictions for the past ten to thirty years, which is used to evaluate
the quality of the predictions and adjust the biases.

These particularities of climate prediction result in huge
amounts of data and expensive computational resource needs.
Therefore all the producing centers carefully select the number of
variables they generate, the spatial and temporal resolutions of
their products as well as the number of ensemble members. Those
compromises sometimes difficult the usage of the predictions for
specific applications. The limitations that constrain our goal of
producing capacity factor forecasts are detailed below.
3.1. Spatial resolution

At small scales, the wind field near the ground is very spatially
inhomogeneous. Turbulence, topography effects and obstacles can
change the wind speed at distances of only a few tenths of meters.
For that reason not all the turbines in a wind farm receive the same
d (m/s) Turbulence intensity (%) Extreme 50-year gust (m/s)

18 70
16 70
18 59.5
16 59.5
18 52.5
16 52.5
e 42.0
e e



Table 2
Technical characteristics of the selected turbines.

Turbine model IEC Class Rotor diameter (m) Rated power (MW) Cut-in speed (m/s) Rated speed (m/s) Cut-out speed (m/s)

Enercon E70_2.3MW I 70 2.3 2 16 25
Gamesa G80_2.0MW I/II 80 2.0 4 17 25
Gamesa G87_2.0MW II 87 2.0 4 16 25
Vestas V100_2.0MW II/III 100 2.0 3 15 20
Vestas V110_2.0MW III 110 2.0 3 11.5 20

Fig. 1. Selected power curves, normalized by maximum generation. Their specifications can be seen in Table 2.
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wind speed at a given time. But the global models employed for
producing seasonal predictions have grid sizes much bigger
(� 50km) than a typical wind farm extent, and therefore only
provide one single wind speed value for all the turbines. Dynamical
and statistical downscaling techniques can be used to refine the
predictions [12, p.256]. Using microscale models one could adjust
the wind speed to specific turbine locations [2], e.g. by computing a
speed-up factor for each turbine location. However, this would
require specific information on the wind turbine locations for each
wind farm, which is not publicly available. Some authors have
assumed a fixed distribution of speeds through the turbines to try
to model this effect [42]. Other authors have used empirical power
curves for the whole wind farm [18,29,37]. This approach also re-
quires site-specific metering records of wind speed and production
and cannot be employed to produce global forecasts. Although
monthly or seasonal wind anomalies tend to be more homoge-
neous than themeanwind field and impact thewhole wind farm in
the same manner, power curves are sensitive to the absolute value
of the wind, and therefore this effect can produce some differences
in the monthly total generation of each turbine. The model
employed here sticks to turbine power curves despite this
limitation.

3.2. Temporal resolution

State-of-the-art seasonal prediction systems produce instanta-
neous outputs every six hours. Typically, those values are further
aggregated to monthly or seasonal means, because predictability at
seasonal timescales only arises when looking at long period aver-
ages: when averaging, the noise cancels and the forcing signal
imparted by the ocean/land conditions can appear. In contrast,
power curves are compiled with ten-minutal average winds as
mentioned in section 2.1. As power curves are highly non-linear,
using averages of wind speed to derive an average capacity factor
can produce inaccurate results. Moreover instantaneous or ten-
minutal wind speed distributions tend to be highly skewed
[33,34]. Therefore one might wonder what is the error incurred by
using six-hourly sampled (instantaneous) winds or longer-period
averages from the models with ten-minutal power curves. To
illustrate this problematic, quality-controlled wind speed obser-
vations from 9 tall towers have been employed (see Table 3). For
each location, ten-minutal wind speeds have been compared to its
six-hourly, daily, monthly and seasonal averages. Fig. 2 shows the
joint probability density of ten-minutal wind speeds and those
longer period averages for one of those towers near Erie, Colorado
and spanning 2006 to 2010. This plot reveals how apart are all the
ten-minutal averages that compose a longer period average from
the average itself. For six-hourly averages most of the ten-minutal
values lie close to the y ¼ x line. This means that for a given six-
hourly period most of the ten-minutal values in that period are
close to the six-hourly mean value, although a few of them can be
quite apart. But for longer period aggregations the density peaks
below the y ¼ x line, and therefore a high number of ten-minutal
values are lower than the period mean, with only a few of them
above, although farther away. The analysis for the other 8 towers
(see supplementary material) shows similar patterns. The non-
linearity of the power curve complicates this further. The work of
MacLeod et al. [30] discusses this issue in detail and finds that using
daily averages is fair enough to produce accurate capacity factors.
Six-hourly instantaneous values have been employed here. It is
worth noticing that six-hourly instantaneous values from models
are not directly comparable to six-hourly instantaneous samples
from site observations. Global models at coarse scales do not
represent adequately mesoscalar and turbulent motions and
moreover the values provide a statistical value representative of a
wide area. Therefore those six-hourly model outputs are much
smoother than six-hourly instantaneous samples from anemom-
etry, and tend to be closer to six-hourly averages [21].

3.3. Available variables

Another constraint for using power curves is that wind speed



Table 3
Details of the nine tall towers employed.

Tower name Country Measuring height (m) Period of record

BAO USA 100 2007e2016
Butler Grade USA 62 2002e2018
Cabauw Holland 80 1986e1997 and 2001e2017
CVO Cape Verde 30 2011e2018
FINO1 Germany 90 2004e2017
Ijmuiden Holland 90 2011e2016
Lindenberg Germany 98 1999e2017
NWTC M2 USA 80 1996e2017
WM01 South Africa 62 2010e2017

Fig. 2. Joint probability density function of ten-minutal and longer-period averages of wind speeds at Boulder Atmospheric Observatory. The black line is the y ¼ x line.
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should be provided at hub height. Modern turbines have hub
heights in the range of 80e120m, although many exceptions exist,
especially with old wind farms that have lower hub heights. But
current seasonal prediction systems only provide 10mwinds (or its
components), which are obviously weaker than at those heights
above ground. Somemodels also providewind at standard pressure
levels, but the changing orography and the sparse vertical levels
make impossible to obtain wind at 100m above ground. To esti-
mate hub height winds from surface winds an extrapolation
method is typically used. There exist two classical approaches: the
power law and the log-profile [5,37]. For simplicity, we have
selected here the power law and assumed a fixed hub height of
100m, with a shearing exponent of a ¼ 0:143 for land [47] and a ¼
0:11 for water [24]. Both shear exponents assume neutral stability
(computing stability from existing forecast fields would be difficult
if not impossible). Under these assumptions, wind at 100m is ob-
tained as:

V100m ¼V10m�
�
100
10

�a

¼
�
V10m�1:39 over land
V10m�1:29 over sea

(3)

Another not uncommon problem with available variables is the
provision of time-averaged meridional and zonal wind compo-
nents. As a result, computing the wind speed modulus from the
average zonal and meridional components (using Pythagorean
rule) produces much lower wind speeds than averaging the
modulus directly. This limitation prevents the use of many seasonal
forecast systems, for instance CFSv2 [39].
3.4. Model biases

All numerical prediction models have systematic biases due to
many simplifications in the modelling of the complex behavior of
the Earth system. Those biases need to be adjusted before using
forecasts for decision making or feeding impact models [46].
Moreover seasonal predictions might also exhibit drift [22] (i.e.
non-stationary biases that change with the lead-time of the fore-
cast), and need to be calibrated (i.e the spread of the ensemble
adjusted to obtain reliable probabilities) [50]. There exist many bias
adjustment methodologies for this purpose in the literature. For
adjusting and calibrating monthly wind speed forecasts, the two
methodologies described in Torralba et al. [46] are simple yet very
effective. The general idea is to employ a set of retrospective fore-
casts (also known as hindcasts) and estimate themean bias for each
start date and lead time and subtract it from the corresponding
monthly average forecasts. However, when trying to apply those
methodologies to six-hourly winds some issues appear: when
subtracting themonthlymean bias from six-hourly values, negative
values can appear. Those negative values could be set to zero, but
then themethod would not entirely remove the bias. An alternative
approach to avoid the negative values is to use a multiplicative
approach, i.e. to compute a relative bias in percentage, and use this
percentage to correct wind speed. But there is also a conceptual
problem with these two approaches: they are designed to produce
accurate monthly average wind speeds. However the goal here is to
use the full range of six-hourly values to feed a (non-linear) power
curve. Therefore it is not enough to correct the mean bias. Differ-
ences in variance and skewness of the wind distribution also have
an impact on CF. Fig. 3 shows how two wind speed distributions
with same mean but different variance result in a very different
distribution of CF values. The narrower wind distribution produced
less zero capacity factor values. From the example it is clear that the
whole six-hourly forecast distribution needs to be adjusted. To that
end, an empirical quantile mapping methodology has been
employed [4,45]. This methodology aims to correct all of the mo-
ments of the distribution (ideally). As long as the adjusted



Fig. 3. Scatterplot of wind speed and corresponding capacity factor values obtained from twoWeibull distributions with same mean (8.5m/s) but different standard deviation (5m/
s in red and 6m/s in blue), when the Gamesa G87 power curve is used for the conversion. The histograms on top are for wind, and the ones on the right for capacity factor values.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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distribution of six-hourly wind speed values is similar to the
observed one our capacity factor forecasts will be unbiased.

For the forecasts to be successful it is still needed to have some
degree of skill in predicting the 6-hourly distribution shape.
Although seasonal predictions do not provide correspondence be-
tween forecast and observations at daily or sub-daily scales it is
possible to obtain skill in predicting the whole distribution of six-
hourly winds in a longer period. Note that quantile mapping does
not correct errors in the ensemble spread, so calibration might be
needed separately (this has not been done here). Also, quantile
mapping is known to worsen verification scores in areas where
there is not any forcing signal [53].

3.5. Accuracy of reanalysis data as observational reference

The impact model we propose to compute capacity factor is very
sensitive to the absolute value of wind speed that it receives. For
that reason, the accuracy of the observational dataset used to bias
adjust predictions needs to be as good as possible. Seasonal pre-
dictions are typically bias adjusted with reanalysis datasets [51],
due to the need of having both global coverage and long records.
Those global reanalysis datasets are good at representing variability
at monthly, daily or sub-daily scales [10], but they suffer from
similar problems than seasonal predictions, as far as they are pro-
duced also with modelling techniques. Although some of them
provide hourly outputs and at higher spatial resolutions, and even
some provide winds at 50 or 100m above ground, the long-term
mean wind speeds at hub height derived from them are biased
when compared with tall tower observations. Wind atlases, such as
DTU's Global Wind Atlas (GWA) or the New European Wind Atlas
[1,36], incorporate information from mesoscale and microscale
models and even from some observational sites and provide refined
estimates of mean wind speed at relevant hub heights and for a
finer grid. The 1981e2015100m mean wind speed difference be-
tween GWA and ERA-Interim [11] is shown in Fig. 4 as a percentage.
According to GWA, over most of the continents the ERA-Interim
100m wind speed needs to be increased. In some mountainous
regions the correction is very high (more than 100%). Probably the
GWA winds are too high in this case, as this is one of the known
limitations of the GWA methodology that have been reported in
Badger et al. [1] and Beaucage et al. [2]. To incorporate the mean
wind speed information from a wind atlas but not loose the tem-
poral variability that reanalyses provide, the ERA-Interim extrap-
olated 100m wind data has been multiplied by the GWA to ERAI
ratio. This adjustment can indeed be understood as a refinement at
each location of the shearing exponent employed in equation (3)
when extrapolating wind speed to hub height.

Another issue with global reanalyses that can be corrected with
a wind atlas is the representativeness problem. Wind farms tend to
be located in ridges or places where the wind is higher than its
surroundings, therefore using the mean wind speed of the ERA-
Interim grid box, even corrected by GWA mean wind speed in the
grid cell, might be inaccurate. If the coordinates of the wind farms
are known then the wind atlas value for the specific location can be
used, instead of an average. This has not been done here.

Despite the mentioned difficulties, estimates of capacity factor
for the past years have already been produced at hourly and six-
hourly resolution from several global reanalyses datasets in the
literature [13,19,42].

4. Application of the methodology over Europe and
verification results

To illustrate the potential of the proposed methodology, it has
been applied retrospectively for the winter season (DJF) with a
hindcast of ECMWF System4 seasonal predictions [32] issued on
November and covering 1981/82 to 2015/16 winters. Table 4
summarizes the main characteristics of this prediction system.
The employed predictions from November have an extended inte-
gration up to 13 months and a hindcast with 51 ensemble mem-
bers. Winter is the season with the highest inter-annual variability
in Europe and therefore most seasonal prediction applications
focus in this period. An overview of the steps that have been fol-
lowed to produce the CF forecasts can be seen in Fig. 5. Details on



Fig. 4. Percentual difference between 100m mean wind speeds from GWA and ERA-Interim over the period 1981e2015. ERA-Interim winds at 100m were extrapolated from 10m
winds using a power law.

Table 4
Main characteristics of ECMWF System4 prediction system, as described in Molteni et al. [32].

System components

Atmosphere IFS (model cycle 36r4)
Ocean NEMO
Land HTESSEL
Sea ice Prescribed from climatology

IFS configuration

Horizontal resolution TL255 (� 78km)
Vertical levels 91 levels up to 0.01 hPa

NEMO configuration

Horizontal resolution � 1� 1deg
Vertical levels 42 levels

Operational configuration

Start date 1st of each month
Issue date 8th of each month
Ensemble members 51
Integration 7 months
Extended runs extend 15 members up to 13 months (only Feb, May, Aug & Nov)

Hindcast

Ensemble members 15 (Jan, Mar, Apr, Jun, Jul, Sep, Oct & Dec)
51 up to 7 months and 15 up to 13 months (Feb, May, Aug & Nov)

Period 1981 to 2010
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most of the steps have already been covered in the previous sec-
tions. The only step that has not received attention so far is the final
presentation of the probabilistic forecast results (step 5). The in-
formation from the fifty-one ensemble members has to be sum-
marized in an informative way to be useful for decision-making.
The standard approach in the climate prediction community is to
provide probabilities for three tercile-defined categories: above
normal CF, normal CF and below normal CF. The thresholds that
define the three categories are computed as the percentile 33 and
66 of an observational historical record.

4.1. Verification

A verification has been undertaken employing reanalysis-
derived CF values as verification truth. Therefore this verification
does not quantifies the quality of the impact model itself but of the
whole capacity factor forecasts. Leave-one-out cross-validation has
been employed to ensure that for each single forecast, the corre-
sponding observations are not included in the bias adjustment
procedure (i.e. each year is adjusted using the biases from all other
years). The probabilistic nature of the seasonal predictions requires
specific verification metrics [27]. The Ranked Probability Score
(RPS) measures the quality of probabilistic forecasts presented in
form of tercile probabilities. To gain a better understanding of the
results, scores are typically compared to a baseline forecast and
expressed as improvement over the baseline (known as skill
scores). The Ranked Probability Skill Score (RPSS) compares the RPS
of the seasonal predictions from System4 with the RPS of a clima-
tological forecast. A climatological forecast uses observed values
from previous years to derive probabilities for each tercile category



Fig. 5. Flow diagram of the steps followed to compute capacity factor forecasts.

Fig. 6. Ranked Probability Skill Score of surface wind speed and capacity factor forecasts fro
scores have been estimated from a hindcast covering 1981e2015, and employing ERA-Inte
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(i.e. 1 =3 of probability is always assigned to each tercile). Positive
RPSS values represent an improvement over the climatology, while
negative values discourage the usage of this forecasts. Fig. 6 pre-
sents RPSS values over Europe for both surface wind predictions
(adjusted with the calibration method in Torralba et al. [46]) and
capacity factor forecasts for IEC1, 2 and 3 classes. The skill for sur-
face wind is modest in this region, but still positive in some spots,
reaching up to a 17% of improvement over Finland.When looking at
capacity factors, there is a slight increase of skill in many areas
compared to surface wind. Especially in the British Isles, northern
Germany, western France, and Scandinavian peninsula the seasonal
predictions perform better than the climatology and offer some
options to employ those forecasts for decision making.
5. Conclusions

A methodology to compute wind power generation seasonal
forecasts employing manufacturer-provided power curves has
been described. Several challenges related to how seasonal pre-
dictions are made available and how wind turbines generate elec-
tricity from wind speed have been addressed. A summary of those
challenges and the proposed solutions follows below:

� CHALLENGE: generation of a wind farm depends largely on the
number of turbines and the total installed capacity.
m ECMWF System4 issued in November and valid for next DJF season over Europe. The
rim-derived capacity factors as verification truth.
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PROPOSED SOLUTION: capacity factor provides normalized generation
dividing by the installed capacity. Each user can derive total
generation forecasts for a wind farm multiplying capacity factor
by the installed capacity.

� CHALLENGE: a large number of turbine models exist with differing
efficiency curves.
PROPOSED SOLUTION: capacity factor is computed for three different
turbines representing three turbine classes suitable for low,
medium and high wind speed conditions.

� CHALLENGE: wind farm losses are highly specific to each project.
PROPOSED SOLUTION: provide net capacity factor estimates and let
each user subtract the losses deemed necessary.

� CHALLENGE: Seasonal predictions are produced at a coarse scale.
PROPOSED SOLUTION: Employ the predictions at the provided reso-
lution. Statistical downscaling techniques cannot be applied
without long on-site observational records. Dynamical down-
scaling is not feasible in terms of computational resources.
Anomalies at monthly or seasonal time scales tend to be
spatially smoother than short-term variability, therefore the
local scale is not so relevant for seasonal predictions as might be
for meteorological (e.g. day-ahead) prediction.

� CHALLENGE: power curves are valid for 10-minutal wind speeds,
while most seasonal prediction systems produce monthly mean
outputs and only a few of them provide daily or 6-hourly values
at most.
PROPOSED SOLUTION: Employ six-hourly instantaneous values
directly with the 10-minutal power curves. This effectively re-
stricts the number of systems that can be used with this
methodology.

� CHALLENGE: power curves are valid for wind speed at hub height,
but only surface wind is available from state-of-the-art seasonal
prediction systems.
PROPOSED SOLUTION: surface wind is adjusted at hub height with a
simple power law, assuming a hub height of 100m and fixed
shearing exponents valid over land and sea under neutral
stability.

� CHALLENGE: seasonal prediction systems have biases and drift in
time.
PROPOSED SOLUTION: employ a lead-time dependant empirical
quantile mapping bias adjustment technique. These method
corrects the shape of the distribution.

� CHALLENGE: surface wind from reanalysis models, which is
employed as observation for bias adjustment, is also biased,
with the extrapolation at 100m adding even more uncertainty.
PROPOSED SOLUTION: long-term mean wind speed from a high-
resolution global wind atlas has been employed to adjust
reanalysis winds at 100m.

The methodology has been applied over Europe employing
ECMWF System4 wind speed predictions. Those capacity factor
predictions for the winter season proved to be better than using a
climatological forecast in some regions, especially around the North
Sea region. Themethod, although simple in some aspects, proved to
be able to produce skillful forecasts of wind power generation one
to three months ahead. Further developments could transform
those generation forecasts into wind farm revenue forecasts or
region/country aggregate forecasts that would be useful for TSOs
and traders.
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