

Interacting with

molecular models

in virtual reality

Oriol Giralt Garcia

17/4/2019

Universitat Politècnica de Catalunya

ORIOL GIRALT 1

Index

1. Context and scope of the project 4

1.1 Prelude and problem formulation 4

1.2. Introduction to the biomolecular world 5

1.3. Rendering techniques 8

1.3.1. Space-filling 8

1.3.2. Ball & Sticks 9

1.3.3. Ribbons 9

1.4. Scope and methodology 10

1.5. Stakeholders 12

1.5.1. Project developer 12

1.5.2. Director and co-director 12

1.5.3. Beneficiaries 12

2. Project planning 13

2.2. Task description 13

2.2.1. Acquire knowledge about molecular dynamics and Unity engine 13

2.2.2. Build a PDB file parser 14

2.2.3. Use of sphere Impostor and GPU rendering techniques in Unity 14

2.2.4. Implementation of the basic visualizer 15

2.2.5. Incorporation of Virtual Reality’s interaction tools 15

2.2.6. Final implementations and optimizations 16

2.3. Gantt chart & Estimated time 16

2.4. Obstacles and action plan 18

2.4.1. PDB complexity 18

2.4.2. Impostor rendering problems 18

2.4.3. Bad code implementation 18

2.4.4. Unavailability of the HTC Vive Glasses 19

3. Budget and sustainability 20

3.1 Current domain of sustainability 20

ORIOL GIRALT 2

3.2. Budget estimation 21

3.2.1. Hardware resources budget 21

3.2.2. Software resources budget 21

3.2.3. Human resources budget 22

3.2.4. Total budget 23

3.3. Sustainability analysis 23

3.3.1. Environmental impact study 24

3.3.2. Economic impact study 25

3.3.3. Social impact study 26

4. Rendering molecular geometry 28

4.1. Complexity of rendering a sphere 28

4.2. Billboard Impostor 30

4.2.1. What you see is a lie 30

4.2.2. Impostors 32

4.2.2.1. Vertex shader overview 34

4.2.2.2. Fragment shader overview 35

4.2.3. Correct guidelines 37

4.3. Other rendering techniques: GPU Instancing 44

4.3.1. Overview 44

4.3.2. Proper Instantiation 46

4.4. Techniques performance & comparison 49

4.4.1. Testing the rendering techniques 49

4.4.1.1. Medium plane performance test 51

4.4.1.2. Far plane performance test 51

4.4.1.3. Close plane performance test 52

4.4.2. Performance test conclusions 53

5. Large molecular models design 55

5.1. Rendering molecular models on Unity Engine 55

5.1.1. Data model overview 55

5.1.2. Building the PDB parser 56

5.2. Molecular bonds computing 58

5.2.1. Rule-based algorithm for bond computing 58

o Identification of bonded atoms 58

ORIOL GIRALT 3

o Over-connected correction 59

o Fixing disordered bonds 60

5.2.2. K-d tree algorithm 60

5.2.3. Runtime performance comparison 63

5.3. Silhouette rendering 64

5.3.1. Overview 64

5.3.2. World Space Silhouette rendering 65

5.3.3. Silhouette performance test 66

6. Interaction with Molecular Models 68

6.1. Introduction 68

6.1.1. Introduction to Unity framework and tools 68

6.1.1. GUI introduction 68

6.1.2. Establishing a Three-tier Architecture 69

6.1.3. Multiple SDK supporting 71

6.2. Defining our GUI 72

6.2.1. First GUI contact 72

6.2.2. GUI events description 75

6.2.2.1. Left Controller event description 75

6.2.2.2. Right Controller event description 80

6.3. Masking Technique 93

6.3.1. Dynamic clipping plane 93

6.3.2. Masking Events Description 95

7. Conclusions 96

7.1. Summary of the project 96

7.2. Future research 98

7.3. Concluding statements 100

8. Bibliography 101

ORIOL GIRALT 4

1. Context and scope of the project

1.1 Prelude and problem formulation

Since immemorial times that humans have asked the

question of what we are made of. The term atom comes

from the Greek "atomon" which is the union of two

terms; <<α>> (a) that means without and <<τομον>>

(tomon) which denotes division, meaning than

something is indivisible, that cannot be divided.1 The

concept of atom as a basic and indivisible block that

composes all the matter of the universe was postulated

in ancient Greece in the 5th century BC. As well as the

modern concept of molecules. Later, in the early

nineteenth, the concept gained a broad scientific

acceptance when a big number of discoveries in the chemistry field demonstrated that

the surrounding materials really behaves as if they were composed of atoms.

Thanks to these discoveries and the great technological advances that we have

experienced in the recent decades, the molecular dynamics field was born. Molecular

dynamics are methods of computing simulations of the physical movements of atoms

and molecules, and the interactions between them. These simulations are used, among

other things, in chemical physics, materials science, and the modelling of biomolecules.

One of the main problems that the molecular dynamics present is that the computation

of dynamic molecular simulations can be a complex and time-consuming process. The

results generated by molecular dynamics techniques are usually composed of thousands

of elementary steps, which can reach the number of gigabytes of data from our memory

Figure 1 Democritus was an Ancient
Greek pre-Socratic philosopher pri-
marily remembered today for his
formulation of an atomic theory of the
universe.

ORIOL GIRALT 5

for each simulation and, despite of the techniques of optimization of these methods,

analysing the results can take several days.2

Providing new tools and techniques to visualize and interact with simulations provided

by molecular dynamics are key to understanding a bit more the atomic and molecular

world. The main objective of this project is to build a molecular visualizer in virtual

reality where the user can interact with the molecule and visualize it in the most

common methods of molecule representation. Another aim of this project is to

implement algorithms and optimizations than will enhance the performance of its

rendering, allowing to visualize in a clear and stable way each part of the molecule

without compromising the system. We will also build a parser than the visualizer will

use to read any protein dat49se file format (.pdb) and will parse it to C# classes. The

parser will read all the information about the molecule structures as well as the atomical

information and will calculate its bonds. Furthermore, we will implement an attractive,

consistent and clear user interface controlled by the virtual controllers in which the user

will interact with the molecule in an attractive way. The virtual reality controllers will

be working fluently and no molecule part will be unable to select. The user will be able

to walk through the molecule and observe all the atomically parts and bonds of the

molecule in a complete peripherical view. The designed user interface will be user-

friendly and easy to use, facilitating the user’s experience. There will not be any bug in

the visualizer that could damage the user experience.

1.2. Introduction to the biomolecular world

During this chapter we will make a brief introduction to the biomolecular field in order

to acquire some basic knowledges so the reader can understand and follow the

methodology that will be taken on term during this project.

Firstly, we will define what a molecule is. A molecule is an electrically neutral group of

two or more atoms held together by chemical bonds3. One of the most common

https://en.wikipedia.org/wiki/Electrically
https://en.wikipedia.org/wiki/Atom

ORIOL GIRALT 6

molecules are the proteins. A protein is a large macromolecule made by the union of

amino acids through a peptide bond4. Those amino acids than make up the molecule

are organic compounds that can be composed by carbon, oxygen, nitrogen, hydrogen

and, in some cases, sulphur.6

We can classify the atoms of each amino acid into

subgroups depending of its structure. Those groups are the

group of the amines, the group of carboxyl and the group of

sidechains. The sidechain is the only group that varies

between amino acids and determines its several properties.5

Analogously, we can classify the amino acids according to

the type of interaction. The main groups are the

hydrophobic, hydrophilic, charged amino acids and the

amino acids without sidechain. The hydrophobic amino

acids have carbon-rich side chains, which don’t interact well

with water. The hydrophilic or polar amino acids interact

well with water. Charged amino acids interact with

oppositely charged amino acids or other molecules.6

The major parts of the proteins can fold into unique structures allowing the free rotation

of its atoms. The way a protein its fold on his natural state is known as native state.

Although many proteins can fold thanks to the chemical properties of its amino acids,

there are many than require help of the chaperone proteins in order to acquire his native

states. The biochemists, usually refers to four different aspects of the main structure of

a protein:7

· Primary structure: The primary structure of a protein is the linear sequence of

amino acids as encoded by DNA. The amino acids are joined by peptide bonds, which

link an amino group and a carboxyl group and a water molecule is released each time a

bond is formed. The linked series of carbon, nitrogen, and oxygen atoms make up the

protein backbone.

Figure 2 Graphical representation
of an amino acid. The bound bet-
ween the oxygen atoms (red) with
the hydrogen atoms (white) repre-
sents the amino group while the
bound between the nitrogen (blue)
and the two hydrogens represents
the carboxyl group. Both are
connec-ted with the sidechain y a
carbon atom (grey).

ORIOL GIRALT 7

· Secondary structure: The protein

chains often fold into two types of

secondary structures: alpha-helices, or

beta-strands. An alpha-helix is a right-

handed coil stabilized by hydrogen links

between the amine and carboxyl groups of

nearby amino acids. Those hydrogen links

are called hydrogen bonds. Beta-strands

are formed when hydrogen bonds stabilize

two or more adjacent strands.

· Tertiary structure: The tertiary

structure of a protein is the three-

dimensional shape of the protein chain.

This shape is determined by the

characteristics of the amino acids making

up the chain. Charged amino acids allow

proteins to interact with molecules that

have complementary charges. The functions of many proteins rely on their three-

dimensional shapes. For example, haemoglobin forms a pocket to hold heme, a small

molecule with an iron atom in the center that binds oxygen.

· Quaternary structure: Two or more polypeptide chains can come together to

form one functional molecule with several subunits. For example, the four subunits of

haemoglobin cooperate so that the complex can pick up more oxygen in the lungs and

release it in the body.

Figure 3 Diagram of the four levels of the protein structure.

ORIOL GIRALT 8

1.3. Rendering techniques

In this chapter we will discuss and review the most notorious work made on the

molecule’s representation. Furthermore, we will explain the use of that models and will

indicate its major shortcomings.

1.3.1. Space-filling

The Space-filling, also known as a calotte model, is one of the most common methods

used to visualize molecules. This model represents each atom of the molecule with a

sphere. The sphere size will be determined by the element’s van der W35s radius of the

atom, which radius represents the distance of closest approach for another atom8.

Space-filling models can be also referred to as CPK models.

The good point of the Space-filling models is that they are useful for visualizing the

relative dimensions of the molecule, and the effective shape the molecule might present.

On the other hand, as we said before the radius of the sphere will be defined by a half

of the distance between the closest approaches of the two non-bonded atoms of a given

element. This means than the chemical bonds between the atoms are going to be

masked and will make difficult to see the structure of the molecule. This is the reason

why such models will have a better performance if they can be used dynamically 9.

Figure 4 Space filling model with conventional atom color-coding of a Toll-like Receptor (TLR4).

ORIOL GIRALT 9

1.3.2. Ball & Sticks

Despite the Ball & Sticks models presents similarities to the Space-filling model, the B&S

model uses a smaller sphere radius, being able to represent with a set of cylinders, the

bounds of the atoms. Thus, the B&S model will also have had to render the cylinders in

order the represent that bounds. The ideal representation of the B&S model has to have

the same angles between the rods as the angles between the bonds, and the distances

between the centers of the spheres should be proportional to the distances between the

corresponding atomic nuclei10. The B&S model also follows the CPK coloring. In order

to provide a clearer view of the atoms and bonds throughout the model, the radius of

the spheres has to be smaller than the rod lengths.

1.3.3. Ribbons

The Ribbons diagram model is a method than provides a higher level of abstraction of

the underlying structure of biomolecules by rendering their backbone chain using a set

of planes and tubes. Ribbon diagrams are generated by interpolating a smooth curve

through the polypeptide backbone. Alpha-helices are shown as coiled ribbons or thick

tubes, whereas betta-strands as arrows lines or thin tubes for non-repetitive coils or

loops. The direction of the polypeptide chain is shown locally by the arrows.

This representation method is one of the favorite methods of the biologist and other

scientist and researchers because it presents a simple, but complete and powerful view

of the basics of a molecular structure meaning we can see in an easy way the overall

structure of the molecule appreciating if it’s twisted, folded or unfolded.11

Figure 5. Hofmann's set of models. we distinguish the chlorine atom as
univalent, the atom of oxygen as bivalent, that of nitrogen as trivalent,
and lastly the carbon atom as quadrivalent.24

ORIOL GIRALT 10

1.4. Scope and methodology

The scope of this project will consist of creating

competitive molecular visualizer ready to use by the

researchers for de study of molecules. The project will

be completed by June, 2018. The modules of the

visualizer will include a protein dat49se reader than will

read any .pdb file and represent it graphically, a

complete selector mode in which the user will be able

to group the atoms of the molecule by different aspect

such as the residues, the element or the chain group,

and several ways to interact with the surrounding

molecule.

During the realization of this project, there are several technical competences than we

want to take into consideration. The aim of this project is to fully accomplish

satisfactory all the objective and technical competences that we have established.

Therefore, we will need to develop and evaluate an interactive system that show

complex information, and its application to solve person-computer interaction

problems. In our project, we will try to reach a new level of person-molecule interaction,

trying to solve the difficulties than the researches have when they need to visualize in

an ease way all the molecules parts and residues groups and focus in particular groups

or parts of the molecule.

Another very important scope will be to evaluate the computational complexity of the

problem, learn the algorithmic strategies which can solve it and recommend and

develop and implement the solution which guarantees the best performance according

to the established requirements. One of the main ways to solve computational

complexity of the problem will be developing strategies and algorithms which has the

best computational performance and tries to reduce as much as possible the

computational cost in order to get the best performance.

Figure 6 Ribbon diagram of acylphos-
phatase , which adopts a ferredoxin fold
with an extra β-strand at the C-terminus
(shown in red). The ribbon is colored from
blue (N-terminus) to red (C-terminus).25

ORIOL GIRALT 11

If we want to archive all the scope goals, we will need to follow a strict methodology.

The appropriate scheduling and agile working methods will provide us with the

flexibility we need to get satisfactory results faster. So now we will go over the main

possible obstacles and which methodology we will take in order avoid or solve them.

The first point we will talk is about the timetable. Despite this project will take a whole

semester, a bad scheduling and organization can be a big obstacle that could lengthen

the development period. To avoid delivery problems, a strict timetable will be followed

which involves working daily and with constant routines in order to not lose the

workflow. Furthermore, the project developer is going to meet the director weekly and

will talk about the project development and progress.

Another important point is the Bug testing. Considering than molecular dynamics is a

complex field the number of bugs in the project software can be overwhelming. Because

we will need to implement thousands of steps, we could do a mistake really easily,

carrying it over the whole execution. In order to solve the problem of the bugs a series

of unit tests will be run during each phase of the project in order to ensure that no more

bugs are present. This unit tests will consider each possible case than an input could

contain. One of the main ways to solve it, will be evaluating the computational

complexity of the problem and develop an algorithm which has the best performance

and tries to reduce as much as possible the computational cost.

Last but not least, the use of monitoring tools during all the programming steps will

monitor the evolution of the project development. One of the main things that we want

to control is the computational cost. Knowing every time, the computational cost of

our code is really important for the correct development of the practice. As we discussed

in the last chapter, the steps to render a molecule can be overwhelming if they are not

computed correctly. In fact, we want a real-time rendering with a stable framerate and

a convenient usage of the GPU in order than all the Virtual Reality ready computers

could run the program without any issues.

ORIOL GIRALT 12

1.5. Stakeholders

On this section we will explain the stakeholders than will take part in the project:

1.5.1. Project developer

The project developer will be the person in charge of the research of the required data

and resources in order to solve the problem, implement the software and all the

mathematical calculations needed and document each steps of the project. The project

developer is also responsible of the project management and is the person in charge of

the accomplishment of all the deadlines. At the end of the deadline period, the project

developer has to have implemented the molecular viewer as well as the final report and

all the required documentation. Furthermore, the developer will have to make a

presentation of the project in front of his Director and co-director showing the results

of the developed project.

1.5.2. Director and co-director

The director and de co-director are the persons in charge of guiding the project

developer, helping him in any question or matter and providing any advice than the

project developer could require. Their roles are fundamental in the project not only

because they will follow and supervise each steps of the projects, but they will determine

and correct any possible errors in the project and will help the project developer to solve

it. The director of the project will be associate professor of Facultat d'Informàtica de

Barcelona (UPC) and ViRVIG Group member, Pere-Pau Vázquez.

1.5.3. Beneficiaries

As well as we mentioned before, molecular dynamics is the main field of this project, so

this work will try to help in the development of the optimization and rendering of the

molecular projection and also improve the user interaction between them. Other areas

than will be beneficiated of this project will be in biochemistry and biophysics, where

the 3-dimensional representations will help the researchers and scientists to visualize

the molecules in a more clear and comfortable way making his work more ease.

ORIOL GIRALT 13

2. Project planning

The correct planning and scheduling of the academical semester is essential for the

correct realization of the project. A good planification of your dedicated time can make

you achieve all the goals and needs of your project, as well as giving you an action plan

and alternatives in case of any problem appears. The initial task organization and

schedule planning could be updated and revised during the course of the project.

For the planification of this project, firstly we are going to talk about the task description

and all the steps than the developer will make in order to develop the project, then we

will talk about the project management and the Gantt chart and finally we will talk

about the alternatives and action planning in case any trouble appears.

2.2. Task description

2.2.1. Acquire knowledge about molecular dynamics and Unity engine

The correct learning and understanding of the molecular concept and structure as well

as its representation and codification methods is one of the main aims of this point.

Furthermore, ending to familiarize with the Unity engine and its shading methods

would allow us to perform more efficient representation methods.

The main source than we will be using to learn about the molecular and protein

environment will be the RCSB Protein Data Bank (PDB) website. This website developed

by the Worldwide Protein Data Bank Foundation [12], is builder upon the data and

resources of researches made by investigators about molecular structures and

information than is coded in in a specifically developed programming language (.pdb)

format. The website also provides a specific domain for its learning [13]. We will also use

the resources of different pdf files of books chapters where the different representation

methods are described in a detailed and rigorous way. [14] [15] [16]

ORIOL GIRALT 14

In order to acquire the Unity engine background and usage we will make use of the

main Unity documentation site [17] that provides the full documentation and some

tutorials for its understanding. We will also take a look at the catlikecoding tutorials [18]

that provides many useful tutorials for advanced rendering. Learning the Cg language

will be a very important part. Cg is a graphical programming language based on C, that

was developed by Nvidia and it is used for programming the Shaders of Unity. We will

use the documentation provided by the Nvidia Developer zone [19] in order to acquire

the basics of this language.

2.2.2. Build a PDB file parser

Once we have acquired all the background about the molecules and the basics about

the PDB file format we will need to build a parser than will interpret the .pdb files and

parse it to C#, then is the main language used by unity scripting. Once a PDB is read by

our parser, we will be able to extract atom coordinates, align proteins, and compute its

residue value among other things. The parser will be provided with many utility libraries

than will ease our work. This utility libraries will split .pdb files into separate models,

chains, or domains, align two conformations of the same protein or compute the

distances between corresponding atoms in the two candidate structures (cRMS) or their

corresponding intra-molecular distance matrix entries (dRMS), where measures are

defined as the root mean square (RMS). [20]

2.2.3. Use of sphere Impostor and GPU rendering techniques in Unity

In order develop a fluent an efficient visualizer and acquire a good GPU performance

we will need to take use of many techniques in order to reduce the number triangles

and vertices and its drawing calls. The impostor technique makes use of the lighting

computations to make an object appear to be something entirely different from its

geometry. To attempt this, we will use the vertex shader to compute the vertex positions

of a square in clip-space. This square will be in the same position and width/height as

the actual sphere would be, and it will always face the camera. In the fragment shader,

we will compute the position and normal of each point along the sphere's surface. By

doing this, we can map each point on the square to a point on the sphere we are trying

ORIOL GIRALT 15

to render. The idea is that we're actually drawing a square, but we use the fragment

shaders to make it look like something else [21]. To implement this technique, we will

follow a reference of this technique implemented in OpenGL [22] and will try to apply it

in Cg Language in Unity as well. We will also apply some rendering techniques such as

the Phong Shading. Additionally, it would be appropriate to build a Tester scene where

a boatload of impostors is rendered and implements GPU instancing in order to render

the same mesh multiple times in one go [23]. The Scene will also show the graphical

statistics, allowing us to get a clear knowledge of our capacities and limitations.

2.2.4. Implementation of the basic visualizer

When the parser and render techniques tasks are over, we will be ready to build the

visualizer. This task will consist on building a molecule visualizer that will be able to

read any .pdf file from the computer and represent it Space-filling and Ball & Sticks

graphical representations, as well as other molecule properties such as its residues.

2.2.5. Incorporation of Virtual Reality’s interaction tools

This task consists of implementing and providing the tools than the User will use to

interact with the molecule projection. The

developer will have to upgrade the first version of

the visualizer and make it VR ready, allowing the

usage of the VR glasses and the VR controllers in

order to interact with the molecules allowing him

to rotate, expand, mask or visualize each atom and

chain of the molecule. The visualizer will present a

well implemented an easy to understand users’

interface and will allow us to interact with the three different molecular representations,

each with its unique characteristics. The controllers will be fluent and will facilitate the

selection of all the molecule parts and components. For this task we will require of the

HTC Vive glasses resource as well as VR ready graphical card.

Figure 7. An HTC Vive Headset with two
wireless handheld controllers and two base
stations.

ORIOL GIRALT 16

2.2.6. Final implementations and optimizations

The final task workload will be conditionate by the amount of remaining time than we

will have. A bigger timeframe will allow to the developer to try to implement some extra

techniques to the project such as ambient occlusion or other shading techniques such

as toon shading. Also, some we will try to implement some final GPU rendering

optimizations. Furthermore, a series of test programs will be implemented in order to

debug the project from possible errors and bugs, so the current code is refined.

Additionally, the profiling of the data of each project step and test will be captured in

order to see the performance improvements of our project.

2.3. Gantt chart & Estimated time

The Gannt chart is a graphic tool that illustrates your project schedule and the

relationships between the activities and the current project status. We have used the

free source software teamgantt[24] in order to make our Gantt chart:

Figure 8. Screen capture of teamgantt web source software. The interface shows a calendar where each task is

represented by colored bars. The width of the horizontal bars in the graph show the duration of each activity and its

dependencies are marked with connected segments.

ORIOL GIRALT 17

If we establish an approximated duration in hours of each task represented in our

Gantt chart, we could estimate the overall duration of our project:

 Estimated

duration (h)

Background in

molecular dynamics

50

Background in Unity 30

Background in Cg

Language

15

Parser Setup 50

Molecule Impostor

Setup

70

Molecule Projection

Script

120

Molecule Halo Script 25

VR interaction tools 90

Final optimization /

implementations

50

Documentation and

presentation

60

Total 560

Table 1. Estimated duration in hours of the proposed tasks based on the Gantt chart.

ORIOL GIRALT 18

2.4. Obstacles and action plan

The methodology that we have chosen in order to realize the practice allow us to have

a great planification of our time and have a good range view of our schedule. We could

adapt our change any of our tasks if required and modify dynamically our schedule.

However, there is the possibility than a hypothetical task lasts more than we expected,

delaying the others. In this case we need an action plan in order to find an alternative

solution so we can shorten the working time and we could be able to start with the

upcoming task on time.

In this section we are going to talk about which are the potential problems and

deviations we could experience during the project realization and which is the best

action plan to solve it.

2.4.1. PDB complexity

Considering the great complexity than some proteins present, there is a possibility that

we could not be able to parse correctly the information of the molecule. If there are only

problems with the most complex proteins, we could ask for help to our director but, if

not, there is the alternative plan to parse another PDB file which is coded in XML. An

appropriate XML parser could convert this information for us with more ease.

2.4.2. Impostor rendering problems

It could be than, for some reason, we are not able to implement the impostor technique

in the unity shaders. In this case, we could build up a sphere out of a cube. The

implementation of the shader could be easier.

2.4.3. Bad code implementation

During the implementation of the project, we have to be care with the code

optimization. A bad optimization of our resources could increase exponentially. An

ORIOL GIRALT 19

exhaustive series of tests will be done in order to constantly check that our code is

refined and efficient.

2.4.4. Unavailability of the HTC Vive Glasses

The high demand of the Google glasses at the University could delay our project debug

and test during specially during our last stages. The lack of the glasses could cause a

great delay to our project schedule. In this case, we will need to try to have always some

HTC Vive glasses available and a computer with a VR ready graphic card.

ORIOL GIRALT 20

3. Budget and sustainability

3.1 Current domain of sustainability

Before starting this section, we are going to make a brief self-analysis of the

sustainability of our project. In order to achieve a complete self-analysis, we will make

a survey1 which include a broad definition of sustainability that includes its three

dimensions: social, environmental and economic.

To understand more clearly the dimensional impacts of our project we have to look back

on who are the beneficiaries of it; the biologists and investigators. The development of

a new way of visualize the molecular structures that are registered by the whole

community of biologists and investigators, could mean a big impact in the social and

economic. Firstly, the improvements of the investigation tools would potentiate the

possibility of new discoveries and inventions, providing a better acknowledgement of

ourselves and the world composition and giving us new methods to develop new tools

and ways to cure many different diseases that would decrease the population mortality

while would improve the welfare state. Another important point to analyze is the

economic impact that our project will have. The economic management knowledges

provided during the lecture course of the degree, will give us the tools in order to

execute a properly management of our resources and our fuds so we that we have the

most optimal financial amortizations and benefits, allowing us to maximize the

economic benefits.

Despite the social and economic strength of our project, we must not forget the

environmental impact. The fossil fuels and chemicals that are used in order to build the

chipsets have a huge negative impact in our environment, putting in danger the well-

being of living creatures of the planet. One we conclude the survey we can conclude

that we should take a brief look of the contamination and impact of the modern

computers and technologies on the world.

ORIOL GIRALT 21

3.2. Budget estimation

In this section we are going to estimate the budget cost of the project. We are going to

divide the budget in different sections, depending on the type of resources we are

taking into account, and we will estimate the costs of each one. Finally, we are going

to estimate the final budget of the project by combining the previous budgets.

If we take into account the fact than our project will last for six months approximately

and we estimate a useful life for each resource, we could calculate an approximate

amortization of the project.

3.2.1. Hardware resources budget

The hardware resources budget is strictly composed by the hardware components

than we will use for the realization of this project. The estimated useful life of each

one is established to four years. After that period the hardware will mean to be

obsolete.

Product Useful Life Price (€) Amortization (€)

HTC Vive set 4 years 699,00 € 87,38 €

VR-Ready PC 4 years 877,24 € 109,65 €

Hardware

peripherals

4 years 75,00 € 9,35 €

TOTAL 1.651,24 € 206,38 €

Table 2 Hardware resources budget.

3.2.2. Software resources budget

The hardware resources summarize the costs of the software we are going to need in

order to develop the project. The estimated useful life of the life and the established

price of each license software will be estimated to four years as well.

ORIOL GIRALT 22

Product Useful Life Price (€) Amortization (€)

Windows 10 home 4 years 145,00 € 18,13 €

Github 4 years Free Free

Visual Studio

Professional

4 years 1 756,30 € 219,54 €

Unity Software 4 years Free Free

TeamGantt 4 years Free Free

TOTAL 1.901,3 € 237,67 €

Table 3 Software resources budget.

3.2.3. Human resources budget

The human resources budget is composed by the group of people required to develop

the project. Despite the entire project is fully developed by only one person, we will

suppose than the team is composed by four main roles; the project manager, responsible

only of the project planning. The software designer is going to do the task related to

designing software, taking into account the user’s needs and the algorithm complexity

of the program. The software programmer will be the responsible of implementing all

the required implementations proposed by the software designer. Finally, the software

tester will be the responsible of elaborating stupas and performance and usability during

the developing and final stages of the project. The total elapsed time of human resources

work will be the same than the established time in the Table 1.

Table 4 Human resources budget.

 Time Cost per hour (h) Cost (h)

Project manager 95 h 40,00 h 3.800,00 €

Software designer 145 h 30,00 h 4.350,00 €

Software programmer 150h 20,00 h 3.000,00 €

Software tester 100 h 15,00 h 1.500,00 €

TOTAL 490,00 h 12.650,00 €

ORIOL GIRALT 23

3.2.4. Total budget

The total budget cost will be composed by the sum of the results of the Table 2, Table 3

and Table 4.

Concept Cost

Hardware resources 206,38 €

Software resources 237,67 €

Human resources 12.650,00 €

TOTAL 13.094,05 €

Table 5 Total budget cost.

3.3. Sustainability analysis

Nowadays, a sustainability report is a must in any technological project. There are many

different ways we could proceed, but in our project, we will use the sustainability matrix,

where the project production (PP), the useful life and the dangers of our FDP will be

contrasted with the three sustainability dimensions: the environmental dimension, the

economical dimension and the social dimension. The following figure shows the results

of this analysis:

 PP Exploitation Risks

Environmental

Consumption

design

Ecological

footprint

Environmental

risks

6 : 10 11 : 20 -9 : -20

Economical Project Bill Viability plan Economic risks

6 : 10 15 : 20 -3 : 20

Social Personal impact Social impact Social risks

7 : 10 18 : 20 0 : 20

Sustainability

range

19 : 30 44 : 60 -12 : -60

 51/90

Table 6 Sustainability matrix of the project. This matrix is based on the ideas of "The economy for the common good"

by Christian Felber.[26]

ORIOL GIRALT 24

3.3.1. Environmental impact study

The consumption design represents the impact of the environment along the realization

of the FDP providing the energetical costs as well as the number of residues generated.

For the correct development of the consumption costs, we will estimate the Kw

consumed in the elapsed time of our project. We should have in mind that the

consumption values will be approximated and the results could vary depending on the

computer hardware or the elapsed time of work during the day. Therefore, to get an

estimated value of the consumption, we will say that, during the approximated 140 days

that will lasts the project, the 25% of the time the hardware will be working, the 15% will

be on power safe mode and the rest of the time the hardware will be turned off.

Additionally, we will suppose that for each hour, our hardware consumption (composed

by the computer setup and the VR setup) will be 80.6W when they are turned on, 29,4W

when they are on power mode and 5,1W when they are off 2. If we suppose this value,

we could make an approximated estimation of how many W h we will spend during the

project:

Estimated cost day(W*h) = 24h*(0.25*80.6W+ 0.15*29,4W+0.6*5.1W) = 662.88 W h

Estimated cost of the project (W*h) = 140 days * 662.88 W h = 92.8 kW h

The ecological footprint means the consumption impact that the FDP will have during

his useful life. The estimators used to measure the footprint will be the same of the

consumption design. If we take the previous results and we suppose a utility life for the

hardware setup of 4 years, we will get the approximated consumption cost:

Utility life cost (W*h) = 4 years * 365 days * 662.88 W h = 966,649 MW h

The environmental risks are the set of eventualities that could aggravate the

environmental impact. Computers and its components are made of heavy metals and

dangerous chemicals. These metals and chemicals contribute to global warming and

also it causes water contamination and air pollution. Furthermore, there is a lot of

people than makes a living of collecting these materials and exposing themselves to

ORIOL GIRALT 25

dangerous working conditions and, in worst cases, initiating wars for economic

interests. When we are buying new technologies such computers or VR headsets, we

have to constantly have in mind that we are fomenting the social inequality and the

degradation of the earth.

3.3.2. Economic impact study

In the last section, we have estimated the total budget cost of our project while we were

taking into account the software, hardware and human resources. The total cost value

stated in Table 5 represents only the strict cost spent in realization of the project and

since our main objective was to create a working visualizer, we will not estimate the

costs of maintenance and improving versions. Implementing new versions of the

current project would mean and increasement of the current development cost.

This project will also have low economical risks because of its affordable price and also

because of his low number of human resources members. If we want to optimize the

total budget costs of the project, we will need to take some considerations into account.

The first one is that we cannot reduce the hardware resources costs. The established bill

estimates the price for a VR-Ready Personal Computer with the required VR Glasses

required to implement the visualizer. The price for the PC is an approximated value of

the minimum cost than a PC will has, having the minimum required technical specs to

run the VR Headset without compromising the system performance. The other

consideration is than we will not be able to reduce the human resources bill. If we don’t

certainly know the exact hours than the project would take, it would be unwise to

reduce the project working hours, because it could compromise our project objectives

and scope. Finally, we could also try to reduce unnecessary costs such as the cost of any

impression of documentation or the use of free Clouds and free licensed software so we

can reduce the bill as much as we can.

We cannot certainly affirm than the project cost would make the project competitive

but the fact than Virtual Reality Headsets are relatively new and that there is no current

ORIOL GIRALT 26

molecular visualizer of the most notorious enterprises that includes VR interaction,

makes the current project a good candidate for a paid application. Despite this project

is not developed with the collaboration of any institution, there are many chemical and

biological institutions that will be really interested in our project development and,

because they don’t dispone any molecular visualizer with virtual reality interaction

methods, they would be potential buyers of our product.

3.3.3. Social impact study

In order to analyze the social impact of this project we will split this section in two parts:

the first one is going to be the internal impact of the realization of this FDP while the

other part will be the collective impact that will have this project on the society.

If we analyze the internal impact, we can conclude that the project developer not only

will get a fundamental base in the biomolecular and biodynamics fields, but also will

learn many different optimization techniques in order to represent them. The developer

will also learn about parsing fundamentals and will get the skills to build a complete

.pdb to C# parser. Finally, the developer will learn the fundamentals of Unity Software

and will be able to map and adapt any project to virtual reality as well as will get the

skills to design an interactive and user-friendly interface.

When we talk about the external impact on the society, we could number many different

targets that will be related, either from direct or indirect way. Firstly, the biomolecular

researchers and investigators. The fact of providing them with such a powerful

visualization tool could make them more attentive and insightful when they have to

analyze any molecule, giving them the chance to visualize molecular residues in a

complete and clear way than the monitor screen doesn’t presents. Moreover, this project

will be a base for any developer or future student than wants to learn about molecular

dynamics and projection and also for any person than wants to learn about optimization

techniques and get a basis on the development of an interactive interface for virtual

reality.

ORIOL GIRALT 27

Finally, if we analyze the socials risks of this project, we can conclude that they are null.

The aim of this project is to expand the present knowledges and the only usage of this

FDP would only be for educational purposes.

ORIOL GIRALT 28

4. Rendering molecular geometry

4.1. Complexity of rendering a sphere

The main geometrical form for molecular representation is the sphere. Geometrically

talking, a sphere is a round solid figure, or it, with every point on its surface equidistant

from its centre[30]. This implies that a sphere has infinite number of vertices. Therefore,

if we want to render a quality sphere, we will need a really high number of vertices.

Comparing the sphere with other basic geometrical forms such as the quadrilateral, the

cube or the triangle, for example, the sphere is by far the more complex to render.

When graphics programmers face the problem of creating a geometry mesh for a sphere,

trade-offs must be made between quality and construction, as well as memory and

rendering costs. Now, we will briefly introduce four different methods, and then will

make a brief comparison of the methods in order to see which method suits our needs.

• UV Sphere: The UV sphere is the most common used technique to render a

sphere. This method divides the sphere using meridians (lines from pole to pole)

and parallels (lines parallel to the equator). While we are near the equator, it will

produce faces with bigger area near the equator, whereas on the poles it will

produce faces with smaller area. All the faces will be made of quads.

• Normalized Cube: This method uses a uniformly subdivided cube, where each

vertex position is normalized and multiplied by the sphere radius. This creates a

non-uniformly subdivided sphere where the triangles closer to the centre of a

cube face are bigger than the ones closer to the edges of the cube.

• Spherified Cube: As well as normalized cube technique, this method is based

on a subdivided cube, but it tries to create more uniform divisions in the sphere.

The area of the faces and the length of the edges suffer less variation, but the

ORIOL GIRALT 29

sphere still has some obvious deformation as points get closer to the corners of

the original cube.

• Icosahedron: The last technique is based on the icosahedron geometric figure.

An icosahedron is a solid figure with twenty plane faces, especially equilateral

triangular ones[31]. To get a higher number of triangles we need to subdivide each

triangle into four triangles by creating a new vertex at the middle point of each

edge which is then normalized, to make it lie in the sphere surface. Sadly, this

breaks the initial properties of the icosahedron, the triangles are not equilateral

anymore and neither the area nor the distance between adjacent vertices is the

same across the mesh. An added problem with this method is that we can only

increase the number of faces by four each time[33].

Despite we use a simple UV sphere for our atom representation, rendering a sphere

mesh will not work for us since our performance would decrease drastically.

Therefore, we must need to find another sphere rendering techniques of sphere

representation with lesser render cost in order to improve our overall performance,

as well it still looking like a rounded theorical sphere.

Figure 9 Visualization of the surface distance error. The red part means than the distance

from the sphere center it’s not unitary, thus there is an error on the surface distance. The

green part means the surface perfectly fits the theorical postulated sphere.

ORIOL GIRALT 30

4.2. Billboard Impostor

4.2.1. What you see is a lie

As we saw in the previous chapters, rendering a sphere for each atom of the molecule

can be really expensive in terms of graphical rendering, not even mentioning if we add

the cost of rendering the cylinders for each bond. At this point, we need to find a

technique in order to try the render calls as much as possible. One of the most common

techniques used to reduce the number of tris on the scene is the impostor. The impostor

tricks the viewer in order to simulate a three-dimensional object while we only render

a simple two-dimensional polygon form, typically a quadrilateral. Thus, before we

continue, we will introduce some concepts in order to get some knowledge about how

impostors are made of and the we will proceed to deepen to the vertex and fragment

shader technical implementations.

The first concept we will introduce the sprite term. In computer graphics, a sprite is a

two-dimensional image or animation that is integrated into a larger scene. Initially used

to describe graphical objects handled separate from the memory bitmap of a video

display, the term has since been applied more loosely to refer to various manner of

graphical overlays[26]. Originally, sprites were a method of integrating unrelated bitmaps

so they appeared to be part of the normal bitmap on a screen, such as creating characters

and forms that can be moved on a screen without altering the overall screen data. The

problem of a sprite in 3D graphics is that the extra space makes it a non-viable, since a

sprite has no profundity. However, if we constrain the alpha channels to face the

camera, we could partially solve the depth problem.

This previous case allows us to introduce the second term, called billboards or Z-sprite.

A billboard is a two-dimensional polygon in three-dimensional space that is always

rotated to face the viewer and that has an image texture-mapped onto it so that the

image on the polygon seems to be a three-dimensional object in the scene[27]. Typically,

a billboard is a partially transparent, textured quadrilateral. The texture map is an image

of the object represented. The quadrilateral is partially transparent in some cases, since

ORIOL GIRALT 31

the object’s image does not entirely cover the quadrilateral. We could list the different

types of billboards based on the three vectors of interest; the up vector, normal and

rotation vector (perpendicular to up and normal). In our case we are interest on the

axial billboards, in which the textured object does not normally face straight toward the

viewer. Instead, it is allowed to rotate around the whole world-space axis and align itself

to face a viewer as much as possible within this range[28].

Now that we got some acknowledgements, we can procedure to properly define what is

an impostor. An impostor is a billboard that is created by rendering a complex object

from the current viewpoint into an image texture, which is mapped onto the billboard.

The impostor can be used for a few instances of the object or for a few frames. The

impostors are useful for rendering distant and numerous objects rapidly, since a

complex model is simplified to a simple image. A possible alternative could be to instead

use a minimal level of detail (LOD) model. However, such simplified models often lose

shape and color information. Impostors do not have this disadvantage, since the image

generated can be made to approximately match the display’s resolution.

Figure 10 Impostor example. At the left, an impostor is created of the object viewed from the side by

the viewing frustum. The view direction is toward the center, c, of the object, and an image is

rendered and used as impostor texture, shown at the right of the figure. At right, the texture is

applied to a quadrilateral. The center of the impostor is equal to the center of the object, and the

normal (emanating from the center) points directly toward the viewport[aad].

ORIOL GIRALT 32

Before we render the object to create the impostor image, the viewer is set to view the

center of the bounding box of the object, and the impostor rectangle is chosen so that

it points directly towards the viewport. The size of the impostor’s quadrilateral is the

smallest rectangle containing the projected bounding box of the object. The alpha

channel is cleared and set to zero, and wherever the object is rendered, alpha is set to

1.0. When the camera or the impostor is moved, the resolution of the texture may be

magnified, which may break the illusion. Thus, the impostor image needs to be updated.

4.2.2. Impostors

As we know, the two geometrical forms that we will need to represent the molecule and

must be impersonated, are the sphere and the cylinder. For spheres and cylinder

rendering, a custom vertex and fragment shaders are used in order to achieve it.

In case of the spheres, four identical vertices are sent to the GPU corresponding to the

center of the sphere, as well as four extra mapping coordinates that represent the

corners of the sphere impostor square (-1, -1; 1, -1; -1, 1; 1, 1). The vertex shader then takes

each of the four coordinates, transforms them according to the model view and

orthographic matrices (to handle rotation and scaling of the model, as well as the

rectangular nature of the OpenGL scene), and then displaces them relative to the viewer

using the impostor space coordinates so that the square is always facing the user.

Figure 11 Process of rendering a sphere impostor[29]

Once the square has been generated, every fragment within that square (roughly, every

pixel) needs to be colored as if it were from a lit sphere behind that point. For this, the

normal of the sphere at that point is calculated as the vector (impostor space X,

impostor space Y, normalized depth). The calculation and use of the depth component

ORIOL GIRALT 33

are discussed later in the previous chapter. The dot product of the normal and the light

direction is calculated and used to determine the strength of the illumination at that

point for both ambient light and the specular highlight. The resulting color is written

to the screen at that point, except for fragments that lie outside of the sphere, which are

output as transparent[29] and therefore, discarted.

Cylinders are a little more complicated, but the same general process applies. Four

vertices are fed to the GPU (two for the starting coordinate and two for the ending

coordinate), along with four impostor space coordinates and four direction vectors that

point from the beginning to the end of the cylinder center. The beginning and ending

points are transformed at each vertex, then by using the transformed directions the

vertices at each end are displaced perpendicular to the axis of the cylinder as viewed by

the user. Additionally, the vertices at one end of the cylinder are displaced along the

axis to account for the curving out of the cylinder at that end[29]. This is shown in the

below figure 12:

Like the spheres, the normal at each fragment on the cylinder is calculated to use in

determining illumination, but the calculations here aren't as simple as those for the

spheres, since the illumination of the cylinder bases are not trivial. Thus, since the bases

will be covered by the sphere impostors representing each molecule, we will skip this

redundant process in order to simplify the as much as possible this calculus. So, in order

to render a cylinder, many values are calculated in the vertex shader for points on the

Figure 12 Process rendering a cylinder. See that this render example takes into account the illumination of the cylinder

plane bases and our rendered cylinder impostor will not.

ORIOL GIRALT 34

center axis, then adjusted in the fragment shader as a function of the distance from the

axis.

In order to understand the processed previously described, we need to deepen to a more

technical description of the processes. Thus, we will analyze the vertex and fragment

shader and will talk about the events that are taking part into the process of building a

basic sphere impostor. For first version of the vertex and fragment shader, we will try to

build the most basic impostor form, keeping the shaders as simple as possible.

Moreover, we will talk about its lacks and problems and what we can do to solve it.

4.2.2.1. Vertex shader overview

In order to keep the vertex shader as simple as possible, we will not declare any input

variable. However, it will still use an input variable: gl_VertexID. This is a GLSL built-

in input variable and it contains the current index of this particular vertex, starting the

index with zero value and pursuing.

Since we are rendering a quad, we render 4 vertices as a GL_TRIANGLE_STRIP. This

means the gl_VertexID will vary from zero to three. Because we're trying to render a

square with a triangle strip, the order of the vertices needs to be appropriate for this.

Thus, we will need a switch case statement that determines which vertex we are

rendering and which corner of the impostor we are on. Note that the current index of

the vertex and the mapping coordinate of the impostor have to be equivalent to the

same corner of the impostor because we will pass to the fragment in which mapping

corner coordinate, we are on. Later, on the fragment shader overview we will see why

we need it.

After determining which vertex to render, we use the radius-based offset value of the

sphere as a bias to the camera-space sphere position. The Z value of the sphere position

is left alone, since it will always be correct for our square. After that, we transform the

camera-space position to clip-space as normal.

ORIOL GIRALT 35

4.2.2.2. Fragment shader overview

A basic lightning shader equation must need the position and normal value in camera-

space, and the job of the fragment shader it’s to provide them. However, the position

and normal of the billboard will not have the same values than the position of normal

of the impostor. In order to compute the position and normal, first we need to find the

point on the sphere that corresponds with the point on the billboard that we are

currently on and, in order to do that, we need a way to tell on which part of the impostor

quadrilateral we are. Using gl_FragCoord will not help, as it is relative to the entire

screen and we need a value that is relative only to the impostor square. That is the

purpose of the mapping variable. When this variable is at (0, 0), we are in the center of

the square, which is the center of the sphere. When it is at (-1, -1), we are at the bottom

left corner of the square.

However, before we start computing the impostor point, we will require of a simple

distance check. Since the size of the square is equal to the radius of the sphere, if the

distance of the mapping variable from its (0, 0) point is greater than 1, then we know

that this point is off of the sphere.

If the point is not under the sphere, we will just discard it. The discard keyword is a

command exclusive for fragment shaders. It tells OpenGL that the fragment is invalid

and its data should not be written to the image or depth buffers. This allows us to carve

out a shape in our flat quadrilateral billboard, turning it into a circle.

Computing the normal is based on simple trigonometry. The normal of a sphere does

not change based on the sphere's radius. Therefore, we can compute the normal in the

space of the mapping, which uses a normalized sphere radius of 1. The normal of a

sphere at a point is in the same direction as the direction from the sphere's center to

that point on the surface. Computing the position is also easy. The position of a point

on the surface of a sphere is the normal at that position scaled by the radius and offset

by the center point of the sphere.

ORIOL GIRALT 36

The computation process can be overwhelming in a three-dimensional space case, but

it’s easier to understand if we look at the two-dimensional case. To have a 2D vector

direction, we need an X and Y coordinate. On our case If we only have the X, but we

know that the vector has a certain length, then we can compute the Y component of the

vector based on the Pythagorean theorem:

𝑿𝟐 + 𝒀𝟐 = 𝑹𝟐

𝐘 = ±√𝑹𝟐 − 𝑿𝟐

As we saw above, we just simply use and upgraded three-dimensional version. We have

X and Y from mapping, and we know the length will be always 1.0. Thus, computing the

Z value is easy enough. And since we are only interested in the front-side of the sphere,

we know that the Z value must be positive.

If we take a look at the resulted impostor

on the first capture of Figure 14, we can see

that our sphere looks simply, but it has a

spherical form. This impostor could be

useful is someone wants to render a scene

with a couple of spherical impostors on the

background could be pretty useful,

however, what if we try to make a first

plane of the impostor or we want to

position it on the sides of the camera

viewport?

In those cases, the impostor is far from being a sphere. Apparently, its looks like the

impostor is being clipped in perpendicular cuts from the scene. This makes the impostor

useless for the representation of a complete molecule representation, since the size of

the molecule could be such big than the atoms would be clipped from the viewport

scene. Thus, we need to know why the impostor it’s only portrayed properly if it’s middle

Figure 13 Two-dimensional circle point computation

schema. As we can see the Radius is equal to the triangle

hypotenuse while the X and Y coordinates are the cadets.

ORIOL GIRALT 37

centered from a middle plane, and gets clipped gradually if we start to move the

impostor to the sides of the viewport or we try to make a first plane from it.

In the next chapter, we will talk about why the impostor representation is being clipped

and how we can solve it as well as future inconveniences they could appear during the

representation of our molecule. Furthermore, we will discuss about the correct

chicanery and methods we can use to improve our impostor in order to try to get a

representation of a sphere as much real as possible.

4.2.3. Correct guidelines

As we know, the proper praxis and manners we employ to implement the algorithms

and computations will be the key to reach our objectives as well as implementing an

efficient and proper representation of a sphere.

Figure 14 First impostor implementation result. The top left

capture shows the impostor, camera middle centered from a

medium plane. As we see the impostor has an apparently

good spherical form and condition. The top right capture

shows the impostor, left centered form a medium plane. The

results are not as good as expected, since we are not able to

see the left-edge of the sphere impostor. Finally, the bottom

right capture shows the impostor, camera middle centered

from a first plane. As shown, the impostor it’s far away from

having a spherical form. This could be a principle than our

impostor is too simple.

ORIOL GIRALT 38

The first problem that we had was that the impostor was being clipped as soon as is

being displaced from de middle centered of the viewport as well as it need to be in a

medium or far plane, as it starts to get a quadratically form as soon we start to get a first

plane of the impostor.

Let’s try to analyze the purpose of our impostor algorithm implemented; we are trying

to render a sphere down a flat quad. It could be than the sphere is wider than a simple

quad. We did some computations to get the proper Z value of the represented sphere,

and we did it in using the camera-space Z direction but, we forgot that the mapping

between the impostor surface and the sphere is static; it does not change based on the

viewing angle[32] and this is why our computations fail.

The problem can look overwhelming, but let’s consider the two-dimensional case

represented in the Figure 15. As we see, the sphere representation it’s not completely

inside our camera viewing angle. Thus, when we are viewing the sphere off to the camera

side centered, such as in this case, we should not be able to see the left-edge of the

sphere facing perpendicular to the camera because it’s being clipped. Furthermore, we

should see some of the sphere on the right that is behind the plane.

Rather than start computing the exact extent of the sphere's area projected onto a

square, we can take easier ways such as, for example, it would be much easier if we just

Figure 15 Two-dimensional representation of our scene. The dark line through the circle

represents the square we drew. The green rectangle represents the camera viewport.

Finally, the dashed red line represents the camera viewing angle

ORIOL GIRALT 39

make the square bigger. Thus, if we increase the square size a 50%, as we assure that

each sphere point will be inside the range. Of course, we will end up rasterizing more

than the strictly necessary, but it's overall will be much simpler.

However, even though the box correction is going to avoid the sphere impostor clipping,

our impostor appearance still looks quite simply, very color saturated and with a poor

lightning reflection effect.

At this point, we should take a look at our implemented code, and reformulate

algorithm math’s. As we know, our algorithm implementation works nice if the spheres

are somewhat small represented in the viewport. But if the spheres are reasonably close

to the camera, they don’t look like a sphere. This is the most important fact the

algorithm has to take into account, since in our viewer, we will want to approach as

much as possible to our molecules.

Therefore, we will try to ray trace the position and normal of a sphere at a certain sphere

point in our algorithm implementation. In optics, a ray is an idealized model of light,

obtained by choosing a line that is perpendicular to the wave fronts of the actual light,

and that points in the direction of energy flow[34].

Figure 16 Two-dimensional representation of our scene. The pixel point will be the pixel represented in

the window’s image. The ray traced is represented in full gradient orange for the frontwards cast and

a doted orange line for the backwards cast. Each scene object will be intersected twice. The rendered

solution will be the first impostor hit.

ORIOL GIRALT 40

 In computer graphics, it works by tracing a path from an imaginary eye (camera)

through a particular pixel in a virtual screen, and calculating the color of the object

visible through it. In our case, we will not be implementing a full ray tracing algorithm;

instead, we will use it only to get the position and normal of a sphere at a certain point.

As we have defined before, a ray is a line, therefore it will have a position and direction.

In addition, it also means that this line will have an infinite number of points. Thus,

each point can be expressed with the following equation:

 �⃑⃑� (𝒕) = 𝑫 ⃑⃑⃑⃑ 𝒕 + �⃑⃑�

 𝑫 ⃑⃑⃑⃑ = 𝑹𝒂𝒚 𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏

�⃑⃑� = 𝑹𝒂𝒚 𝑶𝒓𝒊𝒈𝒊𝒏

For each fragment call, we want to detect the point which it hits the sphere, if any. If

the ray intersects the sphere, then we use that point and normal for our lighting

equation. Given a sphere radius 𝑹, we know every point �⃑⃑� will be from a distance 𝑹

from the sphere center. Therefore, the equation for computing the points located on the

sphere could be like:

‖�⃑⃑� − �⃑⃑� ‖ = 𝑹

𝑹 = 𝑺𝒑𝒉𝒆𝒓𝒆 𝑹𝒂𝒅𝒊𝒖𝒔

�⃑⃑� = 𝑺𝒑𝒉𝒆𝒓𝒆 𝑪𝒆𝒏𝒕𝒆𝒓

At this point, we can substitute our ray equation for �⃑⃑� :

‖𝑫 ⃑⃑⃑⃑ 𝒕 + �⃑⃑� − �⃑⃑� ‖ = 𝑹

Our ray traced goes from the camera into the scene and, since we're in camera space,

the camera will be at the origin coordinates. Therefore, �⃑⃑� will have a value of zero and

ORIOL GIRALT 41

can be eliminated from the equation. Furthermore, we will also want to get rid of that

length norm. One way to do it is to re-express the sphere equation as the length

squared[35]. So, we get the following equation:

‖𝑫 ⃑⃑⃑⃑ 𝒕 − �⃑⃑� ‖
𝟐

= 𝑹𝟐

The square of the length of a vector is the same as that vector dot-product of itself, and

because the dot product follows the distributive rule, we can get the quadratic equation:

(𝑫 ⃑⃑⃑⃑ ∗ 𝑫 ⃑⃑⃑⃑)𝒕𝟐 − 𝟐(𝑫 ⃑⃑⃑⃑ ∗ �⃑⃑�)𝒕 + (�⃑⃑� ∗ �⃑⃑�) = 𝑹𝟐

As far as t is the equation variable, we can get a lot of useful information about the ray

casted if we solve the equation:

 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎

 𝒙 =
−𝒃 ± √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂

 𝒂 = (𝑫 ⃑⃑⃑⃑ ∗ 𝑫 ⃑⃑⃑⃑) = 𝟏

𝒃 = −𝟐(𝑫 ⃑⃑⃑⃑ ∗ �⃑⃑�)

 𝒄 = (𝑺 ⃑⃑⃑ ∗ 𝑺 ⃑⃑⃑) − 𝑹𝟐

The discriminant (under the square root) is the first function part we will observe; If the

discriminant is negative, the equation will have no solution. In terms of our ray traced,

will mean the ray misses the sphere. However, if the discriminant is positive will mean

it will hit the sphere. As we know, the discriminant will be positive, if and only if, the

polynomial has two real roots.

ORIOL GIRALT 42

As you may recall, the square root can be either positive or negative. This gives us two t

values, which makes sense; the ray hits the impostor in two places (See Figure 16): once

going in, and once coming out. The correct t value that we're interested in is the smallest

one (since it’s the one we will be observing). Once we have that value, we can use the

ray equation to compute the point. Finally, with the point and the center of the sphere

values, we can compute the normal[32].

Despite we solved the perspective and lightning problem of our sphere impostor, there

still missing an issue to solve. When we render an atom sphere, the geometric element

that take part into the representation, are constantly colliding each other. Even though

we've made it look like a mathematically perfect sphere, it does not act like one into the

depth buffer. As far as it is concerned, it's just a mere circle, not sphere (see Figure 18).

Figure 17 Impostor implementation result, with box

correction and normal enhancements. This time the light

focus is frontal. The top left capture shows the impostor,

camera middle centered, from a medium plane. The

impostor has an apparently good spherical form and

condition as well as more realistic lightning effect. The top

right capture shows the impostor, left centered form a

medium plane. The results are as expected, since we are

able to see the complete sphere and its wasn’t clipped.

Finally, the bottom right capture shows the impostor,

camera middle centered from a first plane. This time, the

impostor has a perfect rounded spherical form.

ORIOL GIRALT 43

Part of the fragment shader's output is the depth value. This value is used on the depth

buffer. In computer graphics, depth buffering, also known as, z-buffering is the

management of image depth coordinates in 3D graphics, usually done in hardware and

sometimes in software. It covers the solution of visibility problem, which is the problem

of deciding which elements of a rendered scene are visible, and which are hidden [36].

If you don’t specify, the output depth in your shader, then OpenGL will freely use

gl_FragCoord.z as the depth output from the fragment shader. This value will be

depth tested against the current depth value and, if the test passes, written to the depth

buffer. However, we have the ability to write a depth value by ourselves.

Basically, we will need to go through the process OpenGL normally does in order to

compute the depth. Fortunately, we just compute it in camera-space position while we

were computing our ray tracing function. Therefore, we will just need to transform the

position to clip space. When the perspective division happens, the value it’s transformed

to normalized device coordinates (NDC) space. An addition, when the depth range

Figure 18 Scene capture of two spheres intersecting each other and also intersecting with a default Unity

plane; The left sphere is a standard sphere mesh of Unity rendered with a standard Unity surface shader.

The sphere intersects correctly, resulted by a correct depth buffer rendering. The right sphere uses the

sphere impostor’s technique previously described. As we see, the depth buffer values of the sphere impostor

are completely wrong, thus the impostor not even intersects with the plane, but also it doesn’t intersect

with the Unity’s default sphere mesh. The depth value of our impostor tell that will be always nearer than

any other mesh.

ORIOL GIRALT 44

function is applied, it forces the range [-1, 1] in the fragment shader to the range that the

user provided with glDepthRange. Finally, we write the final depth to the built-in

output variable gl_FragDepth.

Once we assign the depth range value, we can compile again our shader and check if

the new depth value is correct. As shown in Figure 19, our impostor has a properly depth

value and intersects perfectly with other meshes as well as it doesn’t screen other objects

that are in front of it.

4.3. Other rendering techniques: GPU Instancing

4.3.1. Overview

As we mentioned before, rendering some geometrical forms can be quite expensive,

especially if we try to render a proper sphere. In the last chapter we talked about the

billboard impostors; they were one way to reduce the render time and draw calls of our

molecule representation. Now, we will introduce another technique called GPU

instancing. GPU Instancing draws multiple copies of the same Mesh at once, using a

Figure 19 Scene capture of two spheres intersecting each other and also intersecting with

a default Unity plane; The left sphere is a standard sphere mesh of Unity rendered with a

standard Unity surface shader. The sphere intersects correctly, resulted by a correct

depth buffer rendering. The right sphere uses the sphere impostor’s technique with the

fragment’s depth range computation. as can be seen, the depth range value is computed

properly and both spheres and plane intersect as they should.

ORIOL GIRALT 45

small number of draw calls. This technique is done at runtime for visible objects.

However, it has some restrictions, especially for the dynamic meshes.

In order to properly instantiate our molecular geometry meshes, we will apply some

main rules and restrictions according to Unity’s documentation [37][38]:

• Batching dynamic meshes has certain overhead per vertex, so batching is applied

only to meshes containing fewer than 900 vertex attributes in total.

o If your Shader is using Vertex Position, Normal and single UV, then you can

batch up to 300 verts, while if your Shader is using Vertex Position, Normal,

UV0, UV1 and Tangent, then only 180 verts.

• Meshes are not batched if they contain mirroring on the transform; this means we

cannot it will not batch meshes with opposite transform values (for example mesh

A with +1 scale and mesh B with –1 scale cannot be batched together).

• Using different Material instances causes meshes not to batch together, even if they

are essentially the same. The exception is shadow caster rendering.

• Multi-pass Shaders break batching.

o Almost all Unity Shaders support several Lights in forward rendering,

effectively doing additional passes for them. The draw calls for “additional per-

pixel lights” are not batched.

ORIOL GIRALT 46

4.3.2. Proper Instantiation

In order to reduce as much as possible, the draw calls of our molecule mesh, we will

have to execute some previous steps. By default, GPU instancing isn't enabled. The

shader that we are going to design will have to meant to support it. Even then,

instancing has to be explicitly enabled per material.

Unity's standard shaders have a material’s toggle for this. The toggle can be added by

invoking the MaterialEditor.EnableInstancingField method. The toggle will

only be shown if the shader actually supports instancing. We can enable this support by

adding the #pragma multi_compile_instancing directive to at least one pass of a

shader [8].

At this moment, we are now sending the matrices of all spheres meshes to the GPU as

an array. A single matrix consists of 16 floats, which are four bytes each. So that's 64

bytes per matrix. Each instance requires an object-to-world transformation matrix.

However, we also need a world-to-object matrix to transform normal vectors. In the

end, we end up with 128 bytes per instance. This leads to a maximum batch size of

64000

128
= 5000, which means it could render 5000 spheres in only 10 batches.

Figure 20 Scene capture with the

camera focus centered to 5000

spheres. The sphere materials have the

GPU instancing disabled. As we can

see in the statistic, the batch call

number is 5002, meaning it rendered

just one sphere per time. Furthermore,

we can observe than it made 3.8

million tris calls and 2.6 million

vertices calls. This sphere rendering

would be unsuitable four our

molecular geometry representation

purposes.

ORIOL GIRALT 47

However, we are not telling to the shader which array index has to use. Without telling

the shader which array index to use, it always uses the first one. Thus, we will only be

able to see part of the batched spheres, the first sphere of each batch call (see Figure 21).

The array index corresponding to an instance is known as its instance ID. The GPU

passes it to the shader's vertex program via the vertex data. It is an unsigned integer

named instanceID. We can simply use the UNITY_VERTEX_INPUT_INSTANCE_ID

macro to include it in our VertexData structure. It is defined in UnityInstancing, which

is included by Unity. It gives us the correct definition of the instance ID, or empty value

when instancing isn't enabled [8]. We now have access to the instance ID in our vertex

program, when instancing is enabled.

However, to make the macro work and get the array index, the instance's array index

has to be globally available for all shader code. We have to manually set this up via the

UNITY_SETUP_INSTANCE_ID macro, which must be done in the vertex program before

any code that might potentially need it. Now, the shader can access the transformation

matrices of all instances, so the spheres are rendered at their actual locations.

As we mentioned before, one limitation of batching is that they are limited to objects

that have identical materials. This limitation becomes a problem when we desire variety

Figure 21 Scene capture with the camera

focus centered to 5000 spheres. The sphere

materials have the GPU instancing enabled.

No array index is assigned. As we can see in

the statistics table, the batch call number is

42, meaning it rendered 125 sphere per time.

Furthermore, we can observe than it made 3.8

million tris calls and 2.6 million vertices calls.

Despite we wanted 5000 spheres shown in

scene, we can only see a few, concretely 42

spheres. Because we haven’t assigned any

index, the shader will only render the first

mesh of each batch call.

ORIOL GIRALT 48

in the objects that we render. This is our case, since each molecule will have different

color types, such by the molecule chain, the residue or the atom type.

Instead of creating a new material instance per sphere, we can use material property

blocks. These are small objects which contain overrides for shader properties.

Alternatively, instead of directly assigning the material's color, set the color of a

property block and pass that to the sphere's renderer. This allows us to reuse one block

to configure all of our instances.

Additionally, the GPU has to know about which property is overriding. When

rendering instanced objects, Unity makes the transformation matrices available to the

GPU by uploading arrays to its memory. Unity does the same for the properties stored

in material property blocks. Like the transformation matrices, the color data will be

uploaded to the GPU as an array when instancing is enabled. The

UNITY_DEFINE_INSTANCED_PROP macro takes care of the correct declaration syntax

for us.

Figure 22 Scene capture with the camera

focus centered to 5000 spheres. The

sphere materials have the GPU

instancing enabled. The array index is

assigned. Each sphere will have assigned

one color randomly. As we can see in the

statistics table, the batch call number is

5002, meaning it rendered 1 sphere per

time. Furthermore, we can observe than

it made 3.8 million tris calls and 2.6

million vertices calls. Even though we

have enabled batching for our material, it

no longer works. as each now has its own

material, the shader state has to be

changed for each sphere as well.

ORIOL GIRALT 49

4.4. Techniques performance & comparison

4.4.1. Testing the rendering techniques

Once we have implemented our molecular geometry rendering techniques, will proceed

to perform a series of rendering tests in order evaluate the performance of our

previously defined techniques.

In order to execute the tests, we will create a new scene with an empty mesh prefab.

This mesh will contain a script that will instantiate N number of molecular geometries

meshes, each mesh with a random color. The instantiated meshes will not be further

than M unity’s scale units from the prefab center. N and M will be variable inputs

introduced by the user.

Figure 23 Scene capture with the camera

focus centered to 5000 spheres. The

sphere materials have the GPU

instancing enabled. Each sphere will have

assigned one color randomly. Unlike the

previous scene of Figure 22, material

property blocks has been created and

color data will be uploaded to the GPU.

As we can see in the statistics table, the

batch call number is 42, meaning it

rendered 1 sphere per time. Material

property block batching has been

enabled. As we can see, our colored

spheres are batched again.

ORIOL GIRALT 50

We will execute three different frame-rate performance tests, each test with a different

camera plane. The planes will be medium close and far. In all the three tests, the camera

will be focusing at the center of the prefab. With these three differenced planes styles,

we will be able to see if the bottleneck resides in the vertex or in the fragment shader.

We will test the UV-sphere, the billboard impostor sphere, the GPU instancing of UV-

Spheres and the GPU instancing of the billboard impostor. We will instantiate 4

different sets of meshes, each with 100, 1000, 5000 and 10000 respectively. This way

we will be able to compare them and see which obtains the best performance and which

is the best candidate our molecular viewer.

The objective of this test is to evaluate the average frame rate (fps) that we obtain in

each proposed scene. In order to get the average frame rate, we will capture the scene

Figure 24 Three captures of the three test scenes. The top left

capture has a medium camera plane; the atom perfectly fits

the viewport. The top right capture has a far camera plane; the

atom is camera centered and the viewport present margins

before arriving the molecule. The bottom left capture shows a

close camera plane. The viewport is filled with molecular

geometry meshes.

ORIOL GIRALT 51

frame rate every second, 100 times. Then, we will compute the obtained average frame

rate value.

Therefore, the resulted values of each test will be the following ones:

4.4.1.1. Medium plane performance test

Table 7 Frame rate table from the medium plane performance test

4.4.1.2. Far plane performance test

(fps) 100 1 000 5 000 10 000

UV-sphere

218.1

104.0

34.7

21.4

Impostor

225.5

145.3

60.1

43.8

UV-sphere

+

GPU Instancing

108.0

141.2

119.4

41.6

Impostor

+

GPU Instancing

109.7

142.6

121.9

55.5

(fps) 100 1 000 5 000 10 000

UV-sphere

218.9

105.6

45.8

23.5

ORIOL GIRALT 52

Table 8 Frame rate table from the far plane performance test

4.4.1.3. Close plane performance test

Table 9 Frame rate table from the close plane performance test

Impostor

228. 147.6 66.1 49.7

UV-sphere

+

GPU Instancing

110.3

146.0

130.1

53.2

Impostor

+

GPU Instancing

109.4

146.7

135.4

68.1

(fps) 100 1 000 5 000 10 000

UV-sphere

220.0

104.5

44.1

18.8

Impostor

224.3

142.9

68.4

41.1

UV-sphere

+

GPU Instancing

116.6

141.3

124.6

42.0

Impostor

+

GPU Instancing

108.1

141.8

120.1

50.5

ORIOL GIRALT 53

4.4.2. Performance test conclusions

If we take a look at the obtained results, we can see that the billboard impostor gets a

clearly better performance than the UV-sphere every aspect. However, despite the

impostor gets stunning performance result in low number of instanced meshes, the GPU

can obtain better performance than the billboard impostor in large instantiation

quantities.

Nonetheless, the performance technique test that obtained the best result in high

instantiation number was the combination of the billboard impostor with the GPU

instancing rendering technique. Despite the performance in fewer instantiation number

is worse than the expected, the molecule proteins from the .pdb don’t tend to have such

a lower number of atoms and tent to be higher values (closer to the 5000 to 10 000 units).

Furthermore, the frame rate still enough to display it fluently and without

compromising the system performance or the user experience.

Moreover, if we compare the obtained results of each camera plane, we can see than the

far plane tests have a better performance than the closer plane tests, which have a worse

performance. The difference can be insignificantly in the lower instantiation numbers,

but, if we pay attention, we will able to see than this difference on the performance value

increases while the number of instances increases. This differentiation increase between

the distances of planes can give us a very important hint about whether it would be the

bottleneck; in the vertex or in the fragment shader.

Since the lower frame rates are obtained in the closer camera plane, we can conclude

than the bottleneck will be located at the fragment shader:

The closer camera plane will capture a scene where the full viewport will be full of

instanced meshes and no landscape will be appreciated on the margins. This means than

our viewport screen will be fully painted with our rendered meshes. If we compared

with the far camera plane viewport, the far camera viewport will just draw our rendered

scenes in the center of our viewport screen, and resulted meshes bounding box will not

ORIOL GIRALT 54

even be a quarter of the viewport. Therefore, the closer plane will consume more of

fragment shader than the farther plane, since it requires more mesh painting.

If we percept a downgrade of the framerate while we are filling the viewport with our

instantiated meshes, it means than the bottleneck is situated in the fragment shader

and not in the vertex shader.

ORIOL GIRALT 55

5. Large molecular models design

5.1. Rendering molecular models on Unity Engine

5.1.1. Data model overview

In order to build a reusable and a future expandable project, we will create hierarchical

data model that abstracts and formalizes all the information of a molecule and divides

it in hierarchical classes. When we are building the data model, we will try to decompose

each concept as much as possible as well as we encapsulate each one in order to achieve

the maximum concurrence.

Figure 25 Diagram of the most relevant classes in the molecular viewer’s data model. As we can observe, the data

follows a hierarchical structure form as well as it isolates each class component. The component class diagram

representation is sketched with plantUML open source. [aax]

ORIOL GIRALT 56

Since explaining each model class and method would be overwhelming, the Figure 25

shows an UML class diagram of the data model in which we will be able to observe each

class attributes, as well as the dependency between components.

5.1.2. Building the PDB parser

The Protein Data Bank (PDB) is a dat49se for the three-dimensional structural data of

large biological molecules, such as proteins and nucleic acids. Biologists and

biochemists from around the world submit its research data, making it freely accessible

for anyone. The Worldwide PDB (wwPDB) organization manages the PDB archive and

ensures that the PDB data is freely and publicly available globally [46].

The file format initially used by the PDB was called the .PDB file format. This original

format was restricted to 80 characters per line. Later, an XML version of this format

called PDBML, was launched in 2005. However, we will strictly stick to the original .PDB

file format.

The primary information stored in the PDB archive consists of coordinate files for

biological molecules. These files list the atoms in each protein, and their 3D location in

space. A typical PDB formatted file includes a large "header" section of text that

summarizes the protein, citation information, and the details of the structure solution,

followed by the sequence, composed by long list of the atoms and their coordinates. The

archive also contains the experimental observations that are used to determine these

atomic coordinates.

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Biologist
https://en.wikipedia.org/wiki/Biochemistry

ORIOL GIRALT 57

When we start exploring the structures in the .PDB archive, we will need to know a few

things about the coordinate files. In a typical entry, we will find a diverse mixture of

biological molecules, small molecules, ions, and water. In our parser, we will use the

names and chain IDs to help sort these out. In structures determined from

crystallography, atoms are annotated with temperature factors that describe their

vibration and occupancies that show if they are seen in several conformations.

While we are exploring the PDB archive, we may run into several challenges. For

example, many structures, particular those determined by crystallography, only include

information about part of the functional biological assembly. Also, many PDB entries

are missing portions of the molecule that were not observed in the experiment. These

can include structures with missing loops, structures of individual domains, or subunits

from a larger molecule. In addition, most of the crystallographic structure entries do

not have information on hydrogen atoms [46].

A typical PDB format file will contain atomic coordinates for a diverse collection of

proteins, small molecules, ions and water. Each atom is entered as a line of information

that starts with a keyword: either ATOM or HETATM. By tradition, the ATOM keyword

is used to identify proteins or nucleic acid atoms, and keyword HETATM is used to

identify atoms in small molecules [46].

Figure 26 Typical .PDB file format fragment. The 6 first characters will determine the executed command type.

The following line characters will have a specified column assignment depending of the command in question.

ORIOL GIRALT 58

5.2. Molecular bonds computing

5.2.1. Rule-based algorithm for bond computing

Computing and assigning bond the atom bonds are

a necessary and essential step for characterizing a

chemical structure correctly in our molecular

viewer. During the last decades, several methods

have been developed to do compute it. All the

methods have advantages. However, they all have

limitations too. We have designed an automatic

algorithm for assigning chemical connectivity and

bond order. Now we will briefly discuss the main

methodology that we will follow in order to

compute the bond order of our molecule. We have

divided in different steps, including the main rules

among them. The Figure 26 show a schematic

representation of the steps that will take part in.

o Identification of bonded atoms

The first step we will make in our methodology will

be detecting the connection of all possible atom

bonds. This step will stick into a length distance equation and will not follow any other

property or distinction, meaning it doesn’t take into account the number of possible

connections an atom type could have or any other rule or property.

𝟎. 𝟖 < 𝒅𝒊𝒋 < 𝒓𝒊 + 𝒓𝒋 + 𝟎. 𝟒

Therefore, the equation shown on top describes if two atoms will be bonded or not.

Being 𝒓𝒊 and 𝒓𝒋 the covalent radii of atoms 𝒊 and 𝒋 of a set of atoms 𝑵, where {𝒊, 𝒋} ∈ 𝑵

and 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝑵. The distance between them is represented by the variable 𝒅𝒊𝒋.
[39]

Figure 27 Flow chart of our methodology for

the molecule bond order computing. Our step

rules will be the key for a proper bond order

computation.

ORIOL GIRALT 59

This process can be really expensive computationally talking, since checking for each

atom if the distance between each of the remaining atoms asserts the equation or not is

a NP-Complete problem.

Since this step process is undoubtedly the bottleneck of our algorithm, we will deep into

the asymptotic cost of acquiring all the atom connections that follows our imposed

equation rule. Later we will discuss an alternative technique that will drastically

improve our asymptotic cost as well as will compare the algorithm results. Anyway, now

we will continue describing the steps methodology in order to properly compute the

bounds.

o Over-connected correction

Once we have identified all the possible connections between atoms, we have to start

discarding all the non-bonded atoms, and we will start with the over-connected atoms.

Due to the intrinsic property of each element, each atom should have the maximum

connections.

Therefore, the steps that will follow our algorithm will be the next one; given the atoms

C(4), N(4), P(4) and S(4) (the value indicates its maximum connection number). The

longest bond is removed and the atom is checked again until the number of the

connections is no longer bigger than its maximum connection number.

Despite we could include more atom types to our methodology step (all the elements of

the CPK table for example), we have selected the four types mentioned above because

its tendency to bond with oxygen (O) and hydrogen (H) and also for its high number of

possible connections. The other atom types will skip this rule and proceed to the

following ones.

ORIOL GIRALT 60

o Fixing disordered bonds

We already checked the atoms to make sure they are not over-connected. However,

even after the application of the rules above, not all bonds connections are single bonds;

some could be double or even triple bonds. This means that some atoms could be over-

connected. Therefore, we will use the maximum valence to judge if this atom is over-

connected. For atom given atom 𝑨𝒊, the number of the connected bonds is calculated

based on the following equation [39]:

𝒊𝑪𝒐𝒏 = ∑ 𝑶𝒊𝒌

𝒏

𝒌=𝟎

Where if 𝒊𝑪𝒐𝒏 > 𝑽𝒂𝒍𝒆𝒏𝒄𝒆 𝒏°, the longest single bond is deleted, and the structure

is checked again until 𝒊𝑪𝒐𝒏 is no longer larger than the maximum valence. Here we

just handle single bond, because for the bond with the bond order larger than 1, its

bond length is reliable if this bond can be judged by the rules applied above.

5.2.2. K-d tree algorithm

As we mentioned in the previous chapter, the main bottleneck of our algorithm will be

the determination of the possible connections of each atom. If 𝒏 is the number of atoms

of the molecule we would have to iterate 𝒏 times 𝒏 − 𝟏 . This means the asymptotic

computational complexity of our algorithm will have an upper bound of 𝐎(𝒏𝟐) . This

problem is critical for algorithm implementation, since the execution time will increase

quadratically depending of the number of the atoms the molecule has. However, we

know that finding the nearest neighbor problem is NP-Complete and every NP-

Complete problem would also have a solution in polynomial time.

ORIOL GIRALT 61

In computer science, a k-d tree (for k-dimensional tree) is a space-partitioning data

structure algorithm for organizing points in a relative k-dimensional space [40]. In

particular, is a binary tree in which every leaf node is a k-dimensional point, in our case,

a 3-dimensional point. Every non-leaf node can implicitly generate a splitting

hyperplane that divides the space into two parts, known as half-spaces. Points to the left

of this hyperplane are represented by the left subtree of that node and points to the

right of the hyperplane are represented by the right subtree.

The hyperplane direction is chosen in the following way: every node in the tree is

associated with one of the k dimensions, with the hyperplane perpendicular to that

dimension's axis. So, for example, if we choose to split the "x" axis, all points in the

subtree with a smaller "x" value than the node will appear in the left subtree and all

points with larger "x" value will be in the right subtree. In such a case, the hyperplane

would be set by the x-value of the point, and its normal would be the unit x-axis [41].

In our algorithm implementation, each coordinate point will be equal to space-relative

coordinate of each of the molecules. We have decided to start building our tree with the

“x” axis and choosing the root element with the median of medians algorithm to select

the median axis value at each level of the nascent tree.

Figure 28 Graphical decomposition of a 2-dimensional tree. The "x" axis was the

chosen one to start building the resulting tree. The root point is chosen by the median

of medians algorithm.

ORIOL GIRALT 62

Once we have built our 3-d tree, we can start finding which elements will have a possible

connection. One of the main k-d tree operations is the nearest neighbor search. The

nearest neighbor search (NN) algorithm aims to find the point in the tree that is nearest

to a given input point. This search can be done efficiently by using the tree properties

to quickly eliminate large portions of the search space.

As we are using the median of median algorithm with an asymptotic cost of 𝐎(𝒏) . The

total average cost of building our tree will be 𝐎(𝒏 𝒍𝒐𝒈 𝒏).[42] Furthermore, making a

binary tree search, finding the nearest point will have an asymptotic cost of 𝐎(𝒍𝒐𝒈 𝒏).

Additionally, the algorithm can be extended in several ways by simple modifications

that, in our case, will improve our computational cost. We can extend it to provide the

k nearest neighbors to a point by maintaining k current bests instead of just one. A

branch is only eliminated when k points have been found and the branch cannot have

points closer than any of the k current bests.

This search implementation can improve our methodology steps and overall

performance; Instead of checking all the possible atom connections and then deleting

the over-connected ones, we could fix the number of connections for each molecule to

four, which will be the maximum number of bounds. Therefore, can use the 4-neareast

neighbor search to get the 4 closer connections candidates of each atom. With this new

implementation we are able skip the over-connected correction step and go through

directly to fix the disordered bonds as well as we are reducing the total asymptotic cost

from 𝐎(𝒏𝟐) to 𝐎(𝒏 𝒍𝒐𝒈 𝒏).

ORIOL GIRALT 63

5.2.3. Runtime performance comparison

In order to observe the algorithm performance and visualize the improvements than the

k-d tree brings to our bond computing algorithm, we will implement a simple

performance test between the k-d tree algorithm and a basic brute force algorithm.

In order to perform this test, we will build a simple script that given the number of

elements n as input parameter, it will build and array set if size n of random 3-d points,

and will find the nearest neighbor of all the elements in the set. This process will be

repeated m times, each time with a different set n. the final results will be a regression

of each of the obtained execution’s run time values.

If we observe the obtained graph representation of the Figure 28, we can see that the

results where as we expected. The values have skyrocketed in run time execution when

we reached the 64 thousand number of elements, bringing and exponential curve tot

the representation. The k-d tree algorithm keeps bringing a stable performance and

increments polynomial while we increase the elements number.

Figure 29 Performance results of the K-d Tree algorithm (grey) versus the Brute force algorithm

(orange). The abscises axis shows the number of elements to perform, represented in thousands

(kilos). The ordinates axis shows the run time execution of the algorithms in seconds.

ORIOL GIRALT 64

However, we have to take into account that the run time execution of the k-d tree not

only includes the neighbor search, but also includes the tree structure creation. This

will have a cost of 𝐎(𝒏 𝒍𝒐𝒈 𝒏), the same of the overall cost of every neighbor search.

This means the run time execution time of this tests will be a little bit higher since that

in our project, the tree would only be built once.

Therefore, we can conclude than the k-d tree is a really good optimization for our

algorithm implementation; Not only improves considerably the bond’s computation

time, but it also can be reusable, since we are building a tree structure than have more

utilities rather than bond computing, but also can be used for other future methods and

implementations such as group selection or a possible atom scrolling selection etc.

5.3. Silhouette rendering

5.3.1. Overview

One of the main techniques that will help the user to interact with the atoms of the

molecule will be the silhouette rendering. Here, we will make the use of vertex

transformations, which will move each vertex along its surface normal vector to create

a larger outline of an object. While this vertex transformation is quite simple, it will be

creating a reasonable rendering of the outline. It also requires use of the stencil buffer,

which is also discussed.

Therefore, we will try to render a world space silhouette shader, which is such efficient

that will barely impact our frame-rate. It will create an outline by moving vertices along

their normal vector, as well as it will avoid occlusions of the outlined object by its

outline. We will also be able to select the silhouette thickness as well as its color. Finally,

we will talk about the visual results and will performance a stress test to analyze the

impact of the silhouette rendering in our molecular visualizer.

ORIOL GIRALT 65

5.3.2. World Space Silhouette rendering

As we mentioned before, one method to create a silhouette around an object is to

enlarge the object by moving its vertices along their surface normal vectors. Given the

position and the normal vector in object coordinates, this we could implement it easily

in a vertex shader; The vertex shader will multiply the surface normal vector with the

user-specified uniform of the thickness (since it’s a uniform, it will allow an adjustable

thickness of the outline) and will add it to the position of the vertex.

All these vertex steps will be computed in world space coordinates. One important thing

to mention is that this vertex transformation works better with smooth surfaces. To give

to the outline the color we will simple return the user-specified uniform of the color in

the fragment shader. Such as the silhouette thickness we will be able to customize this

color value.

The more challenging part of rendering this kind of outline is to avoid occlusions of the

outlined object, which are projected by the outline itself: since we have enlarged the

object to create the outline, the larger outline will usually occlude the object that we

want to outline. On the other hand, the outline should occlude other objects in the

background and it should be occluded by objects in the foreground. Therefore, it should

behave like any other opaque object, except when it is in front of the outlined object.

Figure 30 Two captures of the world space

silhouette in a ball&sticks molecular

representation. The right capture shows a

single silhouette rendered in front of the

other geometrical meshes. The left capture

shows multiple silhouettes rendered behind

the geometrical meshes

ORIOL GIRALT 66

If we assume that we first we will render a regular version of the object that we want to

outline, and after we will proceed to render the outline, we can state the problem with

a couple of steps; the outline should only be rasterized for pixels that are not covered

by the outlined object. This way, our problem can be solved with the use of the stencil

test.

The stencil test is a per-sample operation performed after the fragment shader. The

fragment's stencil value is tested against the value in the current stencil buffer; if the

test fails, the fragment is culled [43]. The stencil test is used to limit the rasterization to

certain parts of the framebuffer; in our case to the parts of the framebuffer that are not

covered by the object that we want to outline.

Therefore, our strategy will be first marking all pixels that are covered by the object that

we want to outline in the stencil buffer. After that, when rendering the outline, we can

use a stencil test to rasterize the outline only in pixels that haven't been marked.

To mark all pixels that are covered by an object with a value of 1 in the stencil buffer, we

can use the ShaderLab syntax provided by Unity in a Pass block before the GLSL

implementation starts [43].

5.3.3. Silhouette performance test

As we did in chapter 4.4, we will execute a series of performance tests in order to

evaluate the performance of our silhouette rendering technique. We will use the same

test scene and the same manners we did in the last performance test. However, we will

just execute one performance test; the center plane one.

We will not perform the other planes ones since we have determined than the

bottleneck was in our fragment shader, and this technique is basically performed in the

fragment shader, so there is no chance the bottleneck is moved to the vertex shader.

ORIOL GIRALT 67

Therefore, the obtained table is the following one:

 Table 10 Frame rate table from the world space silhouette performance test

If we observe the resulted performance results, we can see than the than the frame rate

barely decreases when we instantiate a low number of meshes. However, the framerate

drastically decreases as we increase the instantiation number.

(fps) 100 1 000 5 000 10 000

No

Silhouette

109.7

142.6

121.9

55.5

With

Silhouette

107.4

101.0

18.2

8.6

ORIOL GIRALT 68

6. Interaction with Molecular Models

6.1. Introduction

6.1.1. Introduction to Unity framework and tools

Unity is a cross-platform game engine developed by Unity Technologies that was

released in June 2005. The engine is mainly used to create videogames as well as

simulations for many platforms, but the engine utilities can be infinite.

Unity brings us the ability to create three-dimensional and two-dimensional scenes, as

well as a primary scripting API in C#, including Direct3D, OpenGL, OpenGL ES or

WebGL. Unity previously supported other languages such as JavaScript, Boo, but both

deprecated in order to prior C# [44].

Unity encompass the Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality

(MR) into the umbrella term of XR [44]. Despite we are exclusively using the VR tools,

most of the features that Unity offers to us will be referred with the XR term. However,

in order to not cause any confusion, we will just refer it as VR term.

Unity provides built-in support for a number of virtual reality devices. Its device

availability is on a per-platform basis, meaning that not every device is available for

every platform. Multiple devices are available on certain platforms, and you can choose

which VR devices your app will support from the available list. At runtime, only one

device can be active at any given time. However, it is possible to switch between devices

if you have chosen to support multiple devices in your application.

6.1.1. GUI introduction

A graphical user interface (GUI), is a type of user interface which allows users to interact

with objects and devices through graphical icons and visual indicators, instead of text-

ORIOL GIRALT 69

based user interfaces, such as typed command labels or text navigation. GUIs were

introduced in counterpart of the perceived hard steep learning curve of command-line

interfaces (CLIs), which require commands to be typed [49].

Because a GUI is much more visually intuitive, we decided than the interaction with the

molecular models will be made with a GUI rather than a typical command line interface.

A GUI offers a lot of access to properties and features, in addition, a GUI its more user

friendly than a command line, especially for new or novice users, which makes a GUI

being used by more users and increasing. Moreover, a GUI has more colors and is more

visually appealing, leading to a potential reduction in visual strain.

However, each GUI has a different design and structure when it comes to perform

different tasks. Even different iterations of the same GUI, can have many different

functions and changes, making it ambiguous sometimes. Furthermore, a GUI requires

more system resources because of the elements that require loading, such as icons and

fonts [50].

Most of the GUIs are rendered in camera space however, we will take advantage of the

VR immersion to design a world space GUI which will make the interaction more

reciprocal with the molecule and is going to create a more sensation of reality and scene

awareness, which we cannot obtain with conventional GUIs.

6.1.2. Establishing a Three-tier Architecture

In order to define an efficient GUI, we will need to have the maximum level of

concurrence and abstraction from the data model proposed in chapter 5.1.2. Therefore,

we will take into practice the Three-tier architecture design pattern. A Three-tier

architecture is organized into three major parts; the presentation tier (GUI), the logic

or control tier, and the data tier. It follows a client-server structure and all the user, as

well as each tier, is developed and maintained as independent modules.

ORIOL GIRALT 70

Separating the application graphical user interface and the molecular data model will

mean a better load balancing as well as it will make easier to modify or replace any tier

without affecting the other ones. This way, any change performed by the GUI will be

processed in the logic tier, and therefore forwards to the data model or vice versa. For

example, if we want to change the data model of the molecule and add a new

hypothetical parameter, it will not affect the control tier and neither the presentation

tier

Apart from the previously defined advantages, the three-tier architecture is intended to

allow any of the three tiers to be upgraded or replaced independently in response to

future changes and upgrade implementations. This will allow us to implement future

methods by modules and our application will still be functional and any future

expansion will not be overwhelming or will require to reformulate the full data

structure.

Figure 31 Three-tier Architecture diagram. As we observe, the data model and the presentation model are not

communicated between each other. The control tier is the intermediary between the two other tiers.

ORIOL GIRALT 71

6.1.3. Multiple SDK supporting

Nowadays, there are many VR headsets available on the market. However, each headset

uses a different SDK. When we are developing our molecular viewer application, we will

try to reach the maximum number of developers and researchers. Therefore, we cannot

assume that they are going to use the HTC Vive headset as we do. Our application will

need to support multiple SDKs. In order to support multiple SDKs, we will make use of

the VRTK toolkit [51].

The main feature of VRTK toolkit is the SDK abstraction layer feature; if we use the

VRTK input components for our left and right controller’s mechanics of our application,

then it will just work on any supported SDK. Therefore, our application will work on

SteamVR, Oculus or even PSVR without the need of any extra coding. [52]

Furthermore, VRTK offers a VR Simulator that works with the mouse and the keyboard

controllers. Furthermore, the simulator provides a device simulation support of any

third-parties SDKs. This means a user could test his project methods and

implementations without the need of the VR headset.

Figure 32 Scene capture of the VR Simulator provided by VRTK tools.

ORIOL GIRALT 72

6.2. Defining our GUI

6.2.1. First GUI contact

As we know, the VR give us a deeper sensation and awareness of the scene than a

conventional screen can offer to us. However, it can also be more ambiguous and some

controls and interactions can be confusing. When we are designing a virtual reality’s

GUI, the have to make sure than the user is connoisseur of the provided GUI indicators

as well as it knows how to use them.

Therefore, when the user puts on the VR headset and initialize the application for the

first time, he must know which the main interaction tools (haptic controllers) are and

where positioned relative to the scene space are. The way we will make the user aware

of his inputs will be with a graphical visual indicator, which is a faithful representation

of our HTC Vive haptic controllers.

Additionally, those graphic controllers indicate which kind of input action the user is

making; the graphical indicators will include from the track pad touch and press

position to the buttons press & release events to the trigger pressed intensity.

Despite we provided to the user a graphical fact of the inputs and events that will take

place with the haptic controllers, we still need to provide more information. The

quantity of actions than the viewer provides are substantial and the learning curve may

be harder than a conventional screen GUI.

Thus, we will have to show in a certain way to the user, which are the actions than each

input handles. This way the user will perfectly know all the event actions and we will

avoid some possible action unawareness or misunderstood. The way we will do it is by

building a set of custom controller tooltips prefabs, whose will constantly indicate

which action or event is doing each input. Those prefabs tooltips will not be

interactable, but will show all possible methods and possibilities the haptic controllers

will provide.

ORIOL GIRALT 73

A prefab tooltip will consist of the following elements:

o A panel canvas: This canvas will contain a very brief description of the

input event that’s taking part. It will be rendered in world space and will

have a transform angle always parallel to forward vector of the haptic

controller in question. Furthermore, the canvas will have a reverse panel

which have exactly the same information of the front panel. This way

even if we are looking at the canvas from the front or from the back of

the controller, he will always provide the event information. The canvas

is set to a custom desired position, always relative to its parent, in this

case, the haptic controller, and they will not occlude between each other.

Moreover, in order to make it clear and visible, we will render the canvas

in a black panel and with white text font.

o A segment: The main objective of the segment is to indicate which

controller input the canvas is referring to. The origin of the segment will

always be on the center of the canvas, while the destination of the

1 Menu Button

2 Trackpad

3 System button

4 Status light

5 USB port

6 Tracking

sensor

7 Trigger

8 Grip button Figure 33 HTC Vive controller inputs mapping representation. The GUI graphic controllers will be a loyal

representation of the original controllers.

ORIOL GIRALT 74

segment will be the center of the input in question. In addition, we will

always make sure than the canvas is always in front of the segment, in

camera space coordinates. This segment will be black as well.

Despite the notable utility of the tooltips, the fact that they are constantly floating

around the haptic controllers could make it unpleasant and uncomfortable, thus it can

obstruct our vision or even collide with the other scene object. In order to make it more

efficient and satisfying we will add a final conditional; the prefabs tooltips of each haptic

controller will only be shown if and only if the user’s camera forward view vector is

focusing the pertinent haptic controller, if not they will be hidden.

This way if the user is taking any event or action than strictly not requires to observe

the controller, they will not bother or disturb. Furthermore, we will have the option to

hide the canvas permanently with a trigger, located on the settings menu that we will

discuss later.

Figure 34 Scene capture of the controler’s prefab tooltips

ORIOL GIRALT 75

6.2.2. GUI events description

Once we are aware of each action for each controller input, we can proceed to discuss

the GUI transformations and interactions it can take place.

For a better ease of use and a more comfortable molecule interaction we have split the

events in two main parts. Therefore, if we take a look at the descriptions provided by

each tooltip, we can observe than the left haptic controller will be responsible of the

proper transformations of the molecule and the user, while the right haptic controller

will be responsible of the proper molecule interactions and modifications. This way,

while we are making the required transformations to approach to the desired section of

the molecule with the left controller, we can interact with the right and no obstacles or

misunderstood will take part.

Now, we will proceed to describe and explain each of the input events, starting from the

left controller and continuing with the right one:

6.2.2.1. Left Controller event description

o Non-Step Movement -> Trackpad Push

The trackpad push will activate the non-step movement mode:

One of the most innovations of the virtual reality is the introduction of the step

movement. With step movement, the user is able to freely move thought its located

room and its displacement will be detected and, consequently reflected to the scene

application.

However, the room space is limited and the application scene could be bigger than the

actual room. This is one of the main drawbacks of the actual virtual reality, since it

totally breaks the immersion and realism that VR offers to us. This way, the non-step

ORIOL GIRALT 76

movement was introduced and keeps being one of the most investigated facts of the

actual virtual reality development.

The way we will handle the non-step movement event will be through a ray traced along

the forward vector of the left controller. The new user position will be the coordinates

of the ground mesh ray collision. If we intersect with another mesh, the non-step

movement is forbidden.

Therefore, it is really important to implement a proper non-step movement. It has to be

precise and the visual indicators has to be clear and properly indicate how it will

procedure. So that, we will design a custom set of GUIs indicators:

• Destination platform: This graphical indicator is composed by a circular platform

that is projected perpendicularly to the first collided mesh by the ray trace vector.

When the non-step movement is allowed, the platform will be rendered in blue

color and will emit a blue glowing light. When the non-step displacement is

Figure 35 Scene captures of the non-step movement GUI prefabs. The left capture shows the visual

indicator when the non-step movement is allowed. The right capture shows the visual indicator

when the non-step movement is forbidden.

ORIOL GIRALT 77

forbidden, it we be rendered in red color and it will have a red cross on the center

of the platform.

• Bezier curve: The way we will indicate the displaced path than we will through a

lineal Bezier curve. This curve goes from the haptic controller to the center of

the destination platform. The curve will be represented with a dotted line, since

it will obstruct lesser visual camp than a straight line. As the destination

platform, when the non-step movement is allowed, the curve will be rendered in

blue color whereas when the displacement is forbidden, the curve will be

rendered in red.

o Teleport/Locomotion Modes -> Menu Button

The menu button will act as a trigger between blink teleport and dash locomotion mode:

• The first mode is the blink teleport mode. This is the default teleport mode. In

blink mode, when you move you fade out the current location to black and then

fade in at your new spot.

• The second mode is the dash locomotion mode. In dash mode, when you move

you dash step forward to the new spot.

Providing different ways to combat motion sickness is really important for designing a

thankful application. With this input, we provide two different ways to interact with

non-step movement, which is one the dizziest and hardest problems of the virtual

reality. Both methods are valid; the locomotion movement provides a more immersive

and realistic non-step movement, while the teleport is more softly and can be more

pleasant if you use the application for many hours.

ORIOL GIRALT 78

o Molecule Transformations -> Trackpad Touch

The trackpad touch will manage the position and rotation transformations of the

molecule:

The HTC Vive trackpad tool not only is sensitive to the user’s input touches but also

provides a two-dimensional position coordinates of the user’s fingers relative to the

trackpad. Each coordinate goes from -1 to 1. We will take advantage of The X and Y axis

to provide many different kinds of molecule transformation that will describe in the

molecule transformations switch mode section point.

1 Trackpad

Down

3 Trackpad

Right

2 Trackpad Left 4 Trackpad Top

Figure 36 HTC Vive trackpad sensor inputs mapping representation. It will present two

thumbstick unitary coordinates

ORIOL GIRALT 79

o Molecule Transformations Switch Mode -> Grip Button

The grip button will trigger between the rotation & altitude and the free translation

mode:

• The first mode is the rotation & altitude mode. This is the default mode and is

composed by two actions transformations, one action for each axis:

▪ The first action, controlled with the X axis, is the rotation. The molecule

will rotate to its left relative to the object coordinate’s Y axis if the value

is negative. Aversely, it will rotation to its right relative to the object

coordinate’s Y axis if the value is positive. The amount of value tracked by

the trackpad touch X axis will affect the quantity of rotation degrees; if

the value of the X axis is closer to the -1 or 1 values (left & right sides

respectively) it will rotate more than a value close to the 0 value (center).

▪ The second action, controlled by the Y axis is the altitude mode. This

mode will transform the position of the molecule relative to the vector up

(Y axis) in object coordinates. This way we can control the altitude of the

molecule. The amount of value tracked by the trackpad touch Y axis will

affect the quantity of rotation degrees; if the value of the Y axis is closer

to the -1 or 1 values (left & right sides respectively) it will rotate more than

a value close to the 0 value (center).

This method is designed because the molecules proteins have a wide

range of forms and, sometimes, they tend to be really tall, even more than

the user. Hence, we can allocate the molecule where we desire and see the

full parts and molecule compositions with a full variety of perspectives.

ORIOL GIRALT 80

Furthermore, we will be able to observe the tallest parts of the molecule

that could be too much higher to see by the user.

• The second mode is the free translation mode. In this mode we can freely

displace the molecule around the scene. This mode will displace the molecule its

X and Z coordinates and will ignore the Y coordinate since we don’t to affect the

molecule’s altitude.

The Y axis will translate the molecule around the vector forward of the haptic

controller. If the value is positive the molecule will move forward. However, if

the value is negative the molecule will move backwards.

The X axis will translate the molecule around the vector cross of the haptic

controller. If the value is positive it will move to the right. Aversely, if the value

is negative it will move to the right.

o Precision Transformations Mode -> Trigger Button

The trigger press will activate the precision mode for molecule transformations:

The precision mode is no more than a functionality used along the touchpad touch,

which will divide the transformation’s input value to the half. This way we can obtain

more precision in our molecule transformations.

6.2.2.2. Right Controller event description

o Options Menu / Stored Selection -> Menu Button

The menu button will activate the options menu and the stored selection modes:

ORIOL GIRALT 81

• The options menu will perform the main interactions and modifications of the

molecule’s properties, as well as will be responsible of the application’s settings. The

menu canvas will be composed by two main panels; The top and the bottom panels:

▪ The top panel will be composed by three horizontal layered buttons. Those

buttons will be the load, properties and settings buttons. The button’s click

will alternate the bottom panel between the load, properties and settings

panel menus.

▪ The bottom panel will be composed by the load, properties and settings

menus:

➢ Load Menu: The load panel menu will be responsible of reading all the

filenames of the .PDB folder and then, load them to a button scroll list.

It will be composed by the next UI elements:

❖ Button Scroll List: The button scroll list will contain a set of

buttons with the label names of all the .pdb filenames, one

button for each file. It has two input interactions methods: the

Figure 37 Scene capture of the load menu

ORIOL GIRALT 82

first one, is using the GUI scroll bar presented at the right of

the scroll list. The second one will be through scrolling the

touchpad sensor. In the button scroll list, only one button is

able to be selected at time.

❖ Select Button: This button, found on the bottom of the scroll

list, will be the responsible of loading the .pdb models to our

molecule mesh. When the button is clicked, the actual

molecule mesh will be cleared and it will be loaded with the

molecule with the same filename as the last scroll button is

selected. This action will be ignored if the selected model is the

same as the actual model.

➢ Properties Menu: The properties menu will be responsible of

modifying the molecule’s traits and properties. It will be composed by

the following UI elements:

❖ Model Dropdown: Some .pdb files can contain more than one

protein models. The model dropdown will load and number all

Figure 38 Scene capture of the properties menu

ORIOL GIRALT 83

the models that the molecule has. The default loaded model

will be the first one.

❖ Amino Ligand Style Dropdown: The main functionality of the

amino dropdown will be to alternate through the available

primary structure’s representations of the Amino Acids. It has

the following possibilities:

 Spacefill Primary representation. (Default mode)

 Ball & Stick Primary representation.

 None Primary representation (Empty).

Figure 39 Scene captures of the three different primary

representations of the same molecule. The top left capture

shows a spacefill representation. The top right capture

shows a ball & stick representation. The bottom left

capture shows an empty representation of the Aminoacid

ligands and a spacefill representation for the Heterogen

ligands.

ORIOL GIRALT 84

❖ Hetero Ligand Style Dropdown: As the amino style dropdown,

the functionality of the hetero dropdown will be to alternate

through the available primary structure’s representations of the

Heterogens molecule atoms. It has the following possibilities:

 Spacefill Primary representation. (Default mode)

 Ball & Stick Primary representation.

 None Primary representation (Empty).

❖ Color Group Dropdown: The color group dropdown will be

responsible of grouping the atoms in colors depending of the

selected clustering mode. The different possibilities are the

following:

 By element/CPK: This mode will color the atoms

following the CPK coloring table. (Default mode)

 By Residue: The atoms will be colored depending of its

residue value. There are 25 different colors and they will

be alternated making the module of the residue’s order

value.

 By Chain: The atoms will be colored depending of the

chain number. There are 25 different colors and they will

be alternated making the module of the chain’s order

value.

 Amino/Hetero: The atoms will be colored depending if

they are amino or hetero. The amino atoms will be

ORIOL GIRALT 85

colored in red, while the hetero atoms will be colored in

yellow.

❖ Water Toggle: The water toggle will toggle the water atom’s

visibility. If the toggle is on, the water atoms will be active

whereas, if the toggle is off, the water atoms will be hidden. The

default mode will be ON.

❖ Oxygen Toggle: The oxygen toggle will toggle the oxygen

atom’s visibility. If the toggle is on, the oxygen atoms will be

active whereas, if the toggle is off, the oxygen atoms will be

hidden. The default mode will be ON

Figure 40 Scene captures of the same molecule with different coloring set groups. The top left capture presents the CPK

color set. The top right capture presents the Residue color set. The bottom left capture presents the Chain color set. The

bottom right capture presents the Amino/Hetero color set.

ORIOL GIRALT 86

❖ Restore Default View Button: This button will be the

responsible of restoring the default settings of the properties

panel. If the button is clicked, the elements will be restored to

its default value.

➢ Settings Menu: The settings menu will be responsible of managing the

settings value of the molecule & plane transformations. It will be

composed by the following UI elements:

❖ Molecule Size Slider: The molecule size slider will be

responsible of managing the molecule’s mesh transform size. If

the slider value is on the right, the molecule will be bigger

whereas, if the slider is on the right, the molecule will be

smaller.

❖ Elevation Speed Slider: The elevation speed slider will manage

the amount of distance that will take part on the molecule’s

altitude displacement. If the slider is on the right, the

displacement will be greater whereas, if the slider is on the left,

the displacement will be lesser.

Figure 41 Scene capture of the settings menu

ORIOL GIRALT 87

❖ Rotation Speed Slider: The rotation speed slider will manage

the amount of rotation the molecule will perform. If the slider

is on the right, the rotation will be greater whereas, if the slider

is on the left, the rotation will be lesser.

❖ Plane Speed Slider: The plane speed slider will manage the

amount of distance displaced by our plane culler. If the slider

is on the right, the displacement will be greater whereas, if the

slider is on the left, the displacement will be lesser.

❖ Plane Size Slider: The plane size slider will manage the size of

our plane culler. If the slider is on the right, the plane will be

bigger whereas, if the slider is on the left, the plane will be

lesser.

❖ Controller Tooltips Toggle: The controller tooltips toggle will

toggle the tooltips’ visibility. If the toggle is on, the controller’s

tooltips will be active whereas, if the toggle is off, the

controller’s tooltips will be hidden. The default mode will be

ON.

❖ Restore Default View Button: This button will be the

responsible of restoring the default settings of the properties

panel. If the button is clicked, the elements will be restored to

its default value. The controller tooltip toggle will not be

affected.

When the menu is active, it will always be located on front of the camera user. If we

turn the camera, the canvas will move accordingly. However, when the controller

receives a trackpad touch input, the canvas position is blocked and will not be reposition

ORIOL GIRALT 88

back to the user’s camera’s the controller until it stops receiving the controller’s input.

This way the menu will be displaced while we are changing the parameters of the menu.

• The stored selection canvas will be responsible of giving the proper information of

the actual molecule’s selection. There are three different possible canvas:

▪ No Selection Canvas: The no selection canvas indicates that no atom or bond is

selected. This canvas is composed by a single text label. The text is in bold and

with red font color.

▪ Atom Properties Canvas: The atom selection canvas will be responsible of

showing the selected atoms properties. It will have the following label

parameters:

❖ Index Label: The index label displays the index of the selected atom.

❖ Type Label: The type label displays the element type of the selected atom.

Figure 42 Scene capture of the no selection canvas

Figure 43 Scene capture of the atom properties canvas

ORIOL GIRALT 89

❖ Occupancy Label: The occupancy label displays the occupancy of the

selected atom.

❖ Chain ID Label: The Chain ID label displays the chain number identifier

of the selected atom.

❖ Residue Label: The residue label displays the index of the selected atom.

❖ Temperature Factor Label: The temperature factor label displays the

degree value of the selected atom, in which the atom electron density is

spread out.

❖ Coordinates Label: The coordinates label displays the three-dimensional

coordinates of the selected atom. The coordinates are the crystallography

values and no the unity’s mesh coordinates.

▪ Bond Properties Canvas: The bond selection canvas will be responsible of

showing the selected bonds properties. It will have the following label

parameters:

❖ Index Label: The index label displays the index of the atoms which are

bonded.

❖ Type Label: The type label displays the element type of the atoms which

are bonded.

Figure 44 Scene capture of the atom properties canvas

ORIOL GIRALT 90

❖ Chain ID Label: The Chain ID label displays the chain number identifier

of the atoms which are bonded.

❖ Coordinates Label: The coordinates label displays the three-dimensional

coordinates of the selected bond. The coordinates are the crystallography

values and no the unity’s mesh coordinates.

As the menu canvas, when the stored canvas is active, it will always be located on front

of the camera user. If we turn the camera, the canvas will move accordingly. The stored

selection canvas will not be interactable, and the selector ray of the controller will ignore

any collision kind.

o Selector Ray -> Trackpad Press

The selector ray will trace a ray function through the forward vector of the right haptic

controller. The ray will be constantly traced until the trackpad sensor is pressed. It will

be rendered as a red segment, which will act as GUI indicator. The collision of the ray

will be marked with a red dot. It will have two main functionalities:

• The first functionality will be to manage and indicate the candidate’s

selection of atoms and bonds. When an atom or bond is ray traced by the

selector ray, we will use again the world space silhouette technique as visual

indicator. The silhouette will be rendered in turquoise color. The silhouette

will have the same depth value as the rendered mesh.

• The second functionality will be to indicate the position of the ray on the

canvas menu.

ORIOL GIRALT 91

o Selector / Canvas Blocker Mode -> Trigger Button

Figure 45 Scene capture of the selector ray collision in an atom. The ray will be rendered in red while, the geometry mesh
will have a world space silhouette as visual indicator.

The trigger button will have two different modes, the selection mode and the canvas

block mode:

• The first mode is the selector mode. This mode will be available while we are

pushing the controller’s trackpad sensor and a selection ray is tracing. When

the trigger is released, the ray’s collided mesh will be selected and the

pertinent selection canvas will be activated. Otherwise, if the ray doesn’t trace

any molecule mesh, the selection will be set to null.

When an element is selected, we will use the world space silhouette

technique as GUI indicator. This silhouette will be in green color. Moreover,

its silhouette will visible over any other atom or bond meshes that are in front

of it.

ORIOL GIRALT 92

Figure 46 Scene capture of the selector ray selecting an atom. The selected atom will present a world
space silhouette as visual indicator.

The selection method will be captured in trigger release mode because,

sometimes the selection can be tricky and, select the desired atom or bond

can overwhelming and complicated. If we use the trigger release mode, we

are able to hold the trigger fully pressed and activate the trigger release input

while we loosen the finger with a fast motion, making the selection more

responsive.

Last but not least the selector mode will be also responsible of the menu’s

items inputs. These inputs will be emitted in trigger click mode.

• The second mode is the canvas blocker mode. The input will be captured on

trigger clicked mode. This mode will only be available when any of the menu

button’s canvas are active and no trackpad sensor input is captured. When

the trigger is clicked, the active canvas will toggle between the block mode,

in which it freezes and remains to its position, or the forward camera mode,

in which it stays in front of the user’s camera forward vector.

ORIOL GIRALT 93

o Masking Plane Toggle Mode -> Grip Button

The grip button will be responsible of activating and deactivating the masking plane

mode:

• When the mode is on, a wireframe green plane will appear in front of the user

and will active the molecule’s masking mode, which will be discussed later,

in chapter 6.3.

• When the mode is off, the masking mode will be reset and will be deactivated.

6.3. Masking Technique

6.3.1. Dynamic clipping plane

Once we have implemented the main features of our molecular viewer, we can proceed

to implement one method that allows to the users to select and visualize the more inner

atoms of the molecule. Usually, the molecule proteins atoms tent to have a thick form

and we are only able to see the most external layer of atoms. Thus, it’s essential to

provide any technique to permit to visualize the full coats a molecule presents.

In this chapter we will introduce the dynamic clipping plane technique, in which we

will mask every atom and bond that is behind the plane:

The clipping plane will have a GUI indicator, which will be composed by a green

wireframe quad. Its size can be edited in the settings menu. In some cases, the plane’s

wireframe could be out of the camera’s range. Therefore, we will also render the wired

diagonals over the quad in order to constantly know where and in which distance the

plane is.

ORIOL GIRALT 94

An atom will be clipped and hence, hidden form the scene, if and only if the distance

from the user’s camera center to the clipping plane is bigger than the distance to the

mesh in question. The Y space coordinate will be ignored and set to one, since we want

to clip the molecule perpendicularly to the ground.

The masking plane will have to be responsible to the molecule transformations and act

according to them. When the molecule rotates for example, there exists the possibility

than some meshes are displaced in front of the plane and some others behind. The plane

has to live update all the masked atoms and bonds without compromising the system

performance.

We had two different possibilities to implement the masking method; one by GPU and

the other by CPU. We have decided to implement via CPU since constantly updating

the transformations can be a time-consuming process, and we don’t want to create a

bottleneck on our shader.

Figure 47 Scene captures of the dynamic clipping plane in
action. The top left capture shows the initial position of the
clipping plane; the molecule has not been clipped yet. The
top right capture shows the plane clipping the molecule in
half. The bottom left capture shows the plane clipping
almost all the entire molecule.

ORIOL GIRALT 95

6.3.2. Masking Events Description

Once we have toggled and activated the masking mode with the controller’s right grip

button, the wireframe plane indicator will appear in front of the user camera,

perpendicularly to the forward vector. The plane will follow the user’s displacements or

camera movements and will keep its position.

The plane is set to a default position but, we can manage the plane’s displacement

thought the trackpad sensor touch. The X axis will be ignored. If the tracked value is

positive, the masking plane will go forward whereas, if the value is negative, the masking

plane will go backwards. The amount of value tracked by the sensor affects the quantity

of rotation degrees; if the value of the Y axis is closer to the -1 or 1 values (left & right

sides respectively) it will rotate more than a value close to the 0 value (center).

ORIOL GIRALT 96

7. Conclusions

7.1. Summary of the project

Molecular visualization software is an upcoming and growing sector than it’s tracing its

path thanks to the incoming technologies. Not only allows to compute time-consuming

CPU and GPU programs and renders in lesser time, but also introduces more complex

and complete visualization methods that allow to research and investigate the

molecules and proteins in a more interactive and comprehensible way.

The recent introduction of the VR to the market is a very important point to remark,

since the launched VR technologies are such recent than they lack a reference or even

an open source visualizer in the biomolecular and biochemist world that would provide

such visualization methods. The VR interaction methods are still on develop and

investigation processes and no techniques or standard methods are properly defined

yet.

However, in this project, we have taken advantage of the recent launch of the

commercial VR glasses in order to construct an alternative way to visualize the molecule

and protein models. This visualizer not only allows the user to read any molecule from

the most common and used codification molecular file types from the biggest molecular

dat49se, but also allows to control and modify the molecule properties with a pair of

haptic controllers in which the controller ray trace will be the main interaction method.

During the process we have developed a strictly project planification that allowed us to

achieve our objectives satisfactorily; we have built a complete molecule parser and data

model which can read thousands of the mainly three-dimensional structural data for

large biological molecules. We have introduced and implemented three different atom

and bond geometry representation methods, and therefore, discuss its advantages and

drawbacks of each method as well as finding its bottlenecks. We have designed a

complete three-dimensional graphical user interface that interacts with the represented

ORIOL GIRALT 97

molecule and follows a Three-tier architecture. We have implemented a complete ray-

based selection technique. Finally, we implemented a dynamic clipping plane than

activates and deactivates the meshes based on the relative position of the camera.

For the proper accomplishment of the project tasks, we have developed a series of

methods and techniques that reduced considerably the render and computing process

time. For each technique, we have developed a series of performance and stress tests in

order to compare it with other available methods and see its disadvantages and

bottlenecks as wells as its strong traits.

During the realization of this project, we have accomplished our proposed project

objectives; we presented molecular viewer, in which any user is able to properly interact

with ease with the molecule while it keeps a well-defined and rendered mesh that reacts

to the graphical interface transformations and properties modifications as well as

provides comfortable selection and masking techniques. This viewer also provides a

fully customizable menu options sets that not only englobes interface properties but

also model projection properties.

However, we found some troubles during the realization of the project. We encountered

really hard problems with the implementation of the billboard impostor technique

through Cg Language; it’s basic syntax and depth buffer’s capabilities didn’t allowed us

to properly instance the depth value of our impostor mesh. Furthermore, the rupture of

the computer’s graphics card that required a replacement of another capable of running

the VR system and lately, the temporal unviability of the VR headset has taken us away

from our planning and forced us to take alternative path in order to succeed with our

objectives.

ORIOL GIRALT 98

7.2. Future research

Before we initially started our project, we determined a strict schedule for our guidelines

to follow. During each step plan, we set a series of restrictions in order to accomplish or

goals and objectives. However, we there still certain limitations that impede to our

molecular viewer to bring the full potential of our project.

If we truly want to offer a complete visualizer, that squeezes all virtual reality’s

immersion capabilities as well as brings a full visualization of the biomolecular

structures of the actual reference techniques, there are still many methods and

implementations and future researches we could make.

In this section we will introduce and discuss some possible enhancements that we could

implements to our molecular viewer as well as we will deliberate about some possible

researches, we could make in order to improve our render and computational

performance;

Representation of other protein visualization structures: during the realization

of this molecular viewer, we have only represented the primary structure of

proteins. However, there still many others three-dimensional representations we

could render and recreate in our viewer. Those methods are also really important

in the biomolecular and biochemical world, and are frequently used by the

researchers to interpret and interact with the catalogued molecules. Even though

the primary representation was made by some of the most knowing and basic

geometrical forms, the other structures requires more complex forms and

meshes. We could generate the structure meshes based on the atom’s

coordinates and information than we have stored in the file and in the data

model. Even we could try to generate an impostor of the hypothetical mesh.

Introduction of other selection techniques: In our project we have introduced

two different selection techniques. Though, we could still include more methods

to make different precision selections. One possible way could be to take

ORIOL GIRALT 99

advantage of the k-d tree and implement, for example, to implement a nearest

neighbor selection which guided with our trackpad. This obviously means to

perform a series of enhancements and operations to or k-d tree algorithm, which

will also take into account the slide direction to select the incoming element,

taking into account its camera to object transformations, etc.

Investigate more molecular geometry rendering techniques: In chapter 4 we

introduced and subsequently analyzed and compared many different renderings

of molecular geometries that allowed us to make possible visualize huge

molecular models such as the proteins. We have discussed the good points and

the limitations of each one and, with the results and analysis extracted, we could

improve our render performance to increase our frame rate. For example, we

could research and investigate how to expand the limitations of the GPU

instancing in order to allow to the buffer to include more instanced meshes in

order to allow the instantiation of bigger molecular models. Unity has an open

source version and it supports a huge active community of developers. As the

same way we have implemented the pertinent methods to allow multiple color

instantiation, we could research for possible methods we could implement to

improve our performance.

These are only a few of the possible enhancements and investigations we could perform

to our project in order to build, step by step, a more complete molecular viewer.

Furthermore, the VR tools and sources are continuously evolving and the incoming

community and research investigations are on top of the day. If we keep looking for new

articles that are related to the biomolecular and biochemical world, as well as the

introduction of new VR interaction techniques, we could take advantage of it and

implement it to our project.

ORIOL GIRALT 100

7.3. Concluding statements

Not all geometry rendering techniques are able to represent the molecular geometries.

Molecules has a very high number of atoms and bonds and can be really expensive if we

talk about its computational cost. The most well-known used molecular representation

technique is the billboard impostor technique.

However, there still other viable representation methods such as the GPU instancing.

Each method has its strong points and weaknesses nonetheless, the proper

implementation and working praxis allowed to our molecular visualizer to perform a

real time rendering and visualizations that doesn’t compromise our system

performance.

The introduction of the VR tools allowed us to implement a deeper and more immersive

molecular viewer. A world space GUI not only brings the advantage that doesn’t partially

occupy the user viewport, but also leads to a more potentially awareness of the changes

produced on the represented molecule. Furthermore, the introduction of the VR

trackpads replacing the conventional mouse and keyboard enables a full range of three-

dimensional space selections as well as a more complete control of the mesh

transformations.

ORIOL GIRALT 101

8. Bibliography

[1]
 «Átomo», in Diccionario de la Lengua Española (22 ed.). Real Academia Española

(2001). [Website]. Retrieved March 1, 2018.

[2]
 Kumari, I., Sandhu, P., Ahmed, M., & Akhter, Y. (2017, August 30). Molecular

Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective.

Retrieved April 07, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/28637405

[3]
 McNaught, A. D., & Wilkinson, A. (2000). IUPAC compendium of chemical

terminology (PDF), Cambridge, England: Royal Society of Chemistry. Retrieved March

1, 2018.

[4]
 "Proteïna". Anonymous. Gran Enciclopèdia Catalana (Website), Barcelona, Spain:

Enciclopèdia Catalana (1965). Retrieved March 1, 2018 from

https://www.enciclopedia.cat/enciclopedies.

[5]
 "Amino acid". Cambridge Dictionaries Online (Website), Cambridge University

Press. 2015. Retrieved March 1, 2018 from https://dictionary.cambridge.org/dictionary/.

[6]
Jessica Mayand and David S.Goodsell. (2017). What is a Protein? (Online Video) ,20

November 2017. Retrieved February 28, 2018 from

http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video.

[7]
 D. Voet and J.G. Voet. Biochemistry (Book), 4a ed. John Wiley & Sons, 2010. Retrieved

March 1, 2018.

http://lema.rae.es/drae/?val=%C3%A1tomo
https://es.wikipedia.org/wiki/Diccionario_de_la_Lengua_Espa%C3%B1ola
https://www.ncbi.nlm.nih.gov/pubmed/28637405
https://www.enciclopedia.cat/enciclopedies.
https://dictionary.cambridge.org/dictionary/
https://dictionary.cambridge.org/dictionary/
http://pdb101.rcsb.org/learn/videos/what-is-a-protein-video.

ORIOL GIRALT 102

[8]
S.S. Batsanov. Van der W35s Radii of Elements (PDF). Inorganic Materials, 2011. pg

1031-1046. Retrieved March 4, 2018.

[9]
 Corey, Robert B.; Pauling, Linus. Molecular models of amino acids, peptides, and

proteins (PDF). Review of Scientific Instruments, (1953). pg 621–627. Retrieved March 4,

2018.

[10]
 Olmsted J, Williams GM (1997). Chemistry: The Molecular Science (PDF). Jones &

Bartlett Learning. pg 87. Retrieved March 4, 2018.

[11]
 Richardson, Jane S. (2000), Early ribbon drawings of proteins (PDF), Nature

Structural Biology, pg 624–625. Retrieved March 5, 2018.

[12][13] Bank, R. P. (n.d.). Homepage. [Website]. Retrieved March 10, 2018, from

https://www.rcsb.org/

[14] Corey, Robert B.; Pauling, Linus. Molecular models of amino acids, peptides, and

proteins (PDF). Review of Scientific Instruments, (1953). pg 621–627. Retrieved March 4,

2018.

[15] Olmsted J, Williams GM (1997). Chemistry: The Molecular Science (PDF). Jones &

Bartlett Learning. pg 87. Retrieved March 4, 2018.

[16] Richardson, Jane S. (2000), Early ribbon drawings of proteins (PDF), Nature

Structural Biology, pg 624–625. Retrieved March 5, 2018.

https://www.rcsb.org/
https://www.rcsb.org/
https://www.rcsb.org/
http://pdb101.rcsb.org/
http://pdb101.rcsb.org/

ORIOL GIRALT 103

[17] Technologies, U. (n.d.). Unity Manual. Retrieved March 10, 2018, from

https://docs.unity3d.com/es/current/Manual/index.html

[18]
 J. F. (n.d.). Unity C# Tutorials. Retrieved March 10, 2018, from

http://catlikecoding.com/unity/tutorials/

[19]
 The Cg Tutorial. (n.d.). Retrieved March 12, 2018, from

http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

[20] Schawarzer F. A., & Lotan I. IUPAC Approximation of Protein Structure for Fast

Similarity Measures (PDF), Computer Science, Stanford University, Stanford, CA.

Retrieved March 11, 2018.

[21] P. R. (n.d.). Learning Modern 3D Graphics Programming. Retrieved March 8, 2018,

from https://paroj.github.io/gltut/Illumination/Tutorial%2013.html

[22]
 P. R. (n.d.) (2012, February 07). Paroj/gltut. Retrieved March 12, 2018, from

https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors

[23]
 Technologies, U. (n.d.). GPU instancing. Retrieved March 12, 2018, from

https://docs.unity3d.com/Manual/GPUInstancing.html

[24]
 (n.d.). Models and Structural Diagrams in the 1860s. Retrieved April 08, 2018, from

https://webspace.yale.edu/chem125/125/history99/6Stereochemistry/models/models.h

tml

https://docs.unity3d.com/es/current/Manual/index.html
https://docs.unity3d.com/es/current/Manual/index.html
https://docs.unity3d.com/es/current/Manual/index.html
https://docs.unity3d.com/es/current/Manual/index.html
http://catlikecoding.com/unity/tutorials/
http://catlikecoding.com/unity/tutorials/
http://catlikecoding.com/unity/tutorials/
http://catlikecoding.com/unity/tutorials/
http://catlikecoding.com/unity/tutorials/
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
http://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter01.html
https://paroj.github.io/gltut/Illumination/Tutorial%2013.html
https://paroj.github.io/gltut/Illumination/Tutorial%2013.html
https://paroj.github.io/gltut/Illumination/Tutorial%2013.html
https://paroj.github.io/gltut/Illumination/Tutorial%2013.html
https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors
https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors
https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors
https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors
https://github.com/paroj/gltut/tree/master/Tut%2013%20Impostors
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://docs.unity3d.com/Manual/GPUInstancing.html
https://webspace.yale.edu/chem125/125/history99/6Stereochemistry/models/models.html
https://webspace.yale.edu/chem125/125/history99/6Stereochemistry/models/models.html

ORIOL GIRALT 104

[25]
 (n.d.). Proteins, Scientific figures. Retrieved April 08, 2018, from

http://www.wikipremed.com/image_archive.php?code=040101

[26] Allen Sherrod Game Graphics Programming (PDF), Course Technology PTR

Retrieved August 21, 2018.

[27] Dr. Steve Cunningham Computer Graphics: Programming, Problem Solving, and

Visual Communication (PDF), Computer Science Department California State

University Stanislaus Turlock, CA, pg 274. Retrieved August 22, 2018.

[28] Moller, Thomas Real-Time Rendering, Fourth Edition (PDF), Computer Science

Taylor & Francis Boca Raton, CA, pg 559. Retrieved August 22, 2018.

[29]
 Larson, Brad Enhancing Molecules using OpenGL ES 2.0 (Website), published 11

May 2011. Retrieved August 18, 2018 from http://www.sunsetlakesoftware.com/

2011/05/08/enhancing-molecules-using-opengl-es-20

[30]
 "Sphere". Oxford Living Dictionaries (Website), Cambridge University Press. 2015.

Retrieved February 9, 2018 from https://en.oxforddictionaries.com/definition/sphere

[31]
 "Icosahedron". Oxford Living Dictionaries (Website), Cambridge University Press.

2015. Retrieved February 9, 2018 from https://en.oxforddictionaries.com/definition/

sphere

[32]
 Jason L. McKesson Learning Modern 3D Graphics Programming (Website),

published 2012. Retrieved March 23, 2018 from

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/LearningModern3DGraphi

csProgramming.pdf

http://www.wikipremed.com/image_archive.php?code=040101
http://www.sunsetlakesoftware.com/
https://dictionary.cambridge.org/dictionary/
https://en.oxforddictionaries.com/definition/sphere
https://dictionary.cambridge.org/dictionary/
https://en.oxforddictionaries.com/definition/%20sphere
https://en.oxforddictionaries.com/definition/%20sphere

ORIOL GIRALT 105

[33]
 Sebio, Oscar Cajaraville Four Ways to Create a Mesh for a Sphere (Website),

published December 7, 2015. Retrieved February 10, 2019 from https://

medium.com/game-dev-daily/four-ways-to-create-a-mesh-for-a-sphered7956b825db4

[34] Moore, "What is a ray?" (Article), Zemax. published July 25, 2005. Retrieved

February 14, 2019.

[35]
 "Proteïna", Wolfram Math World Weisstein, Eric W. (Website). Retrieved February

21, 2019 from http://mathworld.wolfram.com/Norm.html

[36]
 Straßer, Wolfgang Schnelle Kurven- und Flächendarstellung auf grafischen

Sichtgeräten (PDF), Chapter 6 (page 6-1), published December 26, 1974. Retrieved

February 20, 2019

[37]
 n.a. GPU instancing (Website), published February 18, 2019. Retrieved February 28,

2019 from https://docs.unity3d.com/Manual/GPUInstancing.html

[38]
 Dutra, Teofilo Unleash Your Gpu Instancing (Website), published January 2, 2018.

Retrieved February 10, 2019 from https:// medium.com/game-dev-daily/four-ways-to-

create-a-mesh-for-a-sphered7956b825db4

[39]
 J. Cheminford A rule-based algorithm for automatic bond type perception (Article),

published October 31, 2012. Retrieved March 10, 2018 from https:// medium.com/game-

dev-daily/four-ways-to-create-a-mesh-for-a-sphered7956b825db4

https://docs.unity3d.com/Manual/GPUInstancing.html

ORIOL GIRALT 106

[40]
 Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric

regression (pdf), published 1992. Pg. 175-185. Retrieved March 7, 2019 from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1010.2854&rep=rep1&type=pd

f

[41]
 Bentley, J. L., N. S. Multidimensional binary search trees used for associative

searching (pdf), published 1975. Pg. 509. Retrieved March 7, 2019 from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.335&rep=rep1&type=pdf

[42]
 Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E. Time bounds for

selection (pdf), published 1973. Pg. 448–461. Retrieved March 7, 2019 from

http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf

[43]
 n.a. Stencil Test (Website), published September 12, 2015. Retrieved March 10, 2019

from https://www.khronos.org/opengl/wiki/Stencil_Test

[43]
 n.a. Cg Programming/Unity/Outlining Objects (Website), published August 18,

2018. Retrieved January 5, 2019 from

https://en.wikibooks.org/wiki/Cg_Programming/Unity/Outlining_Objects

[44]
 n.a. Unity User Manual (2018.3) (Website), published February 26, 2019. Retrieved

March 5, 2019 from https://docs.unity3d.com/Manual/UnityManual.html

[45]
 n.a. OpenVR (Website), published March 3, 2019. Retrieved March 5, 2019 from

https://docs.unity3d.com/Manual/UnityManual.html

https://docs.unity3d.com/Manual/UnityManual.html
https://docs.unity3d.com/Manual/UnityManual.html

ORIOL GIRALT 107

[46]
 H.M. Berman, K. Henrick, H.Nakamura, J.L. Markley The Worldwide Protein Data

Bank(wwPDB) (Website), published 2007. Retrieved April 08, 2018 from

http://www.wwpdb.org/

[47]
 David S. Goodsell. Introduction to PDB Data (Website), published n.a. Retrieved

April 07, 2018from https://docs.unity3d.com/Manual/UnityManual.html

[48]
 Roques, Arnau PlantUML (Website), published April , 17 2009. Retrieved March 14,

2019 from http://plantuml.com/

[49]
 n.a. Graphical user interface (Website), published March, 16 2019. Retrieved March

16, 2019 from https://en.wikipedia.org/wiki/Graphical_user_interface

[50]
 n.a. Command line vs. GUI (Website), published December, 13 2018. Retrieved

March 16, 2019 from https://www.computerhope.com/issues/ch000619.htm

[51]
 n.a. VRTK - Virtual Reality Toolkit (Website) Retrieved April 4, 2019 from

https://vrtoolkit.readme.io/docs/sdk-setup-switcher

[52]
 Ian Hamilton, VRTK’s Open Source Tools Help New Developers Get Started In VR

(Website)., published September, 28 2017 Retrieved April 4, 2019 from

https://uploadvr.com/vrtk-stone-fox-unity-tool/

https://docs.unity3d.com/Manual/UnityManual.html
https://en.wikipedia.org/wiki/Graphical_user_interface
https://www.computerhope.com/issues/ch000619.htm
https://vrtoolkit.readme.io/docs/sdk-setup-switcher

