
Question Answering Systems

Jaime Arroyo Morales - LJ1806201
Beihang University

17th January, 2019

Abstract

In computer science, Question Answering (QA) is a field whose main objective is
to build systems that are able to understand and answer natural language questions
proposed by humans. This systems are gaining a lot of popularity thanks to their
usage in search engines and specially in virtual assistants like Siri, Cortana or Alexa.
QA discipline is a combination information retrieval techniques and natural language
processing and the recent improvement in these two fields and the existance of better
knowledge bases have had a lot of impact on QA systems, leading them to better
results. In this paper I analyze different approaches to this problem and propose a
model to answer simple factoid english questions based on the DBpedia ontology, first
I use SVM leaning techniques in order to classify the questions by answer type and
then NLP techniques with the objective of processing the question and querying the
database. In addition, I propose and algorithm to make the system able of answering
spanish questions and achieve in that way cross-language knowledge transfer.

1

Question Answering Systems

1 Introduction

1.1 Problem definition and
Motivation

In the beggining of Question Answer-
ing systems the studies had the objec-
tive of creating a system able to interact
with a human being. This systems have
evolved from simple interactions without
any database behind to very complex sys-
tems able to understand and query ques-
tions all over the web and get reliable an-
swers.

This field is different from key word
based search engines, whose objective is
to reply with a set of documents related
to a set of words input as query. QA goes
one step further and aims to accept natu-
ral language questions as input and crawls
through as many documents as possible to
find the correct answer. This is possible
thanks to the constantly growing internet
and also helps to convice users that all the
information retrieved is reliable.

Many factors have made this disci-
pline grow and gain more interest recently.
Probably the main factor is the users de-
mand to have access to correct informa-
tion in a efficient and fast way which makes
QA a very interesting topic to research on.
This demand comes because of the exis-
tance of good search engines and the pop-
ularity of all the smartphone assistants or
even home assistants, which make the task
of Question Answering a basic need in a lot
of people’s lifes.

Other factors like the exponentially in-
crease of availeable information on the
internet, as mentioned before, and im-
provements in natural language processing
(NLP) have obviosly had a huge impact on
QA systems.

Solving this problem is not an easy task
since even with well structured data pro-
vided by knowledge bases, the gap that
still exists between this and the natural

language is very big and one incorrectly
parsed question leads to a wrong query
that will most likely result in an incor-
rect answer. While it is true that huge
improvements are being made there is still
a lot of work and research to do in this
field, specially when it comes to answer-
ing complex questions, those that involve
more than one fact.

1.2 Structure of the work

In this paper I will focus in basic concepts
and several approaches to the problem.

In chapter 2 I will talk about differ-
ent models trying to analyze them and un-
derstand the techniques used and will also
take a look at the current state of the art
in QA discipline.

Chapter 3 will be the explanation of my
QA model proposal covered with a lot of
details about every step and finally chap-
ter 4 will cover all the aspects related to
the cross-language knowledge transfer.

At the end I will analize the results ob-
tained by my model and get some conclu-
sions.

2 Methods

Two of the earliest Question Answering
Systems were BASEBALL, a system that
answered questions about the US base-
ball league, and LUNAR, that answered
questions about rocks returned by Apollo
moon misions. These were restricted-
domain systems that relied on a knowl-
edge system hand-written by experts and
obtained very good results.

Other Question Answering Systems
are those that rely on reading compre-
hension in order to answer the ques-
tions. A very interesting case is the
SQuAD dataset, described by the Stan-
ford researchers as a reading comprehen-
sion dataset, consisting of questions posed
by crowdworkers on a set of Wikipedia

Page 2

Question Answering Systems

articles, where the answer to every ques-
tion is a segment of text, or span, from
the corresponding reading passage, or the
question might be unanswerable. It is
very interesting since it has a leader-
board that allows you see the state-of-
the-art systems in reading comprehension.

Figure 1: Comprehension leaderboard

As we can see in the leaderboard, cur-
rent state of the art in that field is by
BERT, an unsupervised and deeply bidi-
rectional system for pre-training NLP. The
system analyzed on this paper, on the
other hand, will be different than these
two types mentioned before, since it is
going to be a open-domain QA system.
Open-domain systems are those that aim
to return an answer in response to hu-
man’s questions but are not bounded by
any form.

3 The model

In this section I am going to talk about the
model I propose and explain with a lot of
detail each component. As mentioned be-
fore, it is a system able to understand and
answer simple english questions and also
spanish ones if using the cross-language
transfer.

It is very important to describe which
questions are supposed to be answered by
the system and which are not. Simple
questions are those questions that only re-

quire to know one fact in order to be an-
swered, for example “What is the capital
of Norway?”. This will be explained with
more detail in the Knowledge-base subsec-
tion.

This system is based on the DBpedia
ontology, database that will provide the
answer to the questions. With DBpedia as
our source of information, the main goal is
going to be transforming our natural lan-
guage question into a SPARQL query and
parse and validate the answer given by it.

As described by C. Gailer, S. Kohl and
S. Oberauer, researchers in IICM, a Ques-
tion Answering system can be divided in 4
major parts: Question Analysing, Prepar-
ing the Dataset, Text Processing and Data
Mapping.

First of all, the question needs to be
analyzed in order to identify at least the
semantic of the answer expected. The next
step is to convert our dataset into datas-
tructures understandable by our system.
Text processing consists in all the tasks in-
volved in transforming the input question
into a SPARQL query and the last step is
the execution of it.

These are the 4 subsections I am go-
ing to use to describe the model, a vari-
ation of the model proposed by A. Tahri
and O. Tibermacine with the addition of
cross-language transfer and other changes.

3.1 Question Analysing

This is the first step and most important
in our architecture since a mistake in this
section probably leads to an incorrect an-
swer. The main goal of this step is to be
able to classify questions by the type of
answer, crucial to validate the answer pro-
vided by our system. A simple example
could be: given the question ‘When did
Michael Jackson die?’ we expect a num-
ber or a date of an answer. If given any
other kind of answer we can discard that
answer and look for it again.

Page 3

Question Answering Systems

While there are some approaches to
tackle this question classification problem,
the best performances have been achieved
by machine learning, especially Support
Vector Machines. With the technique de-
cided, another important thing to take
into account is in how many classes you
want to classify the questions. I will adopt
the 6 classes proposed by Li and Roth
in their research, same researchers that
have proved with a comparative study that
SVM is currently the state of the art tech-
nique in Question Classification.

The 6 classes are the following:

• Human (HUM)

• Location (LOC)

• Entity (ENTY)

• Description (DESC)

• Numeric (NUM)

• Abbreviation (ABBR)

Using the same example as before, when
input the question ‘When did Michael
Jackson die?’, the system should answer
NUM, since a year is expected.

First of all, I am going to explain the
basics of SVM algorithms, which will be
very usefull to be able to understand prop-
erly the implementation of Question Clas-
sification used by my model.

3.1.1 Support Vector Machines
(SVM)

Support Vector Machine is a highly used
machine learning algorithm whose objec-
tive is to find a hyperplane in a N-
dimensional space, where N is the number
of features used to analyze data. This hy-
perplane will be used to classify our data
into the different classes. SVM produces
an acceptable accuracy with less computa-
tion power than other Machine Learning
algorithms and while it can be used also
for linear and logistic regression problems,
his main usage is multi class classification.

Hyperplanes are the boundaries we are
going to use to calssify the data. Our data
will be transformed into a numerical vec-
tor which will create a point in the space
in a process called feature extraction since
most of the times our data will not be al-
ready provided as a numerical vector. Fea-
ture extractio is a topic that will be cov-
ered later in this paper. Once we have set a
point in the space it is trivial to determine
the class it belongs since we only have to
chech in which side of the hyperplane that
point is falling.

The other important element is this
algorithm are the support vectors, which
are those points that are closer to the hy-
per plane and can be used to change the
position and orientation of the planes in
order to maximize the margin of the class.
These points will be key in order to build
our SVM. In figure 2 we can see two ex-
amples of a 2D and 3D hyperplane that
clearly acts as a boundary between classes
and figure 3 helps us visualize the utility
of support vectors and having a higher
margin.

Figure 2: 2D and 3D hyperplanes

Figure 3: Support Vectors

As seen before, SVM are linear func-
tions f(x) = w·x + b where w·v is the inner
product between the weight vector and the
input vector(features vector) and b is the
bias, a value that will allow us move the

Page 4

Question Answering Systems

hyperplane in parallel directions to itself.
W (weight vector) is a series of values that
will determine the orientation of the hy-
perplane and for that reason these are the
values that our system will have to learn.
It is a bynary classifier where we take the
output of the linear function and identify
the input vector as one class if the output
is grater than 1.

This algorithm is based on statistical
learning and it is a supervised learning
model, which means that to train it we will
need already labeled data to work with.
SVM will analyze the training dataset and
will produce as output the linear func-
tion mentioned in the previous paragraph.
This consists into being able to generalize
the training dataset to unseen situations.

Like in all the supervised learning al-
gorithms we need to define a loss func-
tion, a function that will compare our pre-
dicted value with the correct value of a cer-
tain input. What we need to obtain here
is the highest margin between points and
the hyperplane possible and the loss fun-
tion used is the hinge loss function with
an added parameter used to balance the
margin maximization and the loss.

Figure 4: Loss function for SVM

Having the loss function, we have to
take the partial derivates with respoect
to the weights in each iteration to find
the gradients and use them to update out
weights vector. When no misclassifica-
tion is made, we only have to update the
weights but if mistakes have been made we
will have to include the loss with the reg-
ularization parameter to perform the up-
date.

3.1.2 Question Classification Im-
plementation

Lately multiple machine learning frame-
works are being developed and they of-
fer you libraries with the basic Machine
Learning algorithms which make creating
machine learning based systems much eas-
ier since no full knowledge of these algo-
rithms is required in order to use them.
The full implementation of these algo-
rithms is not in the scope of this work.
This whole project is implemented using
Python and a good existing framework is
scikit-learn, an Open Source package bult
on NumPy, SciPy and matplotlib that of-
fers the user simple and efficient tools for
data mining.

For multi-class classification problem
there are two main approach strategies:
one-vs-one and one-vs-the-rest. The main
difference between these two is the num-
ber of classifiers that are going to be con-
structed. Being N the number of classes,
the first will need N·(N-1)/2 classifiers
while the one-vs-the-rest strategy will only
need N. The one-vs-one classifier is less
sensitive to imbalaced datasets but it is
more computationally expensive.

The first decission has to be taken here
and I decided that on-vs-the-rest strategy
would be more suitable to this problem.
The reason for that is that since we are
working with word sentences, the feature
extrator used in the next steps will prob-
ably generate a high number of numeric
features and since the number of classi-
fiers needed by the one-vs-one strategy is
quadratic depending on the number of fea-
tures, the cost of computing all these pro-
cees is much higher and does not compen-
sate with providing higher accuracy.

In figure 5 we can see the basic func-
tion calls to build a SVM with scikit-learn
package. The class used is LinearSVC
which is the one that implements the one-
vs-the rest strategy and after tuning the
parameters I realized that the default ones

Page 5

Question Answering Systems

Figure 5: Linear SVC implementation

were already giving me results with an ac-
ceptable accuracy for this project so those
are the ones I am going to be using.

Our objective now is to find a good
dataset and transform it into the numeri-
cal vectors that we are going to give to the
fit function as the X parameter. Y param-
eter is going to be the list of labels.

3.2 Preparing the dataset

Now that we know the input requirements
for our system we need to look for a
dataset that suits our needs and transform
it into the data types accepted by our sys-
tem. The two main requirements are that
we need already labeled data, since we are
working with a supervised learning algo-
rithm, and a vector of features for each
sample in our dataset.

The chosen dataset is TREC10
dataset. This provides 5500 already la-
beled questions for the training of the
model and also a set of test questions to
try our system in never seen before ques-
tions. These questions are provided in the
form of class:subclass question, for exam-
ple ‘HUM:ind Who invented Make-up ?’.
HUM means that we are expecting a hu-
man as the answer to the question and ind
is the subclass, which I am not going to
use in this project. We will need simple
regular expresion algorithms to extract the
information and storing it in two diferent
vectors, one for the questions and one for
the labels. In the code snippet of figure 6
we can see the RE algorithm.

At this point we have to focus in the
questions vector since as we mentioned be-
fore, need to transform it into a numberic
features vector. Again the scikit-learn li-
brary will help us with the process. The
first utility provided is the tokenization, a
process that will transform our questions
into a bag of words that will be used to
givean integuer id for each token. The
next step is counting the occurences of to-
kens in each sentence, crucial step that
will help us weight and evaluate the im-
portance of eache word. The main perk of
using this strategy is that it allows us ig-
nore the relative position of each word in
a sentece. This process of extracting fea-
tures by transforming string questions into
numerical features ir called vectorization.

The result of this process will be a very
huge matrix of size [number of questions,
number of features], where number of fea-
tures will be the number of different tokens
found in the dataset document. This ma-
trix will contain many values that are 0
as soon as the dataset contains a couple
of sentences with different words. Thank-
fully this Python package provides funtion
in order to speed up operations with this
matrix and memory usage.

The Python class that implements
the tokenization and counting is called
CountVectorizer and again the default val-
ues seem to work good with the TREC10
dataset. In figure 7 we can see the default
parameters.

In later steps of the system we will have
to process the dataset again in order to ex-

Page 6

Question Answering Systems

def proces s Input (path) :
l a b e l s = []
que s t i on s = []
with open(path , ’ r ’) as f :

RE = re . compile (’ ([A−Z] ∗) : ([a−z]∗) (. ∗) ’)
for l i n e in f :

reg = RE. search (l i n e)
l a b e l s . append (reg . group (1))
que s t i on s . append (reg . group (3))

return [l ab e l s , que s t i on s]

Figure 6: Regular expression snippet

Figure 7: CountVector class default parameters

tract keywords and resources but in a com-
pletely different process, for now trans-
forming both training and test dataset into
their corresponding matrix is all we need
to call the previously mentioned scikit-
learn function fit.

Once acceptable accuracy is obtained
we have to serialize the LinearSVC object.
Serialization is the process of converting a
programming object into a binary format
that can be stored. This will allow us load
the SVM into a program when we need it
instead of having to do all the preprocess-
ing and training again. In Python this is
provided by the Pickle package, which con-
tains the function dump that as the name
tells us, allows duming an object into a bin
file.

3.3 Text Processing

Now that we already have our question
classificator trained, our next step before
executing the query is to understand the
set of questions that are going to be input
to the system, which is not the same set
used to train the classificator. By under-
standing I mean knowing which elements
or words of the question are going to be
usefull for us to answer it. This will de-

pend on our architecture behind the sys-
tem, which is the DBpedia ontology, so a
brief introduction about knowledge-bases
and how DBpedia works is needed to un-
derstand further steps.

3.3.1 Knowledge-bases

Knowledge bases are playing an increas-
ingly important role in enhancing the in-
telligence of Web and enterprise search
and in supporting information integration.
Knowledge-bases are huge data structures
used to store structured and unstructured
information. They have a much higher
level of abstraction compared to simple
databases in order to store the information
in a closer way than human brain does.
The reason for that is that these bases are
often used as artificial intelligence tools by
systems that require reasoning. KB are
often together with an inference engine,
a tool that will help the base infere new
facts from the existing ones using logic and
other complex algorithms.

Often they are represented as ontolo-
gies. D. Man described ontologies as a for-
mal representation of the knowledge by a
set of concepts within a domain and the re-
lationships between those concepts. They

Page 7

Question Answering Systems

are used to describe and reason about
properties of a domain since they provide
a shared vocabulary that can be used to
model so, for example by describing the
type of the objects, their properties and
relations.

Another important concept to have in
mind are knowledge-graphs, a datastruc-
ture based on graph theory where nodes
are entities or concepts and edges are rela-
tions between them. It is very important
to know that knowledge-graphs(KG) and
knowledge bases (KB) are not the same
concept, all knowledge-graphs are knowl-
edge bases but not viceversa, since knowl-
edge bases con be implemented in differ-
ent ways. The main advantage of using
knowledge-graphs is that it is one of the
most flexible formal data structures and
most important, it is self-descriptive, all
the information is stored in natural lan-
guage so it is easy to query and under-
stand. In figure 8 we can see an example
of knowledge-graph.

For this project, the knowledge-base
chosen has been DBpedia.

3.3.2 DBpedia

DBpedia is a project started by re-
searchers in Free University of Berlin and
Leipzig University that aims to extract
structured content from information found
in Wikipedia. Wikipedia is the largest en-
ciclopedia in the world and the 5th most
visited website in 2018 according to Alexa,
it contains over 46 million articles in mul-
tiple languages and it is currently growing
at a rate of 20,000 new articles per month.
These numbers make Wikipedia one of the
best sources of information availeable and
being able to convert this articles informa-
tion into structured data allow computer
programs to take advantage of all this in-
formation.

DBpedia allows users to semanti-
cally query relationships and properties
of Wikipedia resources, returning RDF

triples which can be parsed to get the use-
full information of it. The triplet concept
is very important since it is the way data
is stored into DBpedia ontology. A fact
is a triplet <o1, r, o2 >where o1 and o2
are objects/entities and r is the relation-
ship between them, for example ¡Oslo, cap-
ital, Norway¿. Other triplets of form <o1,
typeof, t >take part in the DBpedia on-
tology definition and allow us define the
type each object in the graph. As men-
tioned before, our system will only be able
to answer questions involving one fact, this
means that while it can answer ‘Who is the
president of the United States of Amer-
ica?’, it will not be able to answer ‘Who
is the wife of the president of the United
States of America?’ since it involves two
facts, knowing who is the president of USA
and later knowing who is his wife.

The English version of the DBpe-
dia knowledge base describes 4.58 mil-
lion things, out of which 4.22 million are
classified in a consistent ontology, includ-
ing 1,445,000 persons, 735,000 places (in-
cluding 478,000 populated places), 411,000
creative works (including 123,000 music
albums, 87,000 films and 19,000 video
games), 241,000 organizations (including
58,000 companies and 49,000 educational
institutions), 251,000 species and 6,000
diseases.

The main question now is how to query
DBpedia Ontology. Its data is served
as Linked data and can be navigated
throught complex queries with SQL-like
languages. For this project the selected
query language is SPARQL .

3.3.3 SPARQL

SPARQL is a query language used to re-
trieve and manipulate data stored as Re-
source Description Framework(RDF) for-
mat. As a query language, SPARQL is
”data-oriented” in that it only queries the
information held in the models; there is no
inference in the query language itself.

Page 8

Question Answering Systems

Figure 8: Knowledge-graph example

Queries have two main parts, the Solu-
tion Modifier, that provides the basis for
categorizing different types of query so-
lutions, and the Query Body, which con-
tains a serie of statements that represent
the entities relationships. This statements
are represented using Turtle Notation, for
example, <spiderman ><relationship/en-
emyOf <green-goblin >.

In figure 8 we can see an example of a
simple query that looks for names of peo-
ple that are surnamed Smith. It is very im-
portant to learn the basic structure of the
different query types since we will have to
create a program able to generate them au-
tomatically. The main Solution Modifiers
used in this project are SELECT, which
acts the same way than a normal SQL Se-
lect, and ASK, where we will write a set
of triplets and the system will return Yes
or No depending if these triplets exist on
the DBpedia ontology. ASK will be very
usefull to validate the type of the answer.

3.3.4 Resource extraction with
DBpedia Spotlight

Before moving ¡nto the implementation,
another useful tool used in this project
has been DBpedia Spotlight. When trying
to answer the questions we need to detect
which entities are on it and to which entity
does the property we are asking belong.

DBpedia spotlight is the perfect solu-
tion to this problem, it is a tool designed

to detect DBpedia resources in text. It
performs 4 steps to do so, the first one is
Spotting, which consists in the identifica-
tion of surface forms substrings of the orig-
inal input that may be entity mentions.
after that it selects the set of the surface
forms identified that are candidates. The
third step is the disambiguation, decid-
ing on the most likely candidate resource
for each selected surface form. The last
step is filtering, adjusting the annotations
to task-specific requirements according to
user-provided configuration.

We can access to this tool via
its API. There are multiple ways of
making calls to its API, I use the
linux command curl to get the re-
sources information. A possible com-
mand could be curl ”$http://api.dbpedia-
spotlight.org/en/annotate ?text=$question
&confidence=0.8&support=20” -H ”Ac-
cept:text/xml.

In this query we can see that there
are two parameters, confidence and sup-
port. Confidence is the Disambiguation
Confidence parameter, it is a threshold
which takes a value between 0 and 1. Set-
ting a high value will give us better and
reliable solutions but we may be risking
losing other correct resources too. The
other paramenter is Support, the Resource
Prominence parameter, it helps us ignore
unimportant or uninformative resources.

The result of this command will be an

Page 9

Question Answering Systems

xml file containing the list of resources
detected and more usefull information.
We can see an example with the question
How old is Michael Jackson? in figure 9.
There are different fields we will need out
of it. The most important field is similar-
ityScore, this is a number between 0 and
1 and we will select the resource with the
highest since it is the one that DBpedia
is more sure about. Another important
field is the URI, which actually is what we
were looking for. That URI is the link to
the DBpedia resource that we are going
to query later. The last attribute we are
going to use from this XML is the sur-
faceForm field, which indicates the words
Spotlight used to identify the resource.
We need them to discard them later on
the keyword selection.

Figure 9: Resource’s XML

3.3.5 Obtaining resource’s prop-
erties

Now that we have identified the main re-
source in the question, we will need to list
all its availeable DBpedia properties so we
can later decide which is the one we are
interested in. At this point we will have
to execute our first DBpedia query, which
will come as shown here:

Being Resource the URI of the re-
source obtained by DBpedia Spotlight.
In Python, the best solution to query
DBpedia is by using the SPARQLWrap-
per class and creating a SPARQLWrapper

instance around http://dbpedia.org/sparql.
The query is input as a String and the re-
sult will be given in the chosen format.
In my program the result is obtained as
JSON, since it makes it very easy navigate
through it and extract the information but
I also find interesting to look at the HTML
result, since it provides a clear idea of what
we are queriing. In the next figure we can
see some of the results obtained queriing
for Michael Jackson’s properties.

Figure 10: Properties query example

Our next objective will be deciding
which of this properties was the one asked
in the question.

3.3.6 Keyword analysis

At this point we have already obtained the
resources and the list of properties DBpe-
dia has. Our objective now will be to de-
cide which of this properties contains the

Page 10

Question Answering Systems

solution to the question. It may be the
case that the information asked is not in
the resource’s properties, in that case, the
system will not be able to answer since it
doesn’t have that info.

To do so, we will have to extract words
in the question that may be usefull for us.
The first step will be convert the question
into a bag of words, since from now on the
position words had in the sentence is not
useful anymore. This can be done with
the nlkt function word tokenize, which ba-
sically splits the question by spaces and
creates a list where every position is a word
of the question.

Our next step will be removing stop
words. Stop words are those than don’t
add any meaning to a sentence, usually
connectors. The list of stop words used
for this project is the one provided again
by the nlkt. We will also remove from the
keyword candidate list the resource since
if some words have already been tagged as
resource, we cannot considere them prop-
erties. We can know which words were
used as resources thanks to the attribute
SurfaceForm provided by DBpedia Spot-
light. In Python it is very easy to fil-
ter words in a sentece and we can do it
with just one instruction: filtered words
= [word for word in text if word not in
stopwords.words(’english’) and word not
in surface].

The last step is running a part-of-
speech tagger to the remaining candidate
words. The Stanford Natural Language
Processing group described POS taggers
ass pieces of software that read text in
some language and assign parts of speech
to each word (and other token), such as
noun, verb, adjective, etc. This will be
very usefull for us to obtain the final key-
words. We will discard all the words that
are not tagged as nouns, verbs, adjec-
tives or adverbs and the ones remaining
after this process will be considered key-
words. The implementation of this is with

the pos tag function provided by the nltk
package and using the tagset ‘universal’,
since the default one goes into too much
detail and we only need to know the basic
type of each word.

At this point we have completed the
objective of text processing, which was to
extract usefull information out of the ques-
tion. Our next step will be preparing and
executing the query.

3.4 Data mapping

This is the last step of the system. The ob-
jective here is find which of the resource’s
properties is the one asked in the question.
To do so, we will compare the list of key-
words and the list of properties and decide
which are more similar.

A double loop will be executed since
we will compare all the properties against
all the keywords, being the outer loop the
one that iterates through the properties.
Working in this way will allow us store a
final score for each property and finally de-
cide our answer.

First of all, it is important to men-
tion that the comparison will be done not
only against keywords, it will also be com-
pared to synonims or related words of key-
words in order to be more precise. The
tool used to extract synonims is the API
to the Merriam-Webster dictionary, Amer-
ica’s most trusted online dictionary for En-
glish word definitions, meanings, and pro-
nunciation. In order to use it, it is required
to generate an API key registering in the
website but the usage is completely free.

In Python we can query the dictio-
nary and obtain a XML object using
the urllib library and queriing to the
url https://www.dictionaryapi.com/api/
v1/references/thesaurus/xml/X?key=Y,
where X is the word we are queriing and Y
our generated API key. In figure 11 we can
see the example found on the Merriam-
Webster API website, which shows que
XML output for the query of the word

Page 11

Question Answering Systems

umpire. From this XML we will extract
the words obtained in nodes syn, which
corresponds to synonims and rel, which
corresponds to related words.

Now we will finally do the comparison
without the list of words and the list of
properties. There are multiple algortihms
that take two words as input and return a
value depending on how similar they are.
Three different algorithms were tested on
this project.

The first algorithm used was the Lev-
enshtein distance, also known as the min-
imum edit distance algorithm. This algo-
rithm consists in, given two strings str1
and str2 and below operations that can
performed on str1. Find minimum num-
ber of edits (operations) required to con-
vert ‘str1’ into ‘str2’:

• Insert

• Remove

• Replace

For example, the edit distance between cat
and cut would be 1, since we can replace
letter a by u and we already have the ob-
jective word.

The second distance measure used was
the Jaccard similarity, defined as the size
of the intersection divided by the size of
the union of two sets. We can see the for-
mula and the python implementation in
the following two figures.

Figure 12: Jaccard similarity formula

Figure 13: Jaccard similarity Python im-
plementation

Althought this algorithm was proved to
achieve better results than the minimum

edit distance algorithm, one last algorithm
was tested, the cosine similarity.

Cosine similarity is the cosine of the
angle between two n-dimensional vec-
tors in an n-dimensional space. It
is the dot product of the two vec-
tors divided by the product of the
two vectors’ lengths (or magnitudes).
Again I will show the mathematical for-
mula and my implementation in Python.

Figure 14: Cosine similarity formula

Figure 15: Cosine similarity Python

Both Jaccard and Cosine similarity
were giving acceptable results but I finaly
decided to use the Cosine Similarity as
distance mesurement. The next step is
to compute these similarities and sort the
properties vector by similarities.

Here comes our last step in the pro-
cess. We take the property that we have
found more similar to any of the keywords
and we query it to DBpedia. The query is
very simple, we are asking the database for
a triplet where we already know 2 values,
the resource and the property, the sample
query would be SELECT ?result WHERE
{ <Resource><Property >?result }. DB-
pedia endpoint will search through and
complete the triplet, returning the answer
to the variable result.

We will query for the most similar

Page 12

Question Answering Systems

Figure 11: Merriam-Webster query example

property first and after getting the re-
sult our last step will be validate that
the answer to that question is compati-
ble with the one our question classifica-
tion predicted. Depending on the type
of answer predicted by the classificator,
different procedures will be performed.
The two most interesting cases are the hu-
man(HUM) and location(LOC) tags. It
is very important to know that the an-
swer given by the DBpedia can be a value
or the URI of another resource. For hu-
man predicted questions, we will have to
do one last query to DBpedia to guar-
antee that the solution is correct, or at
least, compatible with the type of an-
swer. We will considere valid a Human
answer when the result obtained by DB-
pedia is an URI with that contains the
type Person. At this point is when we are
going to use the ASK Solution Modifier.
ASK expects a series of triplets and re-
turns if those triplets exist in DBpedia, by
doing the query ASK WHERE { <AN-
SWER><http://www.w3.org/1999/02/
22-rdf-syntax-ns#type><http://dbpedia.org/

ontology/Person >. } , being ANSWER
the URI obtained as answer to the ques-
tion, we will accept the answer if the result
of this query is true, otherwise we will dis-
card it. The same procedure is done with
the location questions, where we query
for http://dbpedia.org/ ontology/Location
instead. All the other types have basic
comprovations, like ENTITY expects an
URI as answer, NUMBER expects some
number or date on it, and finally the other
types, that expect text as an answer.

If the answer is accepted is given as
final answer and if it is not, all these com-
provations will be made again with the sec-
ond property more similar calculated be-
fore. This will be done until a valid answer
is found.

4 Cross language in-

formation transfer

As mentioned before, Wikipedia is the
biggest enciclopedia in the world, contain-
ing more than 5,700,000 articles in En-

Page 13

Question Answering Systems

glish. But on the other hand, in Span-
ish it contains 1,5 milion articles, which is
a lot, but still 4 times less articles than
in English, which means that it contains
aproximately 4 times less information in
the DBpedia. Things get worse it other
language. With some small changes, the
model proposed before can answer Span-
ish questions using the English DBpedia.

Translating the whole question can
lead to many errors or can be computa-
tionally expensive, but if keyword identi-
fication can be performed before, only the
translation of keywords would be needed,
which is easier to compute since no context
is needed.

Since no good enough Spanish Part-of-
Speech Taggers could be found, the stop
words removing process becomes more
important. First, stop words are re-
moved from the bag of words formed by
the question. The list can be found in
https://www.ranks.nl/ stopwords/spanish,
a website that also provides stop words list
for other languages. The spanish list con-
tains 179 words.

After this filtering, another filter will
be passed in order to remove Question
Pronouns from the sentence, being those
Why, What, Which, When, Where, Who
and How, in Spanish Por qué, Qué, Cual,
Cuando, Donde, Quién and Cómo. All
the remaining words will be considered
keywords of the question. These keywords
are translated using Translator python
package as we can see in figure 16. After
that, DBpedia Soptlight is run and al the
remaining words are used for the proper-
ties comparison. Then the same model
as before is used and finally the answer is
translated back to Spanish.

Figure 16: Python translation snippet

5 Conclusion

In this paper I reviewed some state of the
art QA systems and proposed mine, with
the first part involving machine learning
techniques and the second involving NLP
techinques. The system achieves a 85%
of accuracy classifying questions on the
TREC10 dataset which is a very accept-
able result. The question answering was
tested against a manually created dataset
where we can conclude that the system
achieves good performance in simple ques-
tions in which the information in DBpe-
dia is stored the same way that the struc-
ture of the question. The system has more
problems with questions where a further
understanding of the keywords is needed
or the list of synonims doesn’t match the
property name we are looking for. Future
work in this project will involve working
on these aspects in order to improve the
system’s accuracy.

Page 14

Question Answering Systems

References

[1] Baseball: an automatic question-answerer., GREEN JR, Bert F; et al. (1961),
Western joint IRE-AIEE-ACM computer conference: 219–224..

[2] BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing, Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, (Submitted
on 11 Oct 2018)

[3] Question Answering Over Knowledge Graphs: Question Understanding Via
Template Decomposition Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng, The
Chinese University of Hong Kong, China; Peking University, China.

[4] New Trends in Automatic Question Answering Christian Gailer, Stefan Kohl,
Stephan Oberauer

[5] Support vector machines, Marti A. Hearst, University of California, Berkeley

[6] DBpedia and the live extraction of structured data from Wikipedia Mohamed
Morsey, Jens Lehmann, Sören Auer, Claus Stadler, Sebastian Hellmann, (2012)

[7] DBpedia based Factoid Question Answering, Adel tahri and Okba Tibermacine

[8] ONTOLOGIES IN COMPUTER SCIENCE, Diana Man, DIDACTICA MATHE-
MATICA, Vol. 31(2013), No 1, pp. 43-46

[9] Scikit-learn: Machine Learning in Python, Pedregosa, F. and Varoquaux, G. and
Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and
Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A.
and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E., Journal
of Machine Learning Research, 2011

[10] Natural Language Processing with Python. Bird, Steven, Edward Loper and Ewan
Klein (2009).

Page 15

