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Abstract

This project is aimed at automatizing part of the grading and self-
assessment processes for computer graphics problems in computer sci-
ence courses. These courses often use tools that analyze the output of
the programs, but the features extracted from syntactically analyzing the
source code can give more insight on code quality and reduce correction
time. This project presents a high-level Python API allowing instructors
to compose correction rubrics based on a syntactic and semantic analysis
of the source code of student submissions. The API provides functions to
query the most relevant components of the OpenGL Shading Language,
including variable declarations, assignments, function calls, conditional
sentences and loop statements. The implementation is based on the
ANTLR parser generator and has been tested on shader submissions in
a Computer Graphics course.
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1 Introduction

1.1 Problem formulation

Computer graphics is a field which studies methods for digitally synthesizing
and manipulating visual content. Computer graphics courses often use problem
solving activities where students have to research and develop algorithms to
generate a certain specified visual output. These kind of problems are also
used in the Graphics1 and Interaction and Interface Design2 courses from the
Bachelor Degree in Informatics Engineering at UPC3.

The problems provide a statement, like the one in In Figure 1, which de-
tails a certain visual operation to be implemented in different steps of the
rendering pipeline, and can be applied to any 3D model. These operations can
vary from changes in colour or shading to changes in the model’s wire-frame,
deformations or animation.

Figure 1: Example of an exercise from the Graphics subject where a 3D bunny
has to be rotated over time.

To test the implementation and correctness of the student’s algorithms the
Viewer application is used. This is an application developed by the course
teachers that lets a user provide models, code and other attributes to visualize

1 Graphics course at FIB: www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-
degree-informatics-engineering/curriculum/syllabus/G

2 Interaction and Interface Design course at FIB: www.fib.upc.edu/en/studies/bachelors-
degrees/bachelor-degree-informatics-engineering/curriculum/syllabus/IDI

3 Bachelor Degree in Informatics Engineering: www.fib.upc.edu/en/studies/bachelors-
degrees/bachelor-degree-informatics-engineering

www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering/curriculum/syllabus/G
www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering/curriculum/syllabus/G
www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering/curriculum/syllabus/IDI
www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering/curriculum/syllabus/IDI
www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering
www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering
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the resulting output [Gra16]. It also provides a testing option that renders
the difference between still frames of the expected output and the student’s
output. Although it is a very complete and complex program, determining the
correctness of a solution based only on the visual output of this application can
be sometimes impossible. Different implementations of graphic cards lead to
slightly different results for the same code depending on the card it is running
on [Fay06]. These small differences can have a snowball effect on many correct
or almost correct solutions and make it very difficult to determine if there is
a real mistake in the code or just noise. This is a problem for both the auto-
evaluation process of the student developing the solution and for the teacher
that has to evaluate it.

Figure 2: Example of the current output of the Viewer (right) as the difference
between a correct output (center) and an incorrect one (left). The output from
both images is almost identical, and we don’t know if the difference is due to
precision errors or bad code.

1.2 Objectives

This project’s main goal is to create a system that facilitates the correction
of computer graphics problems. The achievement of this goal will serve two
primary objectives:

• Speed-up and simplify the exam correction process: Make it eas-
ier and faster for teachers to assess correction rubrics for exam exercises.

• Facilitate students’ auto-evaluation: Provide a way for students to
test their solutions to training exercises. Give them accurate information
about the errors in the output of their solutions and also errors in their
code.
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2 Context and scope

2.1 Context

This project will serve the purpose of aiding the IDI and G courses teachers
in the exam correction process. If implemented correctly, the developed sys-
tem will reduce the time and effort spent on basic and repetitive tasks when
correcting student exams. Most of these tasks include performing simple find
operations on the submitted code in order to assess problem-specific require-
ments such as using a mandatory function or performing a required operation
on a variable, among many others.

When a student’s solution does not yield a correct result, performing more
complex and not as problem-specific tasks may be necessary. Many common
mistakes can make an "apparently correct" code behave in an undesired way,
like using a variable of an incorrect type or not applying the necessary transfor-
mations to a model. For example, in shader programs, a vertex’s coordinates
are given in object space (that is to say, the coordinates are relative to the
object containing the vertex). In order to properly render a scene, the co-
ordinates of vertices have to be transformed into clip space by performing a
chain of transformations. It may be hard to detect at first glance whether a
student has applied the necessary transformations to a vertex and/or if those
transformations are correctly performed. Having a system that automatically
detects inconsistencies in a vertex’s coordinate spaces along the code of the
shader could simplify this process by narrowing down the possible causes for
mistakes and showing the teacher which lines of the code could be problematic.

Students should also benefit from this project since they will be provided
with a more accurate tool to help in their auto-evaluation and learning pro-
cesses. Applying this tool correctly is likely to show a positive effect on their
grades.

2.2 Scope

In order to achieve the stated objectives, a rubric assessment tool will be
implemented. This tool will consist of a public python library with functions
specified by the subject’s coordinator. For this, a large set of exam problems
and student submissions will be studied together with the course’s teachers in
order to determine the most common mistakes made by the students as well as
all the tools needed for specifying correction rubrics. An example of a rubric
are shown in Figure 3.

Since many rubrics cannot be verified completely automatically, the library
will also provide tools to locate relevant portions in the code and highlight
them, with a range of output formatting options. A detailed specification of
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1 R("No calls to mix", vs.numCalls("mix") < 1)

Figure 3: Example of a rubric that assess whether the function "mix" has been
used in the code.

all the functions needed will be adjusted so that fits both students and teachers
needs, following a modular implementation so that more features can be easily
added in the future. It is out of the project’s scope to write assessment rubrics
for existing exercises, this task will have to be done by the subjects’ teachers.

For the objectives to be completely achieved, a solution testing tool will be
developed, which will consist in a visualization application for 3D models and
shaders with an improved testing functionality. This testing functionality will
provide an interactive view of both the output of a student’s solution to an
exercise and the correct output for that exercise. For the advanced correction
algorithm different obfuscation techniques will be tried so that a student’s
solution can be executed at the same time as the official solution on the same
machine, without exposing the official solution and minimizing the impact of
obfuscation on the program’s performance. This interactive visualization of
the outputs will be combined with the information of the rubric assessment to
provide an orientative yet detailed summary of possible errors in the student’s
code and errors in the output of the program. It is out of the project’s scope
to write solutions for the course’s exercises.

2.3 Possible Obstacles

Some of the obstacles that may be encountered during the development of this
project can be:

• Code disclosure: One of the greatest problems of comparing a student’s
code with the correct code in real time is that the correct solution must be
executed on foreign computers. Therefore, although it can be hindered,
it is almost impossible to prevent users from having access to the correct
answers to the course’s problems.

• Parsing: In order to analyze the student’s code a parsing operation has
to be performed. This is done by running the code through a specific
grammar and building an Abstract Syntax Tree (AST), which is data
structure containing a hierarchy of statements and functions that make
the analysis of the code possible [And18]. Generating a correct AST
is a key element of the code analysis, and a correct grammar for the
programming languages supported (C++ and GLSL) will be needed. It
may be difficult to find appropriate tools to generate this AST and/or
correct grammars, therefore it may be necessary to develop these as part
of the project, which can cost a substantial amount of time.
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• Tool Search: A big part of this project relies on finding suitable cross-
functional tools that already implement the low-level wide range of tasks
that assembly the project. Since implementing each one of the func-
tionalities without using any additional libraries would be practically
impossible, it is important to spend a substantial amount of time finding
the best tools for the job. Not finding a suitable free software library
for a determined module will add a significant amount of hours to the
development of the project.

• Hofstadter’s law: "It always takes longer than you expect, even when
you take into account Hofstadter’s Law." [Hof99] This law states the
difficulty of planning ahead and estimating the development time for
complex tasks, that even when taking into account their difficulties and
obstacles take longer than expected.
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3 Methodology and Resources

3.1 Software development methodology

In this project it is important to keep a clean and modular code that will make
it easy to add future functionalities. The most important thing to keep in
mind are the stakeholder’s priorities, which will be detailed along the course
of the project. These requirements discard the use of linear methodologies
like Waterfall or Rapid. The best fitting method for implementing this type
of project is an Agile one, primarily on grounds of the need to respond to
specification changes and viability predictions for certain features [Agi18]. The
Lean Software Development looks like the best fitting agile method due to its
focus on principles like learning amplification and waste elimination [Pop03].
The development will be monitored using a Kanban board and Test-driven
development.

3.2 Tools

• Test-driven Development: This technique is very important for this
kind of projects composed of very distinct functionalities where opti-
mization and efficiency are key elements. It will be necessary to write
tests for each new functionality implemented and make sure all the tests
pass after optimization and refactoring processes [Pat12]. A continuous
integration tool will be used to ensure each step of the implementation
is correct and minimize the amount of bugs and undesired behaviours of
the application.

• Git: The code will be developed and maintained using the Git program.
A master branch will hold stable code and each new feature or refactoring
job will be done in a separate branch. Once the feature or refactored code
pass all the tests they will be merged into the master branch and tested
once more. Commits will be made for every step in the development of
a feature, allowing for easy monitoring and error detection. The GitHub
platform will be used for an easy on-line remote access to the project
and communication with the project director.

• Kanban board: An online Trello board synchronized with the GitHub
repository will be used as a Kanban board. The board will feature a
pool of functionality ideas to be detailed with stakeholders, a To Do
pool of already defined functionalities that have to be implemented and
a minimal number of Work In Progress features and tests to be finished
and validated.

• Bi-weekly meetings: Periodical meetings with the thesis director and
key stakeholder will be held. In this meetings the current progress of the
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progress will be showed and discussed, functionalities will be reviewed
and new ideas will be pondered and specified.

3.3 Material Resources

• PC with a Linux Operating System

• Server with Graphics card, network connection and Linux operating sys-
tem

• Fast internet access

3.4 Human Resources

• The author of the TFG with a dedication of 30 to 42h/week depending
on the project’s progress and encountered obstacles.

• The director of the TFG providing help with the specifications as a
Project Manager and consultations about the implementation of the
project. 0.5 to 1h/week
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4 Action Plan

The project will be developed between July 2018 and April 2019. This project
consists of two parts: a lexical analyzer and an interactive viewer. The first
part of the project will be finished by 23 January 2019. The second part is not
crucial for the stakeholder, therefore it will be implemented last. In a worst
case scenario where obstacles prevent the first part of the project for being
finished before the deadlines, the second part will be canceled and the project
will be finished in time. If everything goes according to plan, the second part
will be finished by 23 April 2019.

Each one of the mentioned phases has a set of tasks and sub-tasks. The
project will follow a LEAN methodology: for each task, the requirements and
goal will be analyzed, then implemented [Pop03]. A testing phase will fol-
low each implementation, followed by a refactorization if applicable. These
testing/refactorization process will be iterated until the quality of the imple-
mentation meets the requirements to be integrated in the whole project. Since
the exact implementation time for each task is difficult to estimate and adding
new tasks may be necessary, the required time for each task has been estimated
using a deviation based on the task’s complexity and a general deviation de-
pending on the task’s level of risk. The deviations used for each level of risk
are: low: 110%, medium: 150% and high: 250%. The project has been
planned at a worst-case scenario for each task, therefore most tasks will likely
start before it was planned. Bi-weekly meetings with the project director and
stakeholders will be held to review the project’s progress and discuss any pos-
sible obstacle and how to avoid it.

1) Static Analysis Tool: This phase consists of three major tasks. The
first two are very similar in organization so they will be explained in the
same section for simplicity.

Total estimated time: 320h

− Parsers: The first two phases consist of implementing an OpenGL Shad-
ing Language and a C++ language parsers that analyzes shader codes
and C++ application codes. For each programming language a parser is
needed.

• Research for open-source, functional parsers. 2x 5h, Analyst.
Risk: low. This task has no precedence.

• Modification of such parsers to meet the project’s requirements.
2x 15h, Developer/Tester. Risk: high This can only be done once
the parser is found and installed.

• Specification of functionalities for each language. 2x 10h, Ana-
lyst. Risk: low. This task has no precedence.
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• Implementation of the functionalities where the parsers are used.
2x 100h, Developer/Tester. Risk: medium. This can only be
done once the parser is modified to the specification and works in
the project’s framework.

− Python library: This task consists of integrating both parsers in a
public python module and implementing high level functions to specify
rubrics using the parser’s functionalities.

• Parser functions refactorization. 30h, Developer/Tester. Risk:
medium. This task can be done only once all the previous tasks
are completed.

• Python high-level function specification, Analyst. 10h. Risk:
low. This task has no precedence.

• Python high-level function implementation. 20h, Developer/Tester.
Risk: medium This task can only be done after the specification
and parser implementation tasks are done.

2) Dynamic analysis tool: This phase consists in analyzing the existing
viewer tool and available hardware to specify an improved visualization
tool and implement it.

Total estimated time: 180h

• Viewer analysis. 20h, Analyst. Risk: low. This task has no
precedence.

• Hardware analysis. 10h, Analyst. Risk: low. This task has no
precedence.

• Viewer specification. 20h, Analyst. Risk: low. This task can
only be done once the existing Viewer tool and hardware have been
analyzed.

• Hardware and Viewer implementation. 120h, Developer/Tester.
Risk: high. This task can only be done once the specification is
complete.

3) Documentation: In this stage the memoir and the Presentation for the
TFG exposition will be prepared.

Total estimated time: 100h

• Memoir redaction. 65h, Project Manager. Risk: medium. This
task has no precedence.

• Memoir revision. 15h, Project Manager. Risk: low. This task
can only be done when the memoir has been finished.
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Figure 4: Gantt Chart of the project’s tasks.

• Presentation preparation. 20h, Project Manager. Risk: medium.
This task can only be done when the memoir has been finished and
revised.

4.1 Initial plan deviations

This project’s development process has had a primary focus in the stakeholder’s
priorities and reviews of the initial specification. Given the nature of the
agile methodology, changes in the initial plan were expected, adapting the
specification to new ideas and improvements. Some expected difficulties have
also been encountered, resulting in an increased dedication to the initial tasks
to ensure a good foundation for the project.

Static Analysis Tool

In order to develop the static analysis tool, GLSL and C++ parsers were
necessary. The way these parsers are integrated in the project is vital, since
all of the functionalities have to be built around the parser’s specifications.
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The initial choice for a GLSL parsing python library was discarded shortly
after starting the implementation phase for some of the functionalities, due to
a lack in its documentation and many issues encountered in the process. A
second research phase led to the final choice of using the ANTLR library and
open-source GLSL and C++ grammars.

After doing some tests with the official ANTLR C++ grammar, it was
determined that the task of modifying it to fit the project’s purposes would
take much longer than expected and that the main priority would be to have
a functional GLSL static analysis tool. The integration of C++ code analysis
is finally left as future work.

Dynamic Analysis Tool

The dynamic analysis tool development has finally been left out of the scope of
the project. The delays discussed in the previous section and perhaps an over-
optimistic estimation of the dedication time available have left a tight schedule.
Taking into account the time dedicated to the implementation of the static
analysis tool and the documentation of the project, the 450h corresponding
to 18 ECTS credits that a final thesis requires4 were already being met. This
was, nevertheless, an expected obstacle, and has no major effect on attaining
the main goal of the project.

4 https://ec.europa.eu/education/ects/users-guide/glossary_en.htm#workload

https://ec.europa.eu/education/ects/users-guide/glossary_en.htm#workload
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5 Project sustainability

5.1 Initial Assessment

There is a considerable understanding of the economic, social and environmen-
tal sustainability aspects of IT projects. Engineering bachelor degrees invest
a high amount of time in training students on identifying causes and conse-
quences of design problems, primarily by teaching how to associate an unsolved
problem with a solved one and adapting the existing solution to the unsolved
problem. This process can be extrapolated to the economic, social and envi-
ronmental dimensions of an IT project just by learning how to properly analyze
and measure their costs and impact.

In IT, and specifically software projects, it is relatively easy to determine
their economic impact, since each one of their activities and potential risk
factors can be predicted very accurately with considerable confidence. This
leads to very realistic budgets that are easy to control and update as soon as
an obstacle is encountered.

Environmental impact is easy to measure in software projects too, since
there are very few material resources needed for their development and their
usage time and energy consumption levels are precisely defined.

The hardest impact for an engineer to determine is the social. Engineering
bachelor degrees teach very few about human and social behaviors, which
is a very complex subject in itself and difficult to predict accurately. That
being said, there are some basic yet crucial social aspects of any IT project
which impact can easily be measured and taken into account like security and
accessibility. These are key features for which evaluation is feasible in any IT
project, since there have been so many problems with these aspects in the last
20 years, there are also a lot of solutions and improvements to learn from.

We can conclude that we have been provided with enough tools in order
to measure and improve sustainability in all its dimensions in any software
development project.

5.2 Economic Dimension

All costs derived from the development of the project have been calculated,
taking into account all the extra time necessary to develop it in the case of en-
countering a predicted obstacle. The total cost of the project including direct,
indirect, hardware and software costs is of 10,282.77 euros (see subsubsec-
tion 5.2.1).

The problem that this project is designed to solve is correcting exams in the
IDI and G courses, a task that is done completely manually at the time. Exam
correction in universities is performed by professors that have an elevated cost
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per hour of work, therefore human resources costs can also be reduced by this
project by reducing the amount of hours that teachers have to work.

5.2.1 Budget

Direct Costs

In software projects, direct costs mean human resources costs directly related
to the Gantt chart activities. This project has a total estimated time of: 680h.
In a normal company, there would be different people involved in the project
with different roles in it. Usual roles and estimated salaries for a software
project are:

• Project manager: 20 e/hour [Pay18b]

• Programmer - Analyst: 13.5 e/hour [Pay18a]

• Programmer - Developer - Tester: 12 e/hour [Pay18c]

For this project, the roles will be developed only by the project author
in all three roles and project director in the role of Project Manager. The
human resources cost has been calculated by taking into account each one of
the activities in the Gantt chart [4] in addition to the work derived from the
GEP course and bi-weekly meetings with project director/stakeholder. All
activities’ cost has been detailed in Table 1 and a summary of the total human
resources cost can be seen in Table 2. Roles Analyst, Project Manager and
Developer/Tester have been abbreviated to A, PM and D/T respectively, for
the sake of simplicity.

Indirect Costs

Indirect costs of this project consist in power consumption and internet access.
A detailed review of the costs can be seen in Table 3.

Hardware

According to the Spanish Agencia Tributaria amortization time for computers
is 8 years [Age18]. Taking this into account, the cost of the hardware needed
for the project development phase is detailed in Table 4.

Software

The only proprietary software used during the project will be GitHub. A
private repository is needed to host the project and it will be used for the
entire duration of the project. Detailed costs can be seen in Table 5.
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Task Role Dedication Cost

Research parsers A 10h 135 e

Modification of parsers D/T 30h 360 e

Specification of functions A 30h 405 e

Implementation of functions D/T 200h 2400 e

Parser refactorization D/T 30h 360 e

Output functions specification A 10h 135 e

Output functions implementation D/T 20h 240 e

Viewer analysis A 20h 270 e

Hardware analysis A 10h 135 e

Viewer specification A 20h 270 e

Hardware+Viewer implementation D/T 120h 1440 e

Memoir redaction PM 65h 1300 e

Memoir revision PM 15h 300 e

Presentation preparation PM 20h 400 e

GEP PM 60h 1200 e

Meetings PM 20h 400 e

Table 1: Human Resources costs for each task

Monitoring

For budget monitoring, the total duration of each task will be reviewed weekly,
and the budget will be updated with the costs for the real duration and derived
costs of each task.

5.3 Environmental Dimension

This project has very little environmental impact. Since it is a software project,
the only impact derived from its development and useful life is that of the
carbon emissions generated from electricity usage. The electricity usage of
the project has been determined to be of about 120kW in the development
phase. 47kg of CO2 are generated to produce this amount of electricity [Gen].
The impact derived from its useful life may result in a decrease in the waste
of paper by the teachers, since it will not be necessary to print the student’s
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Role Dedication Cost

Project Manager 180h 3600 e

Analyst 100h 1350 e

Programmer/Tester 400h 4800 e

Total 680 h 9750 e

Table 2: Total Human Resources costs

Item Price Quantity Cost

Electricity 0.116 e/kWh 120 kW 13.92 e

Internet Access 35 e/month 10 months 350 e

Total 363.92 e

Table 3: Indirect costs

solutions anymore.

5.4 Social Dimension

In terms of personal growth, I believe this project has given me the opportunity
to learn a lot about graphic processing at the same time as code analysis and
program synthesis. It has also given me the opportunity to work with the
university’s graphics department and provided insight on the work of being a
teacher.

This project affects two sectors of people: the course’s teachers and the
students. The students and teachers of this course use a very simple system
to correct exercises, based on a plain difference between still images of a correct
solution to an exercise and the student’s solution. This makes it exceptionally
hard for students to be sure if their solutions are really correct when practising,
since teachers take into account the quality of the code itself not only the
output of programs. Teachers, on the other hand, have to spend a huge amount
of time manually assessing student’s programs while taking a lot of correction
rubrics into account. Teachers are the main beneficiary of this project since
their time working on correcting exams will be drastically reduced. A certain
amount of time will be needed to specify the rubrics of each exercise before the
correction of the exam, but this task can be done only once for each exercise,
therefore only one teacher has to do it, and decrease the correction time for
any teacher correcting that exercise ever after.

Students also benefit from this project since they can use the system for
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Item Price Charge-
off

Usage
time

Cost

Laptop PC 800 e 8.33
e/month

9 months 75 e

Server 1300 e 13.54
e/month

2.5 months 33.85 e

Total 108.85 e

Table 4: Hardware costs

Item Price Usage time Total Cost

GitHub Micro Plan 6 e/month 10 months 60 e

Total 60 e

Table 5: Software costs

auto-evaluation purposes, which is likely to improve their understanding of the
subject and therefore improve their chances of getting a better grade.

Even though this project has been oriented to the UPC’s graphics courses,
it could be extended to other kinds of programming exercises. Thirds also may
be positively affected if the project is used in other universities and courses.

5.5 Sustainability Matrix

Table 6 contains the scores of the PPP row of the sustainability matrix.

Economic Environmental Social

PPP 4 8 9

Table 6: Sustainability Matrix
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6 Software design

The tool we need to develop for this project has to be able to assess rubrics
on a large number of codes. Each one of the codes will be a student’s attempt
at solving a computer graphics problem. These submissions will be in the
GLSL language, in the form of vertex shaders, fragment shaders and geometry
shaders. Since our main objective is to be able to provide valuable and ex-
tended feedback on poor quality code, custom rubrics will have to be designed
and tuned for each problem. In order to provide this functionality we can split
our project in three modules.

• Grammar and Parser: The parser is the part of the program responsi-
ble of reading the GLSL code of each submission and build a data struc-
ture that holds the information of each construct present in the source
code. This data structure is known as AST (abstract syntax tree). In
order to build a parser for a programming language we need to specify
the grammar of this language.

• Listeners and Visitors: The listener and visitor modules will allow us
to traverse the AST built by the parser and extract all the information we
need to know about it. We can implement various listeners and visitors
in order to provide each functionality required by the project.

• Python API: The API is the module that will implement high level
functions that give access to the parser’s functionalities through listeners
and visitors. The main goal of this API is to provide a simple and
versatile interface whose functions can be combined in order to assess a
wide range of rubrics, from simple and general to complex and specific
ones.

A detailed documentation of the API is provided in Appendix A.
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7 OpenGL Shading Language

1 #version 330 core

2
3 layout (location = 0) in vec3 vertex;

4 layout (location = 1) in vec3 normal;

5 layout (location = 2) in vec3 color;

6
7 out vec3 N;

8 out vec3 P;

9
10 uniform mat4 modelViewProjectionMatrix;

11 uniform mat4 modelViewMatrix;

12 uniform mat3 normalMatrix;

13
14 void main() {

15 P = (modelViewMatrix * vec4(vertex.xyz, 1)).xyz;

16 N = normalize(normalMatrix * normal);

17 gl_Position = modelViewProjectionMatrix * vec4(vertex.xyz, 1.0);

18 }

Figure 5: Vertex shader used to calculate lighting in a Graphics exercise.

The OpenGL Shading Language, or GLSL, is a domain-specific language
used in the programmable stages of the OpenGL rendering pipeline. This
pipeline is responsible for rendering a 3D scene on a 2D screen, by applying a
series of steps on the input data. Some of these steps are programmable and
perform operations specified by the user on the data sent to the pipeline. In
the Graphics course, students learn how to customize the rendering process by
programming geometry, vertex and fragment shaders.

Geometry shaders

Geometry shaders can be used to generate new primitives in the scene such as
points, lines, triangles, meshes, etc. The vertices created in this step will be
passed to the vertex shader along with all of the original primitives initially
passed to the pipeline.

Vertex shaders:

Vertex shaders are executed once for every vertex passed to the pipeline. These
shaders are widely used to modify the vertex properties such as position, color
or texture coordinates. Figure 5 shows an example of a vertex shader code
used in the process of simulating the lighting of a scene.
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Fragment shaders:

Fragment shaders are executed once for every fragment in the pipeline. Frag-
ments are a way to represent all the information that has to be rendered on
a single pixel of the screen, and have no information about the scene’s initial
geometry. In most cases, a fragment shader is used to calculate a pixel’s color,
based on the input data received from previous steps in the pipeline. This
information can be used in order to apply effects like lighting, shadows, high-
lights or bump mapping and other advanced techniques. Figure 6 contains the
fragment shader code corresponding to the vertex shader from Figure 5.

1 #version 330 core

2
3 uniform vec4 lightAmbient;

4 uniform vec4 lightDiffuse;

5 uniform vec4 lightSpecular;

6 uniform vec4 lightPosition;

7
8 uniform vec4 matAmbient;

9 uniform vec4 matDiffuse;

10 uniform vec4 matSpecular;

11 uniform float matShininess;

12
13 in vec3 N;

14 in vec3 P;

15 out vec4 fragColor;

16
17 void main() {

18 N = normalize(N);

19 vec3 V = normalize(vec3(0, 0, 1));

20 vec3 L = normalize(lightPosition.xyz - P);

21 vec3 H = normalize(V+L);

22 float ldiff = max(0, dot(N, L));

23 float lspec = max(0, dot(N, H));

24 if (ldiff > 0)

25 lspec = pow(lspec, matShininess);

26 else

27 lspec = 0;

28 lightAmbient = matAmbient * lightAmbient;

29 lightDiffuse = matDiffuse * lightDiffuse * ldiff;

30 lightSpecular = matSpecular * lightSpecular * lspec;

31 fragColor = lightAmbient + lightDiffuse + lightSpecular;

32 }

Figure 6: Fragment shader used to calculate lighting in a Graphics exercise.
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7.1 Syntax and Grammar

The GLSL syntax and grammar are based on the C Programming Language,
with minor differences. GLSL supports an array of specific constructs, such
as uniforms, layouts and storage qualifiers, that apply only to the context of
a rendering pipeline. Some restrictions are also applied to this context, for
example, recursive functions are not supported. The most relevant constructs
used in the Graphics course are the storage qualifiers in and out. When a
variable is declared as in, its value is passed to the shader by a previous stage
in the pipeline. When a variable is declared as out, its value is set by the
shader and passed to the following stages of the pipeline.

In the GLSL language, as well as in all other imperative programming
languages, a program is formed mainly by a list of statements. A statement can
either be a compound statement, meaning it creates a nested list of statements,
or a simple statement. We will focus mainly on the following statements,
without entering in specific details that are not relevant to this project.

• Function definitions: int main(){...}

• Declarations: int a;

• Assignments: a = 1;

• Flow control sentences: while, for, if, do, switch.

• Jump sentences: continue, return, break.

• Expressions:

– Constants: integers, floats and booleans.

– Constructors: vec3(1,1,1).

– Function calls

– Identifiers

– Array and struct selectors: a[i] and a.i.

– Arithmetic operator expressions: *, /, +, -, %, ++ and --.

– Logic operator expressions: !, >=, >, <=, <, ==, !=, &&, || and
^^.

– Bitwise operator expressions: &, |, ^, », « and ∼.
– Arithmetic assignment expressions: combine an assignment

expression with an arithmetic operator or a bitwise operator, for
example a += 1;.
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8 Grammar and Parser

8.1 Context Free Grammars

The GLSL programming language follows the rules of a context-free grammar.
A context-free grammar is a set of production rules that define all of the words
accepted by this grammar. Given an input, the starting rule of the grammar
is applied. As long as the input follows the rules of the grammar, the input
is accepted. If a symbol from the input does not match with any rule in the
grammar, the word is rejected. The left-hand side of a production rule is
always a non terminal symbol, while the right-hand side can be a combination
of terminal and non-terminal symbol. In Figure 7 we can see a simple grammar
that accepts the words "αα", "αβ", "βα", "ββ".

S → AA

A→ α

A→ β

Figure 7: A simple grammar with a start rule S.

In programming, terminal symbols are called "tokens", and they are defined
in the grammar as simple strings or patterns of characters. A program called
lexer is in charge of reading the source code one character at a time and build
a stream of tokens. A parser then analyzes the tokens and applies the rules
of the grammar, either accepting or rejecting given input. In the process of
applying the grammar rules, the parser also builds an abstract syntax tree. An
abstract syntax tree is a "tree-like" data structure, with the starting rule at
its root, in which each grammar rule applied to the input has a node labeled
with the left-hand side of the rule, and as many children as the symbols in the
right-hand side of the rule.

S

A

α

A

β

Figure 8: AST created by parsing the word "αβ"
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1 LETTER

2 : [a-z]

3 | [A-Z]

4 | ’_’

5 ;

6
7 IDENTIFIER

8 : LETTER (LETTER|DIGIT)*
9 ;

Figure 9: An ANTLR4 example with grammar rules for identifier definition.
Identifiers are used to represent the names of variables, functions and struc-
tures. These can be any combination of uppercase and lowercase letters, as
well as the underscore character.

8.2 ANTLR Grammars

Programming a lexer and a parser is a complicated task, and out of the scope of
the project, since there are already many tools that do this automatically given
a grammar, and produce all the code needed to parse and execute a program.
ANTLR (ANother Tool for Language Recognition) is an open-source tool that
generates parsers for reading, processing, executing, or translating structured
text or binary files5. This project is developed using the latest version of
ANTLR (ANTLR4) and an open-source GLSL grammar written in ANTLR4
syntax. The open-source grammar [Lon15] had to be modified in order to meet
the requirements of the project and due to errors in its definition. The final
grammar used for the project can be found in Appendix B.

In order to define a grammar in ANTLR we first must define the tokens,
which are the terminal symbols (or words) that our language recognizes. To-
kens are defined as simple rules that match either to a string or to a simple
pattern of characters (for example, in Figure 9 we can see the part of the
grammar responsible of accepting IDENTIFIER tokens). After defining the
tokens that our language can read, we can start defining the grammar’s rules
using non-terminal symbols (or just symbols from now on).

1 void main() {

2 fragColor = frontColor * texture(colorMap, vtexCoord);

3 }

Figure 10: The main function of a vertex shader. In this shader, the color of
each fragment is calculated by using the frontColor value as well as the color
stored in a 2D texture.

5 ANTLR4: https://www.antlr.org/
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In an ANTLR4 parser, each non-terminal symbol has its respective con-
text, a class that holds the information of the node and all its possible chil-
dren. For example, as we can see in Figure 11, the sub-tree with the node
"function_call" at its root has 6 children: a "function_name", the opening
parentheses token, a list of expressions separated by the "," token and finally
a closing parentheses token. This means that the context object of this node
contains a list with pointers to all of the 6 child nodes. Naturally, the grammar
rule for function calls allows for any number of parameters to be passed to a
function as long as they are separated by commas, so a function_call node
can have an undefined amount of children.

To make AST evaluation easier, ANTLR provides not only the ordered
list of children of a node, but also a different list for each type of child that
the grammar allows this node to have. This means that a function_call node
contains a list of expression nodes with the parameters passed to the function,
and they can be evaluated without having to deal with parentheses or comma
tokens.
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Figure 11: Tree created by the GLSL code in Figure 10



9 LISTENERS AND VISITORS 28

9 Listeners and Visitors

In Figure 11 we can see how even a simple main function like the one in Fig-
ure 10 produces a rather large tree, with many intermediate nodes for each
terminal token. The intermediate nodes represent the path of non-terminal
symbols taken through the grammar to parse the input tokens, which are rep-
resented in the leaves of the tree. In order to traverse trees, ANTLR provides
two mechanisms, the listener and the visitor.

9.1 ANTLR listener class

The listener is an object that uses a built-in parse-tree walker to trigger specific
functions for each node of the tree. Given a grammar, ANTLR generates a
parse-tree listener interface with a function for the entry and exit points of each
non-terminal symbol of the grammar. A parse-tree walker traverses the AST
in pre-order calling the listener’s entry function upon visiting each node, and
the exit function when all the node’s children had been visited. This makes it
easy to implement some basic features since we can override only the functions
for the nodes we are interested in and extract the information we want without
having to search for them manually from the root of the tree.

1 class myListener(Listener):

2
3 def enterLeft_value(self, ctx:Parser.Left_valueContext):

4 if(ctx.IDENTIFIER() != None):

5 print(ctx.IDENTIFIER().getText())

6 pass

Figure 12: A listener that prints the identifier text of every left_value symbol
in the tree.

Figure 12 shows an example of a very simple listener class. This class
overrides the entry function of left_value symbols, so that it will print the
text of all left_value nodes in the tree that have an identifier as a child. The
result of executing this listener on the AST in Figure 11 would be the following:

1 fragColor

2 frontColor

3 colorMap

4 vtexCoord
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9.2 ANTLR visitor class

Since listeners are triggered by an automatic tree walker they cannot include
a return statement. More complex processes require an explicit control of the
AST traversal. To this end, ANTLR provides the visitor object and generates
an interface with the default implementations of each method. Visitors, unlike
listeners, do not need a parse tree walker, since they let us visit children nodes
explicitly. This makes it possible to implement complex features that need
information on the context of the whole program, not only one rule.

The main difference between listeners and visitors is that visitors have a
return statement, and must explicitly visit their children. The default im-
plementation of the visitor function is for a node to visit all its children and
return an aggregation of their results. This behaviour is implemented in the
visitChildren function that can be seen in Figure 13. By default, the function
defaultResult returns None, and aggregateResult returns the childResult.
This behaviour is not always the desired one, so both functions can be overrid-
den to customize the way results are managed. The visitChildren function
itself can also be overridden to implement more complex features.

1 def visitChildren(self, node):

2 result = self.defaultResult()

3 n = node.getChildCount()

4 for i in range(n):

5 c = node.getChild(i)

6 childResult = c.accept(self) #visits node c

7 result = self.aggregateResult(result, childResult)

8 return result

Figure 13: A simplified version of the default visitChildren function, that
visits the children of a node returning the aggregation of their results.
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1 import glcheck

2 #we provide the path to the source code file

3 vs = glcheck("path/to/shader.vert")

4
5 #more than one file can be added to the same object

6 vsfs = glcheck(["path/to/shader.vert", "path/to/shader.frag"])

Figure 14: Example of the creation of two glcheck objects. The first one
checks a single vertex shader file, while the second one checks the code of two
different shaders.

10 Python API: glcheck

As mentioned previously, this API needs to provide a broad range of functions
that extract information from GLSL programs. These functions have been
specified by the Graphics subject manager teacher in order to serve the purpose
of identifying the most common mistakes made by the subject’s students.

All of the functions implemented are available in an open-source python
library called "glcheck", that can be found in the project’s public repository.6

In the following sections we will explain the behaviour and implementation
details of each one of the library’s functions.7

Initialization

In order to analyze a shader, a glcheck object needs to be created and ini-
tialized with the code in question. Checker objects can contain an indefinite
amount of shader sources and all of them will be checked through the API
functions and their results will be merged.

In the example from Figure 14 we see how the checker objects vs and vsfs

are created.
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1 vec3 vpos(){

2 return vertex + normal;

3 }

4
5 void main() {

6 vec3 V = vpos();

7 vec3 N = normalize(normalMatrix * normal);

8 frontColor = vec4(vec3(N.z),1);

9 gl_Position = modelViewProjectionMatrix * vec4(V, 1);

10 }

Figure 15: Example of a vertex shader code with all calls highlighted in red.

1 vs.calls("normalize") #--> [7:12]

Figure 16: Usage of the calls function on the vs object created in Figure 14.
The function returns a list of the positions in the code where the calls to
normalize take place, in the case of the vertex code from Figure 15, the result
would be a single position: line 7, column 12.

10.1 Syntactic analysis

Calls

Identifies all calls to a specified function. In Figure 15 we can see an example
of a vertex shader code in which every function call has been highlighted.

We consider as function calls:

• Calls to user-defined functions as well as standard GLSL functions.

• Calls to constructors.

• Calls to binary operators.

As seen in Figure 16, the calls function is provided with the name of the
function we want to find the calls to, and returns a list of all the positions in
the code where the calls take place.

In order to implement this function, we first need to identify every single
rule in the grammar that could produce one of the function calls listed above.

6 Project repository: https://gitrepos.virvig.eu/docencia/glcheck
7 In the Graphics course programming environment, shaders are passed an array of

arguments, including transformation matrices, the position of the vertex, its color and many
other properties. In the following shader codes, recurrent or irrelevant declarations will be
omitted for simplicity. Check [Gra16](pages 23–26) for a full specification of the arguments
passed to the shaders in the Graphics course environment.

https://gitrepos.virvig.eu/docencia/glcheck
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1 vec3 vpos(){

2 return vertex + normal;

3 }

4
5 void main() {

6 vec3 V = vpos();

7 vec3 N = {normalize(normalMatrix * normal);

8 frontColor = vec4(vec3(N.z),1);

9 gl_Position = modelViewProjectionMatrix * vec4(V, 1);

10 }

Figure 17: Example of a vertex shader code where the first parameter of every
call to constructor vec4 has been highlighted in red.

1 vs.param("vec4") #default parameter index is 1

2 vs.param("vec4", 1) #gives the same result as the above line

3 #both functions return --> [’vec3(N.z)’, ’V’]

Figure 18: Usage of the param function. In this example the function returns
the strings associated with the first parameter of each call to the function vec4

in the vertex shader code from Figure 17.

Using a listener we will override the entry function of each one of the appro-
priate non-terminal symbols and compare its identifier or operator tokens to
the function name we want to locate.

Parameter names

Identifies the parameters passed to function calls, the definition of a func-
tion call being the one specified in the previous section. This feature takes
a function’s name and an integer parameter index and returns the expression
associated with that parameter for each call to the function. For example,
given the GLSL code from Figure 17, in order to retrieve the name of the first
parameter in all the calls to the function "vec4" we would apply the code from
Figure 18.

This feature has slightly different implementations depending on the type
of function we’re analysing. In regular function call and constructor nodes, the
symbol associated with the callee’s name is a sibling of the expressions passed
as parameters. In a binary operator node, the operator’s name is the parent
of the two expressions passed to it. In both cases this problem is solved using
a listener that filters the calls by their name and searches further into the tree
in order to find the corresponding parameter in that node’s list of expressions.
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1 layout (location = 0) in vec3 vertex;

2 layout (location = 1) in vec3 normal;

3 layout (location = 2) in vec3 color;

4 out vec4 frontColor;

5 uniform mat4 modelViewProjectionMatrix;

6 uniform mat3 normalMatrix;

7
8 void main() {

9 V=(modelViewMatrix * vec4(vertex, 1)).xyz;

10 vec3 N = normalize(normalMatrix*normal);

11 frontColor = vec4(color, 1) * N.z;

12 gl_Position = modelViewProjectionMatrix * vec4(vertex, 1);

13 }

Figure 19: Example of part from a vertex shader code where the expressions
on which the "z" field selector is applied have been highlighted.

1 vs.fieldSelectors("z") #--> [’(modelViewMatrix*vec4(vertex, 1))’, ’N’]

Figure 20: Usage of the fieldSelectors function on the vertex shader code
from Figure 19. In this example the function returns the strings associated
with all of the expressions where a field selector z has been applied.

Field selector names

Very similar to "Parameter names" but instead of identifying the parameters
passed to function calls, it identifies the name of all expressions where a certain
field selector has been applied. The code listed in Figure 19 shows an example
of this functionality, highlighting the expressions where the z field selector is
applied. An example of the usage of this function is provided in Figure 20.

Declarations

Identifies every declaration of a specified variable. We consider as declarations:

• Variable declaration inside the main and any function’s scope.

• Variable declaration as a parameter of a function.

Figure 21 shows a GLSL code with all of the declarations of variable N high-
lighted in red. The code listed in Figure 22 shows how this function can be
used to find out all the positions in the code where the variable N has been
declared, as well as its type.

In order to implement this functionality, we use a listener that overrides
the entry points of two rules in the grammar: the simple declaration rule and
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1 vec4 foo(float N){

2 return vec4(color, 1.0)*N;

3 }

4
5 void main() {

6 vec3 N = normalize(normalMatrix*normal);

7 frontColor=foo(N.z);

8 gl_Position=modelViewProjectionMatrix*vec4(vertex, 1);

9 }

Figure 21: A fragment of a vertex shader code with all the declarations of N

highlighted in red.

1 vs.declarations("N") #--> [(’float’, 1:8), (’vec3’, 6:12)]

Figure 22: Usage of the declarations function. In this example the function
returns a tuple with the type and position for each declaration of variable N in
the vertex shader code from Figure 21.

the function member declaration rule. In the contexts of these rules we can
find both the type specifier symbol sub-tree and the identifier of the declared
variable. If the identifier of a declaration matches the name specified, we look
further into it in order to determine its type.

Names and types of in/out variables

Returns the names or types of all variables declared using either in or out

type qualifiers. The code listed in Figure 24 shows an example of the usage of
each one of the functions and their return values when applied on the fragment
shader code from Figure 23.

In order to implement all these functions, the declaration listener specified
in the previous section has been used as a base class. The API uses the same
listener to implement all four functions, by storing an attribute to keep track
of which function has been called. This listener’s entry function to simple
declaration nodes has been overridden in order to filter declarations by their
type qualifier. Since a declaration can have any number of type qualifiers, all
of them must be iterated. When a qualifier is found, its name is checked to

1 in vec4 frontColor;

2 in vec2 vtexCoord;

3 out vec4 fragColor;

Figure 23: Example of part from a fragment shader code.
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1 vs.inNames() #--> [(’frontColor’, 1:0), (’vtexCoord’, 2:0)]

2 vs.outNames() #--> [(’fragColor’, 3:0)]

3 vs.inTypes() #--> [(’vec4’, 1:0), (’vec2’, 2:0)]

4 vs.outTypes() #--> [(’vec4’, 3:0)]

Figure 24: Usage of the inNames, outNames, inTypes and outTypes functions
on the fragment shader code from Figure 23.

1 void main() {

2 vec3 N;

3 N = normalize(normalMatrix*normal);

4 if(true){

5 N.z = 1;

6 }

7 while(1){

8 frontColor=vec4(color, 1.0)*N.z;

9 for(int i = 0; i < 1< ++i) continue;

10 if(1 == 1) break;

11 }

12 gl_Position = modelViewProjectionMatrix*vec4(vertex, 1);

13 }

Figure 25: A fragment of a vertex shader code overloaded with sentences for
the purpose of this demonstration.

make sure it matches the desired qualifier type, either ’in’ or ’out’, and if it
matches, the position of the declared variable is stored. Depending on the
listener’s attribute that specifies which function was called externally, either
the variable’s type or its name is stored along with the position. The type
is retrieved using the parent class, the declaration listener, which has already
implemented this feature. If the initial query asked for the name of the variable,
since a single declaration can be used to specify more than one variable name
(declarator), the array of declarators is iterated and all the identifiers are stored
along with the position calculated previously.

Sentences

Identifies every use of a given keyword (while, for, if, switch, case, do,
default, continue, return, break) and returns its line and column in the
code. Given the GLSL code from Figure 25, some possible calls to sentences

and the value they return have been listed in Figure 26.
In order to implement this function, we need to find all the grammar rules

that generate the sentences specified above. Once all the rules are located,
a listener is implemented, overriding the entry function to each one of the
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1 vs.sentences("for") #--> [9:8]

2 vs.sentences("if") #--> [4:4, 10:8]

3 vs.sentences("break") #--> [10:19]

4 vs.sentences("while") #--> [7:4]

5 vs.sentences("continue") #--> [9:35]

6 vs.sentences("switch") #--> []

Figure 26: Usage of the sentences function applied with different parameters
to the code listed in Figure 25 and the list of positions returned by each one
of them.

1 void main() {

2 vec3 N;

3 N = normalize(normalMatrix*normal);

4 if(true){

5 N.z = 1;

6 }

7 frontColor=vec4(color, 1.0)*N.z;

8 gl_Position=modelViewProjectionMatrix*vec4(vertex, 1);

9 }

Figure 27: A fragment of a vertex shader code. All the assignments to variable
N have been highlighted.

rules to locate its token and compare it to the given keyword. If the keyword
specified is the same as the token encountered, the position of that token is
stored in the result list.

Assignments

Identifies every assignment to a given variable. Assignments through a struct
selection operator (var.a) are also considered. Figure 27 shows the assignments
to the variable N highlighted in red while Figure 28 demonstrates the use of
the function.

Assignments of a variable are found using a listener that checks nodes of
assignment expressions for the appearance of the specified variable name in
their identifier.

1 vs.assignments("N") #--> [3:4, 5:8]

Figure 28: Finding all assignments to variable N in the vertex shader code
from Figure 27.
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1 vec4 foo(vec3 N){

2 return vec4(color, 1.0)*N.z;

3 }

4
5 void main() {

6 vec3 N = normalize(normalMatrix*normal);

7 frontColor=foo(N);

8 gl_Position=modelViewProjectionMatrix*vec4(vertex, 1);

9 }

Figure 29: A fragment of a vertex shader code with all the uses of N highlighted
in red.

1 vs.uses("N") #--> [2:28, 7:19]

Figure 30: Finding all uses of variable N in the vertex shader code from Fig-
ure 29.

Uses

Identifies every expression in which the specified variable is used. Assignments
and declarations are not considered uses. Figure 29 highlights the uses of
variable N in a vertex shader program and Figure 30 demonstrates the use of
the function.

In order to obtain only the uses of a certain variable, a listener collects all
the positions where an identifier with the specified text appears, and subtracts
from that list all of the assignments and declarations of that variable.

Descendants

Checks whether a statement can be found inside a sentence of a certain type.
When the sentence type is for, if, or while, a parameter specifies whether to
look inside the body or the condition of the sentence.

Given the code from Figure 31, an isDescendantOf(discard, if, body)

query would return true.

1 void main() {

2 if (x>time) discard;

3 fragColor=vec4(0, 0, 1, 1);

4 }

Figure 31: A fragment of a vertex shader code.
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1 vec3 vpos(){

2 return vertex + normal;

3 }

4
5 void main() {

6 vec3 V = vpos();

7 vec3 N = {normalize(normalMatrix * normal);

8 frontColor = vec4(vec3(N.z),1);

9 gl_Position = modelViewProjectionMatrix * vec4(V, 1);

10 }

Figure 32: Example of a vertex shader code where the first parameter of every
call to constructor vec4 has been highlighted in red.

1 vs.paramTypes("vec4") #default parameter index is 1

2 #the function returns --> ["vec3", "vec3"]

Figure 33: Usage of the paramTypes function. In this example the function
returns the types associated with the first parameter of each call to the function
vec4 in the vertex shader code from Figure 32.

10.2 Semantic analysis

Parameter types

Similar to the Parameter names feature, but instead of returning the expres-
sion of a parameter, it returns its type. Given the GLSL code from Figure 32,
in order to know the type of the first parameter passed to all of the calls to
the function "vec4", we would execute the code listed in Figure 33.

Unlike expression evaluation, which requires the execution of the program
in order to calculate the expression’s result, types can be inferred without
executing the program’s instructions in strongly statically typed languages
like GLSL. The first step towards type inference is pre-computing an array of
data-structures.8

• A dictionary of all the functions defined in the code and their return
type.

• A dictionary of all the structures defined in the code and the types of
their attributes.

8 The data-structures should also include all of the built-in GLSL variables and functions
specified in [Ros10] (sections 7 and 8), but this step has been omitted in this version of the
project due to the increase in the workload that would mean to manually create a database
with such an amount of functions.
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1 layout (location = 0) in vec3 vertex;

2 layout (location = 1) in vec3 normal;

3 layout (location = 2) in vec3 color;

4 out vec4 frontColor;

5 uniform mat4 modelViewProjectionMatrix;

6 uniform mat3 normalMatrix;

7
8 void main() {

9 V=(modelViewMatrix * vec4(vertex, 1)).xyz;

10 vec3 N = normalize(normalMatrix*normal);

11 frontColor = vec4(color, 1) * N.z;

12 gl_Position = modelViewProjectionMatrix * vec4(vertex, 1);

13 }

Figure 34: Example of part from a vertex shader code where the expressions
on which the "z" field selector is applied have been highlighted.

• A dictionary of all the variables defined in the code and their types.

Taking into account all expression types exposed in subsection 7.1, a recur-
sive algorithm can infer the type of any expression by applying the following
rules:

• Constant expressions and constructors have an inherent type.

• A function’s call return type is pre-computed in the function dictionary.

• Expressions consisting of just an identifier refer to a variable therefore
their type is determined by the variable dictionary.

• Identifiers with an array selector operator have a type that will match
the type of data stored by the array, which should also be found in the
variable dictionary.

• The type of identifiers with a struct selector operator is determined by
the struct dictionary.

• Expressions with an arithmetic or bitwise operator (including arithmetic
assignments) are determined by the type of the operator’s sub-expression.
Binary bitwise operators should only evaluate the left-hand-side expres-
sion, whereas binary arithmetic operators can evaluate either-one.

• The output type of logic operator expressions is always Boolean.
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1 vs.fieldSelectorsTypes("z") #--> [’vec4’, ’vec3’]

Figure 35: Usage of the fieldSelectorsTypes function on the vertex shader
code from Figure 19. In this example the function returns the types of the
expressions where a field selector z has been applied.

1 uniform mat4 modelViewProjectionMatrix;

2 uniform mat4 modelViewMatrix;

3 uniform mat3 normalMatrix;

4
5 void main() {

6 vec3 N;

7 vec3 P; //P is undefined

8 N = normalize(normalMatrix*normal); //P is undefined

9 P = (modelViewMatrix*vec4(vertex, 1)).xyz; //P is eye

10 if(a) //P is eye

11 P=(modelViewMatrix*vec4(vertex, 1)).xyz; //P is wrong

12 else

13 P=(modelViewProjectionMatrix*vec4(vertex, 1)).xyz; //P is window

14 bool a = true; //P is wrong or window

15 while(a){ //P is wrong or window

16 frontColor = vec4(color, 1.0)*N.z; //P is wrong or window

17 a = false; //P is wrong or window

18 }

19 gl_Position=modelViewProjectionMatrix*vec4(vertex, 1); //P is wrong

20 } //or window

Figure 36: A fragment of a vertex shader code where, for each instruction
where P has a value, its possible coordinate spaces are specified.

Field selector types

Very similar to "Parameter types" but instead of calculating the type of
expressions passed as a parameter, calculates the types of expressions where
the specified field selector has been applied.

Given the code from Figure 34, in order to find out the types of expressions
where the "z" field selector has been applied, we would need to run the code
from Figure 35.

Space

Identifies all possible coordinate spaces for a specified variable of type vec

or mat through the scope of the main function. In Figure 36 we are shown
the coordinate spaces of P for each statement in the code where P has an
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1 vs.space(’P’)

2 #returns --> [[’undefined’], [’undefined’], [’eye’], [’eye’],

3 [’wrong’], [’window’], [’wrong’, ’window’], [’wrong’, ’window’],

4 [’wrong’, ’window’], [’wrong’, ’window’], [’wrong’, ’window’]]

Figure 37: Usage of the space function. In this example the function returns
a list of all the possible coordinate spaces that the variable P could be in at
each statement in the code from Figure 36.

OBJ. WORLD EYE CLIP

model

modelViewProjection

view projection

modelView viewProjection

Figure 38: Coordinate space transformation scheme. Nodes represent coordi-
nate spaces and edges represent the transformation matrices.
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assigned value. Notice that P keeps its value even in the statements where it
does not appear, due to the fact that the state of coordinate spaces shown in
each statement is the one stored in the internal variable dictionary, where P
is present at all times after its declaration, not the one corresponding to just
the current statement.

In order to transform a vector from one coordinate space to another, a
transform matrix is used. Figure 38 shows the main coordinate spaces and
the matrices used to transform vectors from one to another. For example, in
order to transform a vector N from object space to world space, the following
operation should be performed: N = modelMatrix*N. A major source of errors
in shader programs comes from inadvertently operating on two vectors that
are not in the same coordinate space, therefore knowing the coordinate space
of each vector at all times can be very useful to detect such errors.

This feature, of course, has major limitations, but can also yield useful
results in the average case. We cannot determine the precise output of a
program without executing it, but we can calculate the set of possible paths it
can take for each statement. The obvious problem of unfolding code are loop
statements, and the fact that it can be impossible to predict the number of
iterations they will go through, but given the precondition that the program
does eventually stop, and the knowledge that many shader programs do not
require loop statements, we can consider that any loop statement will execute
either 0 or 1 iterations. By treating loops as selection statements, we can
keep track of each variable declaration, assignment and its coordinate system
along each one of the possible paths that the program can take. In the general
case, a variable’s coordinate system should not depend on external factors,
which makes it easy to detect errors just by observing the presence of different
possible coordinate systems for a variable in a given statement.

In order to calculate all these possible coordinate spaces, we need specific
data-structures to keep track of all the information. The approach taken in
this project is to create a structure that represents a program state. This
structure has a dictionary of variable names and their type and coordinate
space. This dictionary will only keep track of "vec" and "mat" variables, as
well as the transformation matrices, since they are the only ones that play a
role in coordinate space calculations.

Every statement in a program has its own program state. Since the exe-
cution of a statement changes the value of variables in a program, the current
program state also changes when a new statement is executed. In order to be
able to keep track of the coordinate space of each variable through every step
of the program, we have to keep a stack of program state structures.

If our program were to follow a single determined path, this stack would
be enough, but flow control sentences may or may not change the statements
that a program will execute depending on the circumstances. This means that
we need to keep track not only of one program state stack, but a list of these
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stacks, where each element in the list represents a path through a program’s
statements. This path list is referred to as the program context.

Using this setup we design a recursive algorithm to analyse and keep track
of coordinate spaces along the program:

1. Before starting to analyse the program, prepare the first program state
adding all the built-in variables and transform matrices passed by the
pipeline to the shader.9

2. Using a parse-tree visitor, visit the node corresponding to the first state-
ment list in the main function.10 For each statement in that list:

(a) Save the original context of the program before the execution of
this statement.

(b) Create an empty result context.

(c) For each path in the original context, analyse the current statement
and append all the resulting paths after that statement to the result
context.

3. When visiting a new statement, duplicate the last program state in the
context and add it to the top.

4. Update the current program state depending on the new statement to
analyse.

(a) Declaration: if the new variable has a type of vec or mat, analyse
the expression in order to calculate its coordinate space and add it
to the current program state.11

(b) Assignment: calculate the coordinate space for the new value given
to the variable and update its coordinate space in the current program
state.

(c) Flow control statement: Save a copy of the current path. After
analysing the statements in the body of the statement, append the
original path to the current context, effectively splitting the original
path into two, one where the program did not enter the statement
and one where it did. For if statements with an else clause, the
original path has to go through the statements in the else before
being re-added to the context.

9 The Configuration module allows the user to set the names and coordinate spaces of
all the variables passed to the shader.

10 In this first version of the implementation, only the scope of the main function is
analysed.

11 When variables are declared from constants in the code, there is no way to infer the
coordinate space that variable could be in. The Configuration module allows to specify a
default coordinate space for constants.
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(d) Function calls: Ideally, we would have pre-computed a dictionary of
function definition sub-trees. When a function call is encountered,
the function’s parameters are added to the current program state

and the statements of that function are visited.12

When encountering declaration and assignment sentences, we rely on a
different visitor to calculate the coordinate space of an expression. This visitor
is called on the expression node, and passed the current program state with
the coordinate spaces of all known variables. This visitor infers the coordinate
system of an expression in a similar way as we inferred the type of an expression
in a previous section. All operations it needs to take into account are:

• Multiplication operations where the left-hand side is a transform matrix:
the "from" and "to" spaces of the transform matrix are checked and, if
correct, the coordinate space is updated accordingly.

• Division operations where the right-hand side is the w component of a
variable in clip space, in which case the variable will be transformed to
the NDC space.

• Any other operation either doesn’t change the coordinate space or is
incoherent and changes it to wrong.

Therefore, for a given expression, this visitor will calculate its coordinate space
to be one of the following: object, world, eye, clip, NDC, wrong or unknown.13

In order to present an ordered result and be able to map each statement in
the program to all the program state objects associated with it, we create an
identifier for this objects, which is unique for each statement in the code, so
that all program states that refer to the same statement will have the same
identifier, and sort the output accordingly.

12 The current implementation does not support for function call analysis yet.
13 When a vec or mat variable has been declared but not initialized yet, it is featured in

the program context as having an unknown coordinate space.
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Figure 39: Stacked bar charts for two rubrics of the Quads assignment.
Submissions with correct output are shown in blue, and incorrect ones in red.

11 Results

The graphics course teachers did a preliminary test with some recent assign-
ments from a lab exam with 86 participants.

11.1 Quads

In one of the assignments, students had to write a geometry shader that,
for each input triangle, outputs four triangles, one for each quadrant of the
viewport. This is a first step for a geometry shader that shows top, left,
front, perspective views of the scene. Students were advised to use the NDC
coordinate space for translating the copies, as (x,y) coordinates of NDC copies
just differ by ±0.5.

Analysing the submitted codes by applying only two rubrics already reveals
some interesting features. Figure 39 shows the bar charts of a couple of general
features. Notice how some outliers are clearly visible. The conversion from
clip to NDC requires a perspective division (i.e. dividing by the homogeneous
coordinate w). This division can be performed only once. In this case, outliers
in the number of .w accessors corresponded to incorrect submissions or to
submissions performing the division multiple times, e.g. once for each quadrant
(which should be penalized).

The bar chart on the number of EmitVertex() also shows clear outliers.
The natural solution to this problem requires either one or four EmitVertex()
calls, depending on the number of loops used, therefore outliers corresponded
to wrong code or poorly-factorized code.
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Figure 40: Stacked bar charts for two rubrics of the Cartoon Shading assign-
ment. Submissions with correct output are shown in blue, and incorrect ones
in red.

11.2 Dithered cartoon shading

For this assignment students had to write a cartoon-like fragment shader that
involved the use of a noise texture and color dithering. Figure 40 shows the
bar charts of two sample rubrics. The first chart shows whether students used
gl_FragCoord or not. The solution required the fragment coordinates to access
the noise texture, so submissions not using it did not pass the test (shown in
red).

The second chart shows the number of loops in the fragment shader. The
assignment required to find the closest quantized color to a noise-perturbed
color. Most students realized that this could be computed by just rounding,
whereas others used an inefficient loop to search for the closest quantized color.
This procedure does not affect the operational correctness of the code, so it
cannot be detected just by looking at the test set results. This kind of rubric
greatly simplifies detecting and providing feedback to those submissions that
need to be penalized for inappropriate code, no matter the output correctness.
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12 Conclusions and future work

12.1 Conclusions

Although the final version of the tool hasn’t been fully tested by the teachers in
an exam-correction environment yet, early experiments show that it has great
potential and has deemed useful to the teachers that tried it. Even though not
every one of the initial features we thought about has made it into this initial
version of the tool, the work done in this project makes it a lot easier to add
any desired features in the future.

In relation to the features implemented, we have observed that even if
analyzing a program without executing it is a difficult task, extracting basic
information from it can be fairly simple once the program is adequately parsed.
For the parser to be useful, a grammar has not only to be correct and accepting
all and only the right programs, but also needs to have a logical structure that
will allow for simple processing.

It has been observed that even if extracting more complex features from the
code is hard, it can be achieved by applying the convenient constraints to the
problem we’re facing by analyzing the context in which the problem has to be
solved, and that small and simple constraints that have little to no difference
to the end-user may enable powerful features that couldn’t be implemented at
all without them.

We can conclude that all the initial objectives of the project have been
achieved, and the tool developed is useful for aiding teachers and students into
a faster and easier understanding of computer graphics programs.

12.2 Future work

Some of the tasks that could be performed in the future in order to improve
the implemented tool are the following:

• A main part that has been left out of the project is to integrate a C++
parser that implements some of the features of the tool. This would
require a C++ ANTLR4 grammar similar to the one used for the GLSL
analysis.

• Integrating this analysis tool inside the Viewer program could also be
useful to students that want to check their code quality or spotting their
mistakes.

• Developing brainstormed features that were left out of the original spec-
ification such as computing the possible stack of calls to functions of a
shader.
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• Optimize the code and store the results of an analysis for future queries.

• Lifting some of the constraints of the code such as analyzing the coordi-
nate space of variables in scopes different than the main function.

• Integrating the GLSL built-in variables and functions into the code anal-
ysis tool.
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A Python API Documentation

A.1 Module glcheck

Syntax Description

glcheck([s1, . . . , sN]) Constructor of a glcheck object. s1 to sN are the
paths to all the source codes to analyse at once.

R(s, . . . ) Main function for rubric specification. A rubric
with description s is created, evaluating the expres-
sion passed as the second parameter.

assignments(s) Returns a list with the positions of every assign-
ment to variable s. Assignments to s through a
swizzle operator (s.x) are also considered.

calls(s) Returns a list with positions of all calls to functions,
constructors or operators matching the string s.

declarations(s) Returns a list with the positions of every declara-
tion of variable s. Declarations of parameters in
function definitions are also considered.

fieldSelectors(s) Returns a list with the names of all variables where
a field selector .s has been applied.

fieldSelectorsTypes(s) Returns a list with the types of all variables where
a field selector .s has been applied.

inNames() Returns a list with the names of all in variables.

inTypes() Returns a list with the types of all in variables.

isDescendantOf(a, b)
isDescendantOf(a, b, c)

Checks whether the sentence a can be found inside
a sentence of type b. When b is for, if, or while,
parameter c specifies whether to look inside the
body or the condition of the sentence. The default
value of c is body.

outNames() Returns a list with the names of all out variables.

outTypes() Returns a list with the types of all out variables.

param(s)
param(s, i)

Identifies the expression associated with the ith pa-
rameter of every call to function, constructor or op-
erator s. If i is not specified, the function identifies
the first parameter.
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Syntax Description

paramTypes(s)
paramTypes(s, i)

Identifies the type of the ith parameter of every call
to function, constructor or operator s. If i is not
specified, the function identifies the first parameter.

sentences(s) Returns a list with the positions of every keyword s.
The following keywords are considered: while, for,
if, switch, case, do, default, continue, return,
break.

space(s) Returns a list with all possible coordinate spaces
for variable s of type vec or mat through the scope
of the main function.

uses(s) Returns a list with the positions of every use of
variable s. (Assignments and declarations are not
considered uses).

numFoo(. . . ) Wrapper where Foo can be any of the above func-
tions. Returns the length of the result given by
Foo(...).

A.2 Configuration

Parameter name Description

Encoding Character encoding for the
source code files to analyse.
Default is utf_8.

Constant_Coord_Space Default coordinate space for
constants in the code. Can be
object, world, eye, clip or NDC.

Model_Matrix Name of the object→world

transform matrix.

View_Matrix Name of the world→eye trans-
form matrix.

Projection_Matrix Name of the eye→clip trans-
form matrix.

ModelView_Matrix Name of the object→eye

transform matrix.
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Parameter name Description

ModelViewProjection_Matrix Name of the object→clip

transform matrix.

Model_Inverse_Matrix Name of the world→object

transform matrix.

View_Inverse_Matrix Name of the eye→world trans-
form matrix.

Projection_Inverse_Matrix Name of the clip→eye trans-
form matrix.

ModelView_Inverse_Matrix Name of the eye→object

transform matrix.

ModelViewProjection_Inverse_Matrix Name of the clip→object

transform matrix.

Vertex Name of the variable holding
the vertex position informa-
tion.

Normal Name of the variable holding
the normal vector indormation.

Normal_Matrix This one is pretty straightfor-
ward.

BoundingBox_Min Name of the vec3 variable rep-
resenting the min position of
the bounding box.

BoundingBox_Max Name of the vec3 variable rep-
resenting the max position of
the bounding box.

Light_Position Name of the vec3 variable rep-
resenting the light position.

Log_Level Level of logging information.
Can have the following val-
ues: CRITICAL, ERROR, WARNING,
INFO, DEBUG.

Log_File File name to store logging in-
formation. Specify NONE to use
console.
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B ANTLR4 GLSL Grammar

1 grammar GLSL;

2 prog:

3 preprocessor* statement_list;

4
5 preprocessor

6 : SHARP version_pre;

7
8 version_pre

9 : ’version’ integer VERSION_PROFILE?;

10
11 VERSION_PROFILE

12 : ’core’

13 | ’compatibility’

14 | ’es’;

15
16 type_qualifier

17 : (storage_qualifier | layouexpt_qualifier

18 | precision_qualifier | interpolation_qualifier

19 | invariant_qualifier | precise_qualifier)+;

20
21 layout_qualifier: ’layout’ LEFT_PAREN layout_qualifier_id

22 (COMMA layout_qualifier_id)* RIGHT_PAREN;

23
24 layout_qualifier_id: IDENTIFIER | IDENTIFIER ASSIGNMENT_OP

25 constant_expression | ’shared’;

26
27 storage_qualifier

28 : ’const’ | ’in’ | ’out’ | ’uniform’

29 | ’buffer’ | ’shared’;

30
31 precision_qualifier

32 : ’high_precision’

33 | ’medium_precision’

34 | ’low_precision’;

35
36 interpolation_qualifier

37 : ’smooth’

38 | ’flat’

39 | ’noperspective’;

40
41 invariant_qualifier: ’invariant’;

42
43 precise_qualifier: ’precise’;

44
45 integer: DECIMAL | OCTAL | HEX ;
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46
47 float_num: FLOAT_NUM;

48
49 bool_num : ’true’ | ’false’;

50
51 type_specifier: type_specifier_nonarray array_specifier*;

52
53 type_specifier_nonarray

54 : basic_type

55 | IDENTIFIER

56 ;

57
58 array_specifier : LEFT_BRACKET expression? RIGHT_BRACKET;

59 struct_specifier: DOT left_value_exp;

60
61 basic_type

62 : void_type | scala_type | vector_type

63 | matrix_type | opaque_type;

64
65 void_type : ’void’;

66
67 scala_type: SCALA;

68
69 vector_type: VECTOR;

70
71 matrix_type: MATRIX;

72
73 opaque_type

74 : float_opaque_type

75 | int_opaque_type

76 | u_int_opaque_type;

77
78 float_opaque_type: FLOAT_OPAQUE;

79
80 int_opaque_type: INT_OPAQUE;

81
82 u_int_opaque_type: U_INT_OPAQUE;

83
84 expression

85 : primary_expression #primary

86 | expression INCREMENT_OP #postIncrement

87 | INCREMENT_OP expression #preIncrement

88 | ADDSUB_OP expression #sign

89 | UNARY_OP expression #unary

90 | expression MULDIV_OP expression #muldiv

91 | expression ADDSUB_OP expression #addsub

92 | expression SHIFT_OP expression #shift
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93 | expression COMPARE_OP expression #cmp

94 | expression EQUAL_OP expression #eq

95 | expression BITWISE_OP expression #bitwise

96 | expression LOGIC_OP expression #logic

97 | expression QUESTION expression COLON expression #ternary

98 ;

99
100
101 constant_exp: constant_expression;

102
103 basic_type_exp:

104 basic_type LEFT_PAREN (expression (COMMA expression)*)? RIGHT_PAREN;

105
106 type_spec_exp: LEFT_PAREN type_specifier RIGHT_PAREN expression;

107
108 left_value_exp: left_value array_struct_selection?;

109
110
111 primary_expression

112 : constant_exp

113 | basic_type_exp

114 | type_spec_exp

115 | left_value_exp

116 ;

117
118
119 constant_expression

120 : integer

121 | float_num

122 | bool_num

123 ;

124
125 left_value

126 : function_call

127 | LEFT_PAREN expression RIGHT_PAREN

128 | IDENTIFIER

129 ;

130
131 array_struct_selection: (array_specifier | struct_specifier)+;

132
133 assignment_expression: ASSIGNMENT_OP expression;

134
135 arithmetic_assignment_expression: ARITHMETIC_ASSIGNMENT_OP expression;

136
137 function_definition

138 : return_Type function_name LEFT_PAREN

139 (func_decl_member (COMMA func_decl_member)* )?
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140 RIGHT_PAREN LEFT_BRACE

141 statement_list RIGHT_BRACE;

142
143 function_declaration:

144 return_Type function_name LEFT_PAREN

145 (func_decl_member (COMMA func_decl_member)* )? RIGHT_PAREN;

146
147 function_call:

148 function_name LEFT_PAREN (expression (COMMA expression)*)? RIGHT_PAREN;

149
150 return_Type: type_specifier;

151
152 function_name: IDENTIFIER;

153
154 func_decl_member: type_specifier IDENTIFIER;

155
156 statement_list: statement*;

157
158 statement : simple_statement | compoud_statement ;

159
160 simple_statement

161 : function_definition_statement

162 | basic_statement SEMICOLON | selection_statement

163 | switch_statement | case_label

164 | iteration_statement | jump_statement;

165
166 compoud_statement: LEFT_BRACE statement_list RIGHT_BRACE;

167
168 basic_statement

169 : declaration_statement

170 | assignment_statement

171 | expression_statement;

172
173 declaration_statement

174 : struct_declaration

175 | simple_declaration

176 | function_declaration;

177
178 simple_declaration

179 : (type_qualifier? type_specifier simple_declarator

180 (COMMA simple_declarator)*)

181 | type_qualifier ;

182
183 simple_declarator:

184 left_value array_specifier* (assignment_expression)?;

185
186 struct_declaration:
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187 type_qualifier? STRUCT IDENTIFIER

188 LEFT_BRACE (simple_declaration SEMICOLON)+ RIGHT_BRACE;

189
190 function_definition_statement: function_definition;

191
192 assignment_statement:

193 left_value array_struct_selection?

194 (assignment_expression | arithmetic_assignment_expression);

195
196 expression_statement: expression;

197
198 selection_statement:

199 IF LEFT_PAREN expression RIGHT_PAREN

200 selection_rest_statement ;

201
202 selection_rest_statement:

203 statement (ELSE statement)? ;

204
205 switch_statement:

206 SWITCH LEFT_PAREN expression RIGHT_PAREN

207 LEFT_BRACE statement_list RIGHT_BRACE;

208
209 case_label

210 : CASE expression COLON #case

211 | DEFAULT COLON #default;

212
213 iteration_statement

214 : WHILE LEFT_PAREN expression RIGHT_PAREN statement #while

215 | DO statement WHILE

216 LEFT_PAREN expression RIGHT_PAREN SEMICOLON #do

217 | FOR LEFT_PAREN for_init_statement for_cond_statement

218 for_rest_statement RIGHT_PAREN statement #for ;

219
220 for_init_statement

221 : (basic_statement (’,’ basic_statement)*)? SEMICOLON;

222
223 for_cond_statement: expression SEMICOLON;

224
225 for_rest_statement: (basic_statement (’,’ basic_statement)*)? ;

226
227 jump_statement

228 : CONTINUE SEMICOLON #continue

229 | BREAK SEMICOLON #break

230 | RETURN SEMICOLON #return

231 | RETURN expression SEMICOLON #return;

232
233 STRUCT: ’struct’;
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234
235 IF: ’if’;

236 ELSE: ’else’;

237 QUESTION: ’?’;

238
239 FOR: ’for’;

240 DO: ’do’;

241 WHILE: ’while’;

242
243
244 CONTINUE: ’continue’;

245 BREAK: ’break’;

246 RETURN: ’return’;

247
248 SWITCH: ’switch’;

249 CASE: ’case’;

250 DEFAULT: ’default’;

251
252 LEFT_PAREN: ’(’;

253 RIGHT_PAREN: ’)’;

254
255 LEFT_BRACE: ’{’;

256 RIGHT_BRACE: ’}’;

257
258 LEFT_BRACKET: ’[’;

259 RIGHT_BRACKET: ’]’;

260
261 DOT: ’.’;

262 COLON: ’:’;

263 SEMICOLON: ’;’;

264 COMMA: ’,’;

265 SHARP: ’#’;

266
267 DECIMAL: [1-9] DIGIT* INTEGER_SUFFIX?;

268 OCTAL: ’0’ OCTAL_DIGIT* INTEGER_SUFFIX?;

269 HEX: (’0x’ | ’0X’) HEX_DIGIT+ INTEGER_SUFFIX?;

270
271 FLOAT_NUM

272 : DIGIT+ DOT DIGIT* EXPONENT? FLOAT_SUFFIX?

273 | DOT DIGIT+ EXPONENT? FLOAT_SUFFIX?

274 | DIGIT+ EXPONENT FLOAT_SUFFIX?

275 ;

276
277 SCALA

278 : ’bool’

279 | ’int’

280 | ’uint’
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281 | ’float’

282 | ’double’

283 ;

284
285 VECTOR: (’d’|’i’|’b’|’u’)? ’vec’ [2-4];

286
287 MATRIX: ’d’? ’mat’[2-4] (’x’[2-4])?;

288
289 FLOAT_OPAQUE: BASIC_OPAQUE_TYPE |

290 ( ’sampler1DShadow’ | ’sampler2DShadow’ | ’sampler2DRectShadow’

291 | ’sampler1DArrayShadow’ | ’sampler2DArrayShadow’ |

292 ’samplerCubeShadow’ | ’samplerCubeArrayShadow’);

293
294 INT_OPAQUE: ’i’BASIC_OPAQUE_TYPE;

295
296 U_INT_OPAQUE: ’u’BASIC_OPAQUE_TYPE | ’atomic_uint’;

297
298 BASIC_OPAQUE_TYPE: (’sampler’ | ’image’)

299 (’1D’|’2D’|’3D’|’Cube’|’2DRect’|’1DArray’|

300 ’2DArray’|’Buffer’|’2DMS’|’2DMSArray’|’CubeArray’);

301
302 INCREMENT_OP : ’++’ | ’--’;

303
304 UNARY_OP : ’~’ | ’!’;

305
306 MULDIV_OP : ’*’ | ’/’ | ’%’;

307
308 ADDSUB_OP : ’+’ | ’-’;

309
310 SHIFT_OP : ’<<’ | ’>>’ ;

311
312 COMPARE_OP : ’<’ | ’>’ | ’<=’ | ’>=’;

313
314 EQUAL_OP: ’==’ | ’!=’;

315
316 BITWISE_OP: ’&’ | ’^’ | ’|’;

317
318 LOGIC_OP: ’&&’| ’^^’ | ’||’;

319
320 ASSIGNMENT_OP: ’=’;

321
322 ARITHMETIC_ASSIGNMENT_OP

323 : MULDIV_OP ASSIGNMENT_OP

324 | ADDSUB_OP ASSIGNMENT_OP

325 | SHIFT_OP ASSIGNMENT_OP

326 | BITWISE_OP ASSIGNMENT_OP

327 ;
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328
329 fragment

330 DIGIT: [0-9];

331
332 fragment

333 HEX_DIGIT : [0-9]| [a-f] | [A-F] ;

334
335 fragment

336 OCTAL_DIGIT : [0-7];

337
338 fragment

339 INTEGER_SUFFIX: ’u’ | ’U’;

340
341 fragment

342 EXPONENT : (’e’|’E’) ADDSUB_OP? (’0’..’9’)+ ;

343
344 fragment

345 FLOAT_SUFFIX: ’f’ | ’F’ | ’lf’ | ’LF’;

346
347 fragment

348 LETTER

349 : [a-z]

350 | [A-Z]

351 | ’_’;

352
353 IDENTIFIER

354 : LETTER (LETTER|DIGIT)*;

355
356 COMMENT :

357 ’/*’ .*? ’*/’ -> channel(HIDDEN);

358
359 WS :

360 [ \r\t\u000C\n]+ -> channel(HIDDEN);

361
362 LINE_COMMENT

363 : ’//’ ~[\r\n]* ’\r’? ’\n’ -> channel(HIDDEN);
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