
POLYTECHNIC UNIVERSITY OF CATALONIA (UPC) -
BARCELONATECH

MASTER THESIS

A machine learning approach to stock
screening with fundamental analysis

Author:
Pol ÁLVAREZ VECINO

Supervisor:
Prof. Argimiro A. ARRATIA

QUESADA

A thesis submitted in fulfillment of the requirements
for the degree of Master in Innovation and Research in Informatics

in the

Barcelona School of Informatics (FIB)

April 15, 2019

https://www.upc.edu
https://www.upc.edu
https://www.fib.upc.edu/

iii

Declaration of Authorship
I, Pol ÁLVAREZ VECINO, declare that this thesis titled, “A machine learning ap-
proach to stock screening with fundamental analysis” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“A process cannot be understood by stopping it. Understanding must move with the flow of
the process, must join it and flow with it.”

Frank Herbert

vii

POLYTECHNIC UNIVERSITY OF CATALONIA (UPC) - BARCELONATECH

Abstract
Barcelona School of Informatics (FIB)

Master in Innovation and Research in Informatics

A machine learning approach to stock screening with fundamental analysis

by Pol ÁLVAREZ VECINO

We present HPC.FASSR , a High-Performance Computation Fundamental Analy-
sis Stock Screening and Ranking system built on PyCOMPSs, to compare the per-
formance of various supervised learning algorithms like neural networks, random
forests, support vectors machines, or AdaBoost, and the criteria of famous expert
trader Benjamin Graham for selecting stocks based on fundamental factors. We per-
form three experiments using financial data from companies of the S&P 500 Index.
First, we compare Graham’s criteria with classification models in a stock screening
scenario trading only long positions. Second, we examine the performance of re-
gression against classification models, also in stock screening but allowing short po-
sitions. Finally, we use the predictions of the regression models to perform stock
ranking instead of just stock screening. The results show that finding the right
parametrizations for the models is critical to get the highest returns, but this requires
significant amount of computing resources. Without the proper configuration, some
models do not outperform the index, as Graham consistently does, or even manage
to get into debt in scenarios where shorting is allowed. On the other, most models
outperform both Graham’s criteria and the index and the best configurations mul-
tiply the initial investment tenfold in stock screening, and almost by 200 in stock
ranking. The parallelization of HPC.FASSR with PyCOMPSs allows us to explore
a vast number of configurations in a short time. We evaluate its performance in
MareNostrum 4, the main supercomputer in the Barcelona Supercomputing Center,
running with up to 1500 CPUs and training more than 50K models.

HTTPS://WWW.UPC.EDU
https://www.fib.upc.edu/

ix

Acknowledgements
I wish to express my sincere thanks to Argimiro Arratia, supervisor of this project,
for giving me the freedom to explore as I pleased while always finding the correct
piece of advice to set me back into the right track when I went astray, and putting
up with my spontaneous periods of disconnection.

Besides my advisor, I would like to thank Prof. Rosa Maria Badia Sala for sup-
porting my work on this project and trusting my criteria.

I take this opportunity to express also gratitude to all of the Workflows and Dis-
tributed Computing members for their help and support, specially Ramon Amela
and Sergio Rodríguez whose work on the scheduler and the python bindings has
been crucial for the awesome results of the scalability tests.

Finally, I also want to express my gratitude towards my parents, Andreu Alvarez
and Carmen Vecino, and friends, Jordi Molina and Quim Romero, who suffered my
occasional rants and encouraged me enough to cross the finishing line.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Document Structure . 2
1.3 Contributions . 2

2 Related Work 3

3 Methodology 5
3.1 Data sources . 5
3.2 Data preprocessing . 6

3.2.1 Features . 6
3.2.2 Targets . 8

3.3 Forecasting models . 8
3.3.1 Graham . 9
3.3.2 Support Vector Machines . 9
3.3.3 Neural Networks . 9
3.3.4 Random Forests . 9
3.3.5 AdaBoost . 9

3.4 Experimental set-up and evaluation . 9
3.4.1 Transaction fees . 10
3.4.2 Selection function . 10
3.4.3 Trading strategies . 11

4 Parallelization 13
4.1 PyCOMPSs overview . 13

4.1.1 Programming model . 13
4.1.2 Runtime . 13
4.1.3 Tools . 14

4.2 Hardware . 15
4.3 Implementation . 16
4.4 Checkpointing . 17
4.5 Evaluation . 17

5 Results and Discussion 19
5.1 Execution performance . 19

5.1.1 Strong scaling . 19
5.1.2 Weak scaling . 20
5.1.3 Models . 20

xii

5.2 Trading performance . 27
5.2.1 Experiment 1 . 28
5.2.2 Experiment 2 . 33
5.2.3 Experiment 3 . 34

6 Conclusions 39

7 Further Work 41

A Parametrizations 43
A.1 SVM . 43
A.2 Random Forest . 43
A.3 Neural network . 43
A.4 AdaBoost . 44

B Trading strategies pseudocode 45

Bibliography 49

xiii

List of Figures

3.1 Overview of the different modules, stages, data, and parameters of
the proposed stock evaluation framework. 6

3.2 Overview of the different data pipelines for classification and regres-
sion. 8

3.3 Example of a single iteration of the trading evaluation. This process is re-
peated for each trading session. The final portfolio and available money are
the input for the next trading session. 10

3.4 Interactive Brokers fixed rate fees. Applied to each transaction during
the paper trading evaluation of the models. 11

4.1 PyCOMPSs application example that squares each number in [0, 10)
and then computes the mean. 14

4.2 Tracefile of the sample application from Figure 4.1. 15
4.3 Task dependencies graph of the sample application from Figure 4.1. 15
4.4 Task dependencies graphs for the versions where all the symbols are pro-

cessed in a single task (left) and the one where each symbol is processed in
a different task (right). 16

5.1 Execution times (left) and speedup (right) of the strong scaling exper-
iments evaluating 2000 configurations trading yearly from 2009 to 2018. 19

5.2 Tracefiles of the strong scalability tests reported in Figure 5.1 from 1 node
(top) to 32 nodes (bottom). Please note that each tracefile has a different
time axis (roughly halving for each execution from top to bottom). Red tasks
evaluate parallel models with 12 CPUs, green and yellow tasks evaluate the
regression and classification models, with a single CPU, respectively. 21

5.3 Execution times (left) and speedup (right) of the weak scaling experi-
ments evaluating 50, 150, 350, 750, 1550, and 3150 configurations with
1, 2, 4, 8, 16, and 32 nodes respectively trading yearly from 2009 to 2018. 22

5.4 Tracefiles of the weak scalability tests reported in Figure 5.3 from 1 node
(top) to 32 nodes (bottom). Please note that all tracefiles have the same time
axis. Red tasks evaluate parallel models with 24 CPUs, green and yellow
tasks evaluate the regression and classification models, with a single CPU,
respectively. 23

5.5 Boxplot of the execution time of neural networks for different sizes of the
hidden layer. 24

5.6 Boxplot of the execution time of neural networks for different activation
functions. 24

5.7 Boxplot of the execution time of neural networks for different solvers. 25
5.8 Boxplot of the execution time of random forests for different number of trees. 25
5.9 Boxplot of the execution time of AdaBoost for different number of estimators. 25
5.10 Boxplot of the execution time of SVMs for different values of γ. 26
5.11 Boxplot of the execution time of SVMs for different values of C. 26

xiv

5.12 Boxplot of the first experiment’s total revenue for different parametrizations
grouped by model. 28

5.13 Boxplot of the first experiment’s total revenue for normal scaling or z-scores. 29
5.14 Boxplot of the first experiment’s total revenue for different thresholds. 29
5.15 Boxplot of the first experiment’s total revenue when taking either one or two

previous years as training data. 29
5.16 Boxplot of the first experiment’s total revenue when trading every semester

and year. Trading every six months yields far better results than yearly. . . . 30
5.17 Boxplot of the first experiment’s total revenue for trading strategies: sell_all

and avoid_fees. 30
5.18 Boxplot of the first experiment’s total revenue for different number of esti-

mators for AdaBoost model. 31
5.19 Boxplot of the first experiment’s total revenue when training the neural net-

work with different solvers. 31
5.20 Boxplot of the first experiment’s total revenue for different hidden layer sizes

of the neural network. 32
5.21 Boxplot of the first experiment’s total revenue for different activation func-

tions of the neural network. 32
5.22 Boxplot of the first experiment’s total revenue for different numbers of trees

in each random forest. 33
5.23 Boxplot of the first experiment’s total revenue for different kernel coefficients

gamma when using SVMs with RBF kernel. Auto gamma value defaults to
1/n f eatures, in our example 1/20 = 0.5. 33

5.24 Boxplot of the first experiment’s total revenue for penalty values C for the
SVM model. 34

5.25 Boxplot of the second experiment with the total revenue of different parametriza-
tions grouped by model. 34

5.26 Evolution of the net revenue (after selling positions) for the second experi-
ment by the best regressors and classifiers. 35

5.27 Boxplot of the third experiment with the total revenue obtained by each
model. 36

5.28 Boxplot of the third experiment total revenues grouped by different portfolio
sizes. 37

5.29 Net revenues of the third experiment’s best and worst models. 37

B.1 Pseudocode showing how the positions are updated with the avoid
fees strategy each trading session given the available amount of money,
the old positions, a set of recommendations, and a desired portfolio
size. 46

B.2 Pseudocode showing how the positions are updated with the buy/sell
all strategy each trading session given the available amount of money,
the old positions, a set of recommendations, and a desired portfolio
size. 47

xv

List of Tables

5.1 Mean and standard deviation of the time required to evaluate each
model throughout all three trading performance experiments 5.2 or-
dered from fastest to slowest. Random forests training is multithreaded
(n_jobs = 12 CPUs) while all others models use a single CPU. 22

5.2 Mean and standard deviation of the size of each model after serializa-
tion and compression, with pickle and gzip respectively, throughout
all the trading performance experiments. 27

5.3 Best and worst configurations of each model for experiment 3 using
one year of training data. An infinity value as top/bottom thresh-
old means that long/short positions are deactivated respectively. The
revenue is in USD. 38

xvii

List of Abbreviations

AI Artificial Intelligence
API Application Programming Interface
BVPS Book Value Per Share
EBIT Earnings Before Interest and Taxes
EPS Earnings Per Share
IB Interactive Brokers
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
MN4 MareNostrum 4
ML Machine Learning
OSS Open-Source Software
P/E Price to Earnings ratio
P/B Price to Book ratio
RBF Radial Basis Function
ReLU Rectified Linear Unit
ROA Return On Assets
ROC Return On Capital
ROE Return On Equity
ROIC Return On Invested Capital
SIC Standard Industrial Classification
S&P 500 Standard and Poor 500 index
SVM Support Vector Machines
TANH Hyperbolic TANgent
USD United States Dollar
WNSO Weighted average Number of Shares Outstanding

1

Chapter 1

Introduction

1.1 Motivation

Machine learning has seen a steady increase in industrial application in recent years.
The amount of useful information in many knowledge work disciplines is too large
to be analyzed without ML models or similar techniques. However, currently used
ML techniques are part of the so-called weak artificial intelligence (weak AI) or nar-
row AI. Weak AI techniques are focused on solving a very narrow task, so they do
not generalize well. This kind of AI models need to be specially tailored to the spe-
cific task they try to solve. Stock price prediction is no exception. The financial gains
promised by improving existing methods have led to a high number of scientific pa-
pers applying ML techniques to stock market forecasting and automating financial
decision making in general [11] [21] [5]. However, each paper proposes a differ-
ent set of features, targets, and evaluation methods, so its difficult to compare their
results.

Explanatory variables for financial prediction are often drawn from technical and
fundamental analysis, two disciplines of quantitative analysis which require a solid
base knowledge and significant experience in order to draw accurate conclusions.
On these types of information, rely most criteria of expert traders. In this project, we
offer a comparison between the criteria of the great Benjamin Graham, the father of
fundamental analysis investment methodology, and the most common ML models.
In order to address the issue of finding the best configuration for the model, we
need a system capable of evaluating a massive number of models and be extensible
enough to try different techniques and approaches.

We propose HPC.FASSR , a High-Performance Computing Fundamental Analy-
sis Stock Screening and Ranking system, powered by PyCOMPSs, to compare the
performance of various supervised learning algorithms like neural networks, ran-
dom forests, support vectors machines, or AdaBoost, and well-known human expert
trader’s criteria for selecting stocks based on fundamental factors. The paralleliza-
tion of HPC.FASSR with PyCOMPSs allows us to explore a vast number of configu-
rations in a short time.

The project objectives are:

1. Compare stock screening results using human expert’s rules against machine
learning models.

2. Compare the performance, in terms of revenue, when considering the task of
stock screening either as a regression or classification problem.

3. Determine if using regression information to do stock ranking yields better
revenues results than stock screening for trading.

2 Chapter 1. Introduction

4. Develop a High-Performance Computing system able to explore a significant
number of models and datasets.

5. Use the HPC system to test the contribution to performance (in results and
computational resources) of different configurations for the models, data sets
and trading.

1.2 Document Structure

The rest of the thesis is structured as follows. Chapter 2 discusses some related
work. Chapter 3 describes the data sources and preprocessing, the models explored,
and the experimental setup and evaluation. Chapter 4 contains a short overview of
PyCOMPSs parallelization framework, how it has been used to distribute the exe-
cution of HPC.FASSR , and which performance tests have been executed to evaluate
it. Chapter 5 presents and discusses the results of the performance and trading ex-
periments. Chapter 6 contains the conclusions and, in Chapter 7, we point out some
research lines and possible features for further work on HPC.FASSR .

1.3 Contributions

Part of the work in this thesis has been accepted for presentation at the International
Conference on Computational Finance (ICCF 2019) A Coruña (Spain), July, 8-12th,
2019. http://iccf2019.udc.es

http://iccf2019.udc.es

3

Chapter 2

Related Work

Much effort has been put into trying to reject the Efficient Market Hypothesis (EMH)
because, if true, it would mean that using machine learning models to gain an ad-
vantage in stock markets is not possible. However, initial models used for predic-
tion were simple linear statistical models [24], and many relied on expert’s criteria
to guide the model construction. With the increase in computing power more so-
phisticated models became practical and trainable in relatively short times. Recent
works like [11] apply state-of-the-art time series forecasting models to successfully
predict future prices as well as using the model’s criteria to gain further insight into
the best/worst investments. However, the most often used traditional time series
forecasting models do not include any kind of macroeconomic information [32].

It has become more a trend in this new millennium to combine historical prices
and financial indicators (exogenous variables) to predict stock prices and make au-
tomatic financial decisions. As in [28], where a multifactor model is built using the
correlation between performance and financial health for stock ranking; or in [2],
where the authors take advantage of the interpretability of decision trees to build
a forecasting model based on technical and fundamental financial indicators and
analyze the importance of each financial factor.

However, explainable tree-based methods are being superseded by new and im-
proved deep learning models. Krauss et al. [21] compare the performance of deep
neural networks, gradient-boosted trees, and random forests to perform statistical
arbitrage on the S&P 500. Their results are promising and challenge the semi-strong
form of market efficiency. Moreover, they find that pooling together all models’ re-
sults in an equal-weighted ensemble produces the best returns.

Aside from research, there are websites such as Quantopian [27] which offer
the possibility of coding, evaluating, and generally conducting algorithmic finance
research online. These platforms usually provide easy interfaces, such as Jupyter
notebook [20], so that users can avoid all the hassle of downloading and curating
the data, as well as setting up all the training and paper trading evaluation. In ex-
change, many of them offer some kind of agreement so that they can take profit out
of the best algorithms designed. However, these platforms offer limited computing
resources (often allowing only to evaluate a single model each time), and they can-
not be modified if some desired feature is missing. Moreover, they tend to offer the
data only inside their platform, so usually, it is not even possible to reproduce the
results obtained.

5

Chapter 3

Methodology

This chapter describes the system designed to conduct the experiments, the data
sources and preprocessing used, the models trained, and how they are evaluated in
terms of economic performance. The description of the parallelization is in Chap-
ter 4. All HPC.FASSR code is available at Github 1

The whole project was developed in Python [13] because, thanks to being inter-
preted, allows fast prototyping, it is one of the most used languages for ML, and
has a large number of great OSS libraries. This project relies mostly on Pandas [25],
Numpy [30], and Scikit-learn [26] libraries.

The HPC.FASSR system involves the integration of many techniques required to
explore different models, parametrizations, and datasets. Such a system has to deal
with many different tasks, ranging from the low-level ones such as downloading
the data programmatically via API, to higher level ones like simulating a trading
environment, passing through parallelization requirements. To isolate responsibili-
ties, the code has been divided into four main python modules: data_manager, train-
ing, models, and trading. Figure 3.1 shows which part of the execution pipeline han-
dles each module and which are its parameters. The data_manager is responsible for
downloading the data from Intrinio and merge it into the desired dataset. The mod-
els and parametrizations to be trained are defined in the models module. The training
module uses the data and models provided by the data_manager and models modules
and trains them. Finally, the trading module evaluates the models using their predic-
tions to invest in a paper trading environment. The set of all parameters used in a
model execution will be called a configuration. A configuration is the triplet 〈Pd, Pt, Pe〉,
where Pd are the parameters used to create the dataset; Pt are the parameters used
for training (the model, its arguments, and the amount of training data); and Pe are
the trading evaluation parameters like the trading frequency or the target metric to
be used.

3.1 Data sources

For this study, we used data from the S&P 500 index. The S&P 500 is an American
stock market index formed by the 500 leading companies of the U.S. stock market.
Our selection does not include old S&P500 constituents so the results may suffer
from survivorship bias. However, as all models are tested with the same dataset, the
comparisons among them are valid.

The data was provided by Intrinio platform. Intrinio offers many Data Feeds
which can be accessed via web API or bulk download. We used the web API of
the US Company Fundamentals feed for the fundamental data, and the US Stock

1http://github.com/kafkasl/hpc.fassr

6 Chapter 3. Methodology

FIGURE 3.1: Overview of the different modules, stages, data, and pa-
rameters of the proposed stock evaluation framework.

Prices feed for daily shares’ price. Thanks to the web API HPC.FASSR downloads
automatically the data required for the desired training.

For the fundamental data, HPC.FASSR downloads from Intrinio the income state-
ment, balance sheet, and cash flow statement for each quarter and stock. The three
documents are merged and their dates adjusted to create a dataset where each row
represents the financial information of a company on a given date. For the historical
prices, we build a hashmap where the key (s, d) contains the price of the stock s the
date d.

3.2 Data preprocessing

3.2.1 Features

From the fundamentals dataset we compute the following indicators to be used by
the learning models and the human expert (further details of these indicators can be
found in [4, Ch. 6.2]):

• EPS = NI−DivP
WNSO

• EPS growth = Current year EPS
Previous year EPS

• BVPS = Assets−Liabilities
WNSO

• Price to Earnings = P
EPS

• Price to Book = P
BVPS

• Price to Revenue = P
R

• Dividends to price = DivP
P

• Dividend payout ratio = DivP
NI

• ROE = NI
Shareholder’s equity

3.2. Data preprocessing 7

• ROIC = NI+ (after-tax interest)
Invested Capital

• ROA = NI+ (after-tax interest)
Total assets

• Asset turnover = Sales
Total assets at start of year

• Inventory turnover = Costs of assets sold
Inventory at start of year

• Profit margin = NI
Sales

• Debt ratio = Total liabilities
Total assets

• Times-interest-earned ratio = EBIT
Interest payments

• Revenue = Operating revenue

• Working capital = Current assets−Current liabilities

• Working capital to assets = Current assets−Current liabilities
Current assets

• Current ratio = Current assets
Current liabilities

where,

NI = net income,
DivP = total amount of dividends

WNSO = weighted average number of shares outstanding
EBIT = earnings before interest and taxes

P = share price
R = revenue

If the financial statements of a company in a given quarter lack any field required
to compute a fundamental indicator, the company is removed from that quarter data.
This results in an average of 190 companies per period. Since financial statements
are available every quarter, one ends up with a small number of yearly training
samples. To mitigate this problem, we applied oversampling as follows. Most of the
indicators relate fundamental data with the stock price, the latter being available on
a daily period. Hence, to generate new samples for a given date, we compute the
indicator using the previous quarter’s fundamental data adjusted to the stock price
of the given date. For example, for the price to book value indicator, we would divide
the current stock price by the book value of the previous quarter. For the indicators
which are not related to stock price (e.g., revenue) we use the latest available value.

We considered two scaling methods: standard scaling and z-scores. When apply-
ing the standard scaling, we scale together all the data that will be used for training
a model on a given period (i.e., one/two years of data). For the z-scores, we scale
the data of each day separately. The idea behind our z-scores, is to normalize the in-
dicators with respect to the mean and standard deviation of stocks within the same
industry group, given by the first three digits of their Standard Industrial Classifica-
tion (SIC) code, because they may have different trends.

8 Chapter 3. Methodology

3.2.2 Targets

For regression, we used the simple return, i.e., yi,s =
ri,s

ri−1,s
, where ri,s is the return

of stock s for trading session i. For classification, we categorized the returns into
long, neutral, short. The thresholds were chosen using backtesting from the ranges
[−0.03, 0] and [0, 0.03] with steps of 0.005 for the top and bottom thresholds respec-
tively. Stocks with a return higher than the top threshold are labeled as long, stocks
with a return under the bottom threshold are labeled as short, the rest as neutral.

When we compare the regression and classification, we use the same thresholds
to create the classification training data, and the ones used in regression to convert
predictions into positions. Figure 3.2 shows the two spots at which these thresholds
are applied for each model.

FIGURE 3.2: Overview of the different data pipelines for classification
and regression.

3.3 Forecasting models

We used scikit-learn [26] implementations of the most popular machine learning pre-
dictors in literature: Neural Networks, Support Vector Machines, Random Forests,
and AdaBoost.

The system is designed to work with models that follow scikit-learn model’s
API [9] so users can integrate their custom models by just implementing sklearn’s
interface. Moreover, the system supports models that can run in more than one
CPU (intra-node parallelism). Using the standard scikit-learn n_jobs=number_cpus
parameter and PyCOMPSs @constraint(ComputingUnits=number_cpus) decorator, a

3.4. Experimental set-up and evaluation 9

model can be trained with any desired number of CPUs. This highly increases the
performance of embarrassingly parallel models like random forests.

3.3.1 Graham

The expert criteria that we programmed as a rule-based decision algorithm, and that
is to compete against the above classifiers, is that of famous value investor Benjamin
Graham. His rules for selecting value stocks, updated for inflation to present time,
are the following (see [4, S. 6.2] for details): the company should have at least USD
1.5B in revenues; 2-to-1 assets to liability ratio; positive earnings in each of the past
ten years; uninterrupted payment of dividends; a 3% of annual average growth in
earnings; moderate P/E and P/B ratios.

3.3.2 Support Vector Machines

For SVM, we used the RBF kernel for all tests. For the parameter, we explored the
C ∈ [2−5, 215] and γ ∈ [2−15, 23] multiplying both of them by 22 each step.

3.3.3 Neural Networks

For the neural networks, we used the basic Multilayer Perceptron (MLP) with a sin-
gle hidden layer. We evaluate the following hidden layer sizes [15, 50, 100, 500, 1000],
the solvers Adam [19] and LBFGS [23], and the activation functions hyperbolic tangent
and ReLU.

3.3.4 Random Forests

For random forests, we vary the different number of trees in the ensemble. The
sklearn version has a parameter n_jobs which controls how many threads the algo-
rithm can use to run in parallel in a single node. We set this value to 12 CPUs, which
one-quarter of a node in MN4, because it reported the best total times empirically.

3.3.5 AdaBoost

For AdaBoost [14], we also vary the number of estimators in the ensemble. Unfortu-
nately, AdaBoost version cannot be trained in parallel.

Further details about parametrizations can be found in Appendix A.

3.4 Experimental set-up and evaluation

We have evaluated the economic performance of all models taking long-short posi-
tions, trading every semester and year, using different scaling methods and models,
different amounts of training data, and with different trading strategies.

The economic performance is evaluated by the trading module. The trading mod-
ule simulates a backtesting paper trading environment for a given time interval.

We start by dividing the trading time interval into n trading sessions. Figure 3.3
shows the execution flow of a single trading session. The portfolio data structure and
handling that stores the positions and available money of each session for posterior
analysis is not shown for clarity’s sake.

10 Chapter 3. Methodology

FIGURE 3.3: Example of a single iteration of the trading evaluation.
This process is repeated for each trading session. The final portfolio

and available money are the input for the next trading session.

For each trading session, we apply the model to the input data to obtain the next
period predictions. Depending on the type of model we get different information.
For the categorical models, we get if we should short or long the stock, or remain
neutral. For the regression models, we get the expected simple return.

Next, we apply a selection function (see 3.4.2) to convert the predictions into rec-
ommendations.

The last step is to create a new portfolio using a trading strategy (see 3.4.3). The
trading strategy takes as input the long-short recommendations, the previous port-
folio, and the available money to decide which old positions should be closed and
which new ones should be bought.

After evaluating all models, we choose the best one according to the desired tar-
get metric. Some examples of target metrics are the total profits, the average invested
money, or a combination of them with the execution time (if we want a trade-off
between accuracy and performance).

3.4.1 Transaction fees

Our goal is to create an automatic trading system that does not rely on humans, so
we decided to use the fixed rate pricing of Interactive Brokers [16]’s (IB) python API
which can be integrated with this project with minimal work. Figure 3.4 shows how
the IB fees are computed given the number of shares and its price. Essentially, the
fees are $ 0.005 per share, with a minimum of $ 1 and a maximum of 1% of the trade
volume. IB does not allow to buy fractions, so all the trading is done buying only
whole shares. Buying shares by units creates a residue of money. This remainder is
used differently depending on the trading strategy.

3.4.2 Selection function

The selection function is used to convert the model’s predictions into desired posi-
tions. We introduced this function because depending on the model (regression or
classification) and the task type (ranking or screening) the input and desired output
are different. Moreover, we wanted to provide the flexibility of applying different
policies to the model’s predictions (like going long for all positive stocks for stock
ranking or just the best k).

For example, when are performing stock screening, the regressors’ predictions
are converted into a long positions if the expected returns are higher than the top
threshold, to a short positions if the returns are lower than the bottom threshold,
and the rest are discarded. For classifiers, the predictions are already the desired
positions, and we only have to discard the neutral ones.

3.4. Experimental set-up and evaluation 11

Fees(s, p) =

1, if f ∗ s < 1
0.01 ∗ (s ∗ p) if f ∗ s > maxFees
f ∗ s, otherwise

where,
s = number of shares,
p = price per share,
f = fee per share in USD = 0.005

maxFees = max fees per transaction in USD = 0.01 ∗ (s ∗ p)
minFees = min fees per transaction in USD = 1

FIGURE 3.4: Interactive Brokers fixed rate fees. Applied to each trans-
action during the paper trading evaluation of the models.

However, when we are performing stock ranking, the selection function is respon-
sible for ranking the stocks by their expected returns, and converting the top k stocks
into long positions, the bottom k to short positions and discard rest.

3.4.3 Trading strategies

We designed different strategies to be used on paper trading. All strategies start
with USD 100K. The difference between the strategies is how they choose the new
positions of the portfolio, given the positions of the previous portfolio, the available
money, and the recommendations. Appendix B contains the pseudocode of both
trading strategies.

Avoid fees
This strategy is focused on having a portfolio of 20 stocks (which is between the

10 and 30 as suggested by Graham [15]) while trying to minimize the fees paid.
To start - or when the last portfolio is empty - the available money is used to

buy 20 stocks (dividing the capital equally among the chosen stocks). If the models
recommend less than twenty stocks, the remainder is not spent, it is kept for the next
trading session.

For trading sessions when the last portfolio is not empty, the strategy is as fol-
lows. If a stock recommended by the model is already present in the portfolio, the
position is maintained (thus avoiding any transaction and fee). The rest of the posi-
tions are sold. The money obtained from selling the positions is used to buy stocks
(from the recommended ones) up to a maximum of 20 for stock screening and to 2 ∗ k
for stock ranking. Again, if there are not enough recommendations to buy up to the
maximum, the remainder is kept for the next session. If all the portfolio’s positions
are among the recommended ones, there are no transactions.

If at any step, the available money is not enough to open some position, then it
is stashed for future sessions.

Buy-Sell all
The previous avoid fees strategy can hide many performance details (e.g., if the

initial 20 stocks are always recommended, all the other predictions will be ignored).
This strategy tries to address that possible issue by selling and buying all the recom-
mendations on each trading session. The strategy will incur in higher fees, but the

12 Chapter 3. Methodology

relation between the recommendations and the actual positions is clear: all recom-
mendations always become positions (if there is enough money available).

This will ease the performance analysis of the models. For example, if a model
tends to overestimate returns, this will result in a high number of open positions.

13

Chapter 4

Parallelization

4.1 PyCOMPSs overview

PyCOMPSs [10] is a framework aimed to ease the development of parallel and dis-
tributed Python applications. The primary purpose is to abstract users from both in-
frastructure management and data handling. PyCOMPSs is composed of two main
parts: the programming model and the runtime. The programming model provides
a set of simple annotations to indicate which functions can be run in parallel. The
runtime handles the data dependencies between the tasks and distributes the com-
putation among the available resources.

PyCOMPSs code is portable because it is infrastructure unaware and it can be run
in a wide number of platforms, such as clouds and grids while providing a uniform
interface for the user.

4.1.1 Programming model

PyCOMPSs offers a sequential programming model to specify the parts of the code
that can be run in parallel. This differs from other models and paradigms that re-
quire the developer to have a deep knowledge of the hardware executing the code
such as MPI interfaces or OpenMP pragmas.

To indicate which parts of the code execution can be distributed, PyCOMPSs
takes advantage of the python function decorators [12]. The basic PyCOMPSs deco-
rator is @task() and it states that a given function should be treated as a task.

Tasks are run distributed, and their parameters need to be instrumented to trans-
fer them between the nodes. All the inputs and outputs of tasks are placeholders to
allow them to run asynchronously while the main code continues to be executed.
When the value of some return is needed, we need to synchronize it to the master
using the API call compss_wait_on.

Figure 4.1 shows an example application that computes the sum of the squares of
the numbers in the list [0, 10]. The multiply function is decorated as a task and all of
them are thus run distributed. The output of these tasks is then passed to the mean
function which computes the average. Finally, we synchronize the value and print
it.

4.1.2 Runtime

The PyCOMPSs framework is mostly a set of bindings to interact with the Java run-
time. The runtime has two primary responsibilities: analyzing tasks’ dependencies
and scheduling them, and resources and data management.

To execute in distributed the functions decorated as tasks, the runtime needs to
compute the data dependencies between them. That information is then used to

14 Chapter 4. Parallelization

from pycompss.api.task import task
from pycompss.api.api import compss_wait_on

@task(returns=int)
def multiply(num1, num2):

return num1 * num2

@task(returns=float)
def mean(*numbers):

return sum(numbers) / len(numbers)

s = [multiply(i, i)) for i in range(10)]
avg = compss_wait_on(mean(*s))
print(avg)

FIGURE 4.1: PyCOMPSs application example that squares each num-
ber in [0, 10) and then computes the mean.

build a task dependencies graph which determines the order of the execution (e.g.,
if a task A generates the input of a task B, then B cannot be run until A is finished).
Once tasks are free of dependencies in the graph, they are scheduled to be executed
in some of the available computing resources.

Concerning resources management, the runtime follows a master-worker paradigm.
All available computing resources are represented uniformly as workers. The mas-
ter node is responsible for executing the user code. When it encounters a task, the
task is scheduled (following the dependencies graph) to a given worker, its required
input is transferred, and the results, if any, are gathered and sent back.

Thanks to the pluggable connectors PyCOMPSs code is infrastructure-agnostic
and can be run in a wide number of platforms without requiring any change. These
include clouds, cluster and grid nodes, or docker/singularity containers, using con-
nectors like Slurm [29] or Apache Mesos [3]. Furthermore, PyCOMPSs supports
heterogeneous architectures allowing the user to mix GPUs and FPGAs [1] with tra-
ditional CPU computing resources.

4.1.3 Tools

PyCOMPSs also offers some useful tools for execution analysis: the monitor and
the tracing system. The monitoring offers information about executions such as dia-
grams of data dependencies, resources state details, statistics and easy access to the
framework logs. The tracing system uses Extrae [6] to generate post-mortem execu-
tion trace files. The trace files can be analyzed with the graphical tool Paraver [8].

Figure 4.2 shows an example of a tracefile from Figure 4.1. This view shows
only the executed tasks. Each horizontal bar represents a thread of the application.
It is worth noting, that despite being called threads, each line corresponds to an in-
dependent python process, and that there are as many python processes as CPUs.
The threads are named Thread x.y.z where x is the application the thread belongs to,
the y is the node, and the z is the thread number in the node. In this example, we
have two nodes 1.1 and 1.2. The first three threads (1.1.1 - 1.1.3) correspond to the
master node. The other five threads belong to a single worker with four computing

4.2. Hardware 15

FIGURE 4.2: Tracefile of the sample application from Figure 4.1.

FIGURE 4.3: Task dependencies graph of the sample application from
Figure 4.1.

units (1.2.2 - 1.2.5). The first thread of each worker (1.2.1) is used to show data trans-
fers and other worker internal events. Both the master node and the worker’s main
thread are empty because they do not execute any task directly.

Figure 4.3 shows the data dependencies graph of the sample application from
Figure 4.1. The input arrows mark the data dependencies between tasks. All the
multiply tasks can be run in parallel as they only depend on their input parameter.
The mean task depends on all the objects of the list.

4.2 Hardware

To test the parallelization efficiency, we run the experiments of the project in the
MareNostrum 4 supercomputer [7].

MareNostrum 4 has 3456 computing nodes housing a total of 165.888 cores, 390
Terabytes of main memory, and a peak performance of 11.15 Petaflops. Each node
contains:

• 2 Intel Xeon Platinum 8160 CPU with 24 cores each at 2.10 GHz

• 96 GB of main memory

• 200 GB of local SSD storage.

• L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E adapter

16 Chapter 4. Parallelization

FIGURE 4.4: Task dependencies graphs for the versions where all the
symbols are processed in a single task (left) and the one where each

symbol is processed in a different task (right).

• 10 Gbit Ethernet

4.3 Implementation

HPC.FASSR should be able to easily explore and train a considerable number of
ML models, parametrizations, and inputs in a relatively short amount of time. To
speed up the computing we distributed the execution of the stages of HPC.FASSR ’s
pipeline (see Figure 3.1) Download Input Data, Data Preprocessing, Model Training, and
Trading. All HPC.FASSR code is available at Github 1

The Download Input Data is parallelized at a very low-level. Downloading all the
data through an API is slow, hitting at times 50K API calls. To overcome that, we do
each API call in a task. Intrinio has a daily API limit. To avoid decrease the number
of requests, all API calls are cached locally to avoid duplicated calls. These cached
results are shared across executions.

For the Data Preprocessing stage, the two tasks get_fundamentals and get_prices
build the fundamentals dataset and the historical prices respectively.

Next, we tried parallelizing the features and target building of each symbol in-
dividually. However, in our tests with the S&P 500, the time of processing the 500
symbols is not large enough to warrant parallelization and all symbols are processed
together in a single process_symbols task. Figure 4.4 shows the data dependencies
graph when processing all symbols together or one in each task.

Finally, the post_process task creates the z-scores if needed, filters some invalid
values, and caches the dataset to disk for reuse.

The Model Training and Trading are grouped into four types of different tasks:

1. run_graham

2. run_classification_model

3. run_regression_model

4. run_parallel_model

1http://github.com/kafkasl/hpc.fassr

4.4. Checkpointing 17

The first task evaluates Graham’s criteria. The second and third tasks evaluate
classification and regression models respectively. We differentiated between regres-
sion and classification models only for visualization purposes. Both are run identi-
cally; only the input data is different. If the target model supports intra-node paral-
lelization, defined by the n_jobs parameter, we execute the fourth task with hardware
constraints equal to number n_jobs. We explored different values for n_jobs and the
best times were obtained setting it to use a quarter of the node: n_jobs = 12 CPUs.

4.4 Checkpointing

We aim to run very large executions so we developed a checkpointing system to
be able to reuse data from a finished execution or another currently running one.
Our aim is twofold: on the one hand, this allows users to reuse data from failed
executions, and, on the other, to reuse data from overlapping configurations across
different executions.

The strategy followed is to cache the intermediate trained models into disk. For
each configuration, the run tasks train as many models as trading sessions exist.
This is the most time-consuming part of the application so every time one of the
tasks finishes training the model of a session, the model is saved to disk. The name
for the file is a hash derived of the configuration that is being evaluated and the
trading session. This naming convention allows other executions to reuse the model
directly if they use the same cache directory. If the cache directory is in a shared file
system, all other executions can reuse it. Otherwise, the models will be only usable
by executions on the same node.

Thanks to this, if an application is stopped during the execution (e.g., canceled
due to time limit by the queuing system in supercomputers), rerunning it will reuse
all the models and continuing where it left off. Also, in executions with overlapping
configurations (e.g., one execution trading each year, the other each semester), each
model will be trained by the first execution and reused by the others. We do not im-
plement any contention policy because the probability of two configurations looking
for the same file simultaneously is negligible in our tests.

The amount of space required to cache big executions is not trivial. In order to
keep it to a minimum, all models are compressed with gzip python package after
being serialized.

4.5 Evaluation

We evaluate the performance of HPC.FASSR under strong and weak scaling condi-
tions. Strong scaling measures how the execution time changes with the number of
CPUs for a fixed problem size. On the other hand, weak scaling measures the execu-
tion for different numbers of CPUs when the problem size is fixed per CPU (i.e., the
total problem size increases with the number of CPUs).

For the strong scaling tests, we use a sample execution of 4000K configurations.
For the weak scaling, we use a ratio of 25

24 configurations/CPU to match our small-
est execution of a single node with 48 CPUs. To keep the workload constant, we
use a base sample of 10 configurations and replicate it to obtain sample sizes in
[50, 150, 350, 750, 1550, 3150].

In both scenarios, we run our tests with 1, 2, 4, 8, 16, and 32 nodes. Each node
has 48 CPUs except when using a single node which uses only 24 CPUs because
half of the node is used by the worker, the other half by the master. MareNostrum

18 Chapter 4. Parallelization

4 supercomputer does not allow outbound internet connections, so the executions
were done using the data cached by the section Download Input Data from Figure 3.1.

For each test, we report the execution time of the python application. The speedup
of a given application a and a base application b is computed as Sa,b = ta

tb
, where

tx = execution time of application x.

19

Chapter 5

Results and Discussion

This section presents the results of evaluating HPC.FASSR . The first section exposes
the execution performance through weak and strong scaling tests, and models’ ex-
ecution time. The second section is composed of three experiments, each with a
different trading scenario, and presents the economic performance of each configu-
ration.

5.1 Execution performance

We evaluate the parallelization performance in both weak and strong scaling scenar-
ios and the executions time and size of the different models.

5.1.1 Strong scaling

Figure 5.1 shows the execution time and speedup of the strong scaling experiments.
The speedup is linear for all the experiments. The superlinear speedup observed
between 2 and 32 nodes stems from the fact that, when using a single node, the
worker has 24 CPUs, when adding a second node, the full node is used (48 CPUs)
so, when scaling from one node to two, you have three times more CPUs despite
only having twice the amount of nodes.

Figure 5.2 shows the tracefiles of the strong scaling experiments. The initial red
tasks are responsible for training the parallel models with 12 CPUs so only four of
them can be run at the same time in a given node, but they use the whole node.
Note that each tracefile has a different time scale, roughly half the time when dou-
bling the resources. In the first tracefile, each thread evaluates around 33 classifi-
cation and regression models. In the last one, each thread evaluates either 1 or 2

FIGURE 5.1: Execution times (left) and speedup (right) of the strong
scaling experiments evaluating 2000 configurations trading yearly

from 2009 to 2018.

20 Chapter 5. Results and Discussion

of each model type. HPC.FASSR ’s performance depends on the number of config-
urations to test and there two situations when increasing the number of resources
does not improve the performance. First, when there are not enough classification
and regression tasks for each thread, because their different times leave some CPUs
idle while longer tasks finish. The second cause happens when the number of clas-
sification tasks (which last twice as much as the regression ones) is slightly higher
than the number of available threads. If there are c classification tasks, n available
threads, and 2 > c > n, then there are going to be 2 ∗ n− c idle threads at the end
of the execution. As the number of resources increases (and total time decreases),
the fraction of the total time that a single evaluation task represents also increases
extending the time wasted by idle threads. Whenever the number of configurations’
number is large enough, HPC.FASSR should scale almost linearly. The weak scaling
tests objective is to validate this thesis.

5.1.2 Weak scaling

Figure 5.3 shows the execution time and speedup of the weak scaling experiments.
The weak scaling speedup is very close to the ideal for all sizes so HPC.FASSR scales
almost linearly when the number of configurations is large enough. The first steeper
increase of the execution time is caused by going from 1 node, where there are no
network communications, to 2 nodes, which have network transmissions that add
overhead. From 2 nodes onwards, the cost of communication between two or more
nodes is very similar so the overhead increases much more slowly. Figure 5.4 shows
tracefiles of of the weak scaling executions. In this situation, we increase the problem
size and the computing power at the same rate. The tracefiles are in the same time
scale. The time until the first task (blue) starts increases slightly with more nodes
due to the overhead of initializing a more significant number of workers. Despite
that, the overhead of doubling the resources between tests is almost negligible. The
ratio of tasks to train per thread is constant so, despite all executions being slightly
unbalanced towards the end, this does not cause any significant performance loss.

5.1.3 Models

Table 5.1 shows the average and the standard deviation of the execution time re-
quired to evaluate each model. The random forests would be the worst models if
they were not trained using 12 CPUs because they would be around x12 slower; we
also tried also using 24 (half node), and 48 CPUs (full node) but empirically 12 CPUs
yielded faster total execution times. It is worth noting that we are able to thanks to
HPC capabilities of MareNostrum which has 48 CPUs per node and 96 GB of RAM,
allowing all tasks to load the training data into memory at the same time and inter-
leave the executions of models with 1 and 24 CPUs. Next, the neural networks are
the slowest on average, but they also have the highest variance (probably because
their parameter, hidden layer size, directly affects the training time). SVMs take on
average similar times to the neural networks but their variance much lower. Finally,
AdaBoost is the fastest method.

The execution times between models vary a lot and these times can be further
increased for larger datasets. Having very slow and fast methods coexisting causes
work unbalance. In our experiments, the unbalance overhead was never too critical.
However, for larger datasets this might become a bottleneck and degrade the scal-
ability. We leave as future work trying a finer task granularity where each training
step is done in different tasks not together in a single one.

5.1. Execution performance 21

FIGURE 5.2: Tracefiles of the strong scalability tests reported in Fig-
ure 5.1 from 1 node (top) to 32 nodes (bottom). Please note that each
tracefile has a different time axis (roughly halving for each execu-
tion from top to bottom). Red tasks evaluate parallel models with
12 CPUs, green and yellow tasks evaluate the regression and classifi-

cation models, with a single CPU, respectively.

22 Chapter 5. Results and Discussion

FIGURE 5.3: Execution times (left) and speedup (right) of the weak
scaling experiments evaluating 50, 150, 350, 750, 1550, and 3150 con-
figurations with 1, 2, 4, 8, 16, and 32 nodes respectively trading yearly

from 2009 to 2018.

Model Execution time (s)
Linear Regression 0.93± 0.12

Random Forest Classification 17.06± 9.51
Random Forest Regression 58.12± 44.02

Graham’s Criteria 37.13± 3.35
AdaBoost Regression 39.87± 16.49

AdaBoost Classification 45.43± 30.13
SVM Classification 89.80± 30.50

NN Regression 91.59± 90.29
SVM Regression 99.25± 11.81

NN Classification 150.01± 115.72

TABLE 5.1: Mean and standard deviation of the time required to eval-
uate each model throughout all three trading performance experi-
ments 5.2 ordered from fastest to slowest. Random forests training
is multithreaded (n_jobs = 12 CPUs) while all others models use a

single CPU.

5.1. Execution performance 23

FIGURE 5.4: Tracefiles of the weak scalability tests reported in Fig-
ure 5.3 from 1 node (top) to 32 nodes (bottom). Please note that all
tracefiles have the same time axis. Red tasks evaluate parallel mod-
els with 24 CPUs, green and yellow tasks evaluate the regression and

classification models, with a single CPU, respectively.

24 Chapter 5. Results and Discussion

FIGURE 5.5: Boxplot of the execution time of neural networks for dif-
ferent sizes of the hidden layer.

FIGURE 5.6: Boxplot of the execution time of neural networks for dif-
ferent activation functions.

Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 show how the execution time varies
with different values of the model’s parameters. The results reported are from the
three trading experiments from section 5.2. For the AdaBoost, random forests, and
neural networks, the number of estimators, trees, and neurons is directly propor-
tional to the model’s execution time. With respect to the solvers, both have similar
average; LBFGS has a lower median but Adam has a smaller IQR. For the network’s
activation function, ReLU function is much faster than hyperbolic tangent and has
less variance. The ReLU is, as of 2017, the most used activation function thanks to
learning much faster in deep networks [22].

For the checkpointing feature, Table 5.2 shows the sizes of each model after being
serialized and compressed. The size of linear regression is the smallest and it is
constant as it only needs to save a small constant number of coefficients and the
intercept. The random forests are the heaviest models, with an average of 48MB per
model, and vary a lot as the number of parameters to save grows linearly with the
number of trees. The next heaviest model is the SVM which has to save all support
vectors that define a model. The neural networks and AdaBoost are much lighter
and have similar averages. They also present significant deviations attributed to the
changes in the number of neurons and estimators.

5.1. Execution performance 25

FIGURE 5.7: Boxplot of the execution time of neural networks for dif-
ferent solvers.

FIGURE 5.8: Boxplot of the execution time of random forests for dif-
ferent number of trees.

FIGURE 5.9: Boxplot of the execution time of AdaBoost for different
number of estimators.

26 Chapter 5. Results and Discussion

FIGURE 5.10: Boxplot of the execution time of SVMs for different val-
ues of γ.

FIGURE 5.11: Boxplot of the execution time of SVMs for different val-
ues of C.

5.2. Trading performance 27

Model Size (KB)
Linear Regression 0.6± 0.0

Random Forest 48, 546.1± 72, 040.7
AdaBoost 37.8± 40.0

SVM 355.6± 192.0
Neural Network 39.0± 60.2

TABLE 5.2: Mean and standard deviation of the size of each model
after serialization and compression, with pickle and gzip respectively,

throughout all the trading performance experiments.

The mean size of all models (without taking into account linear regression which
is only used for reference), is 12KB. The total number of models saved for each con-
figuration is m = t fy ∗ tp, where t fy is the yearly trading frequency (1 if we trade each
year), and tp is the trading period length in years. We save a model for each trading
session per configuration. For the first and third trading experiments, around 170K
models saved, and close to 340K for the second experiment. This means that the av-
erage disk space required to cache experiments 1 and 3 is 20.8GB, and around 42GB
for the second one. These sizes can greatly increase with higher trading frequencies.
The total sizes can be quite large and may this technique may not suitable outside
HPC environments with limited amounts of storage. However, in our experiments,
sacrificing this amount of disk space was preferable to losing all data if the 10 hours
time limit of MareNostrum 4 cancelled a job. Moreover, there are overlapping con-
figurations in the three experiments so the total size is smaller and the overlapping
models are only trained only once.

5.2 Trading performance

We set up three experiments to evaluate the performance of the different models.
The first experiment compares Graham’s criteria and classification models in the
most restricted scenario out of the three experiments: we only allow long positions
because Graham’s criteria can only be used for stock screening. In the second ex-
periment, we allow both long and short positions, and we compare classification
and regression models. In this experiment, we use the regression models as a stock
screening method. In the final experiment, we only evaluate the regression mod-
els. In this setting, we use the models’ predicted returns to build a stock ranking
and pick the best/worst k stocks in each trading session. The classification models
and Graham’s criteria are excluded from the third experiment because neither can
be used to build a ranking.

The threshold value used for long positions ranges from 0 − 0.03 with incre-
ments of 0.005 (i.e., from returns above 0 to returns above 3%). We also evaluate
both the standard scaling dataset and the one using z-scores. Appendix A lists all
parametrizations explored for each model. All models start with an initial budget of
USD 100K. The plots that contain an S&P 500 Index revenue marker or threshold re-
fer to the revenue obtained by investing these initial 100K USD in the index. All the
experiments are evaluated in the trading period ranging from 2009 to 2018. Finally,
unless stated otherwise, all the boxplots contain the total revenue of an investment
without taking into account the fees of selling the positions. On the other hand, the
chronological plots of the revenue, represent the total money available if, at each
trading session, we sell all the current positions.

28 Chapter 5. Results and Discussion

FIGURE 5.12: Boxplot of the first experiment’s total revenue for dif-
ferent parametrizations grouped by model.

5.2.1 Experiment 1

This experiment pitches Graham’s stock screening criteria against the ML models in
stock screening. In this experiment, only long positions are allowed because Graham
criteria cannot be used for shorting.

Figure 5.12 reports the total money obtained from selling all positions (includ-
ing fees) at the end of the trading period. We see that random forest (RF) has the
best mean and median. We explored a large number of parametrizations for SVMs
which is probably the cause of having a more significant deviation (and outliers)
w.r.t other models. Correct parametrizations of SVM lead to the best results despite
having a similar mean to NN. We believe that exploring more network topologies
and parameters, instead of using the basic MLP, could increase the performance.

Figure 5.13 shows the returns when scaling the data with z-scores or normal-
ization. The results are worse when using z-scores. We believe that this is caused
because the set of available stocks at each trading session is not constant. The goal
of the z-scores is to normalize the data intelligently by grouping them by industries.
In this scenario, we use the mean and standard deviation of the group instead of
the ones from the whole training dataset as we do in normalization. However, the
group means and standard deviations can vary wildly from one trading session to
the next one due to the absence or presence of big stocks thus adding noise instead
of information when scaling the data.

Figure 5.14 is the total revenue obtained by different threshold values. If the re-
turn of a sample is greater than the threshold it is labeled as a long position and
neutral otherwise (no shorting allowed in this experiment). The higher the thresh-
old, the higher the number of outliers (the best results). Despite this increase, the
average and median values do not change much.

Figure 5.15 shows the revenue when training the models with last year’s data
or the previous two years. Training with only last year far outperforms using two
years. This indicates that underlying data contains concept drift and that data older
than a year adds noise and decreases accuracy. Moreover, using two years of data
increases notably the training time of the models.

Figure 5.16 shows the returns when trading each semester or each year. Trading
each semester obtains almost a 50% more returns than yearly. Trading each semester

5.2. Trading performance 29

FIGURE 5.13: Boxplot of the first experiment’s total revenue for nor-
mal scaling or z-scores.

FIGURE 5.14: Boxplot of the first experiment’s total revenue for dif-
ferent thresholds.

FIGURE 5.15: Boxplot of the first experiment’s total revenue when
taking either one or two previous years as training data.

30 Chapter 5. Results and Discussion

FIGURE 5.16: Boxplot of the first experiment’s total revenue when
trading every semester and year. Trading every six months yields far

better results than yearly.

FIGURE 5.17: Boxplot of the first experiment’s total revenue for trad-
ing strategies: sell_all and avoid_fees.

incurs into higher fees but predicting the returns of a stock a year ahead is harder
than only a semester. Moreover, we have seen that using a single year to train the
models is better than two due to concept drift. The same problem applies here.

Figure 5.17 shows the revenue obtained by each of the two proposed strategies:
sell_all and avoid_fees. The strategy of trying to avoid fees by holding onto the stocks
already owned whenever they are recommended again seems to work well, getting
half million more of average revenue and close to a 60% more in the best cases.

Figure 5.18 shows that the more estimators used when training the AdaBoost
model, the better results it gets. However, as seen in Figure 5.9 the execution time
increase of AdaBoost increases far faster than the accuracy with respect to the num-
ber of estimators.

Figure 5.19 shows how the choice of solver affects the total revenue obtained
by neural networks. LBFGS performs better than Adam. Our number of training
samples is quite small (around 10K). In these small scenarios is usual that LBFGS
converges faster and performs better.

5.2. Trading performance 31

FIGURE 5.18: Boxplot of the first experiment’s total revenue for dif-
ferent number of estimators for AdaBoost model.

FIGURE 5.19: Boxplot of the first experiment’s total revenue when
training the neural network with different solvers.

32 Chapter 5. Results and Discussion

FIGURE 5.20: Boxplot of the first experiment’s total revenue for dif-
ferent hidden layer sizes of the neural network.

FIGURE 5.21: Boxplot of the first experiment’s total revenue for dif-
ferent activation functions of the neural network.

Figure 5.20 shows how the number of neurons in the hidden layer affects the
revenue obtained. The average return increases up to 500 neurons. For 1000 neurons,
the mean revenue starts to decrease hinting that the optimal number of neurons
must be in [500, 1000). It is worth noting that the higher the number of neurons, the
longer it takes to train the models. However, as we see here, it is worth spending
more computing power examining large sizes because they can indeed improve the
performance.

Figure 5.21 shows the results of using two different activation functions for the
neural network. The ReLU activation has a slightly better mean than the hyperbolic
tangent function but also more variance.

Figure 5.22 shows how the number of trees in the random forest affects the total
revenue obtained. The average revenue slightly decreases with the number of trees.
On the other hand, the lowest variance is obtained with 250 trees, more or less than
that, the variance increases.

Figure 5.23 and 5.24 show how the γ kernel coefficient and the C penalty term

5.2. Trading performance 33

FIGURE 5.22: Boxplot of the first experiment’s total revenue for dif-
ferent numbers of trees in each random forest.

FIGURE 5.23: Boxplot of the first experiment’s total revenue for dif-
ferent kernel coefficients gamma when using SVMs with RBF kernel.
Auto gamma value defaults to 1/n f eatures, in our example 1/20 = 0.5.

of the SVMs affect the performance. For γ, we see that neither the average revenues
nor the variances change much for most models, using the auto value (1

n_features) is
good enough. Concerning C, the optimal value appears to be around 2048.

5.2.2 Experiment 2

This experiment compares regression and classification models in stock screening.
Both types of models use the same threshold values used to label the target in classi-
fication and to label the prediction in regression (see Figure 3.2). The extra informa-
tion of the regressors (predictions can be ordered) is ignored to make the comparison
fair.

Figure 5.25 shows the distribution of the net returns for each model and task
type. Classification models obtain slightly higher best results but with higher vari-
ance. The introduction of short positions allows the worse parametrizations to lose

34 Chapter 5. Results and Discussion

FIGURE 5.24: Boxplot of the first experiment’s total revenue for
penalty values C for the SVM model.

FIGURE 5.25: Boxplot of the second experiment with the total rev-
enue of different parametrizations grouped by model.

money at a higher rate than with long positions, even finishing with debts (the model
can not buy the already opened short positions). Finally, all the models’ mean re-
turns outperform the index and all IQRs, except the SVM regressor’s, are above the
index’s returns.

Figure 5.26 shows the revenue at each session for the best models if all open
positions are sold. The SVMs and random forests obtain the best results in both
categories yielding around USD 1.75 million, outperforming the S&P 500 Index by a
vast margin. The MLP neural network comes close in third place with a total revenue
of around 1.3 million. AdaBoost is the last but still manages to get almost three times
more revenue than investing on the index.

5.2.3 Experiment 3

This experiment evaluates the performance of regression models for stock ranking.
We use the predicted return of the models to rank the stock in each session. When

5.2. Trading performance 35

FIGURE 5.26: Evolution of the net revenue (after selling positions) for
the second experiment by the best regressors and classifiers.

selecting the stocks, only the best/worst k stocks in the ranking are picked. Once
selected, they are traded following one of the two strategies 3.4.3.

Again all models start with 100k. The thresholds used for trading are range from
0− 0.03 with increments of 0.01. The values tested for k are 10, 25, and 50 to build
portfolios of size 20, 50, and 100 respectively.

Figure 5.27 shows the total money achieved by each model at the end of the
trading sessions. Using the regressors for ranking improves the performance of the
models dramatically. Almost all models outperform the index except some that lose
money or get into debt. The best models are far above the average underlining how
important it is to explore a large number of parametrizations to find the best ones.

The bests models are random forests, which can turn the initial 100K into around
USD 17.5 million. It is important to note that medians and averages are quite sim-
ilar to those in Figure 5.12 and Figure 5.25 from previous experiments, but the best
models outperform these averages by order of magnitude. The best models are con-
sistently reported by the random forests models. The best result is 17.6 USD millions
from the initial 100K underlining how important it is to be able to explore as many
configurations as possible to choose the best one.

Figure 5.28 adds to the economic theory on the goodness of diversification that
the ampler the portfolio, the more consistent the revenue growth and the less rele-
vant the sophistication of the model: there is no need to tune parameters to the best
possible for the results are in line with the average model. For the values [10, 25, 50]
of the parameter k, we select that number of best and worst stocks building a port-
folio of 20, 50, and 100 stocks respectively. However, if there are not enough predic-
tions above the thresholds the portfolio size might be smaller. For the cases where
either short or long positions are deactivated the portfolio’s maximum size is k.

Figure 5.29 shows the evolution of the best and worst models of this experiment.
The random forest’s worst execution is the only model that does not lose money.
Without careful tuning of their parameters, all the other models lose money or go
into debt like SVMs.

Table 5.3 shows the parameters of the trend lines from Figure 5.29. The best re-
sults for all models are obtained trading every semester and without shorting while
the worst results are obtained trading each year only short positions. Concerning
the scaling method, its effect is not as clear and appears to depend on the model
used. The best portfolio size is 20 (k = 10) for all models while worst results use
k = [50, 100], except the neural networks whose worst result is also with k = 10. For
the trading strategy, even though avoid_fees has a better average return than sell_all in

36 Chapter 5. Results and Discussion

FIGURE 5.27: Boxplot of the third experiment with the total revenue
obtained by each model.

Experiment 1, here avoid_fees is not used by any of the best models. For both the ran-
dom forest and AdaBoost models, the best and worst model use 50 trees/estimators
so the model’s size is not as relevant as the other parameters. Moreover, the execu-
tion time of the random forest grows linearly with the number of trees, making it
very slow without using HPC-grade computing nodes that allow parallel training.
For the neural networks, the best activation and size are ReLU and 500 neurons; the
worst, tanh and 15 neurons. This means that increasing the number of neurons is
worth it. However, the time required to train larger networks increases from around
30 seconds with 15 neurons to an average of 20 minutes for 1000 neurons (see Fig-
ure 5.5). Fortunately, ReLU activation, which is the fastest activation function, also
gets the best results so it can ease a bit the computational burden. For SVM, larger
penalty parameters C produce worse results, probably because it causes the model
to overfit. For the γ parameter of the RBF kernel, smaller values are better also. Fi-
nally, for the reference linear regression, the results follow the general trend: best,
trading each semester long positions; worst, trading each year only short positions.
The fact that the best models only trade long positions, and the worst only short po-
sitions, is caused by the fact that the S&P 500 index has a growing trend throughout
all our trading period. In this situation the expected average return of long positions
is positive, and the one from short positions is negative so, going long yields higher
returns.

5.2. Trading performance 37

FIGURE 5.28: Boxplot of the third experiment total revenues grouped
by different portfolio sizes.

FIGURE 5.29: Net revenues of the third experiment’s best and worst
models.

38
C

hapter
5.

R
esults

and
D

iscussion

TABLE 5.3: Best and worst configurations of each model for experiment 3 using one year of training data. An infinity value as
top/bottom threshold means that long/short positions are deactivated respectively. The revenue is in USD.

Mode Scaling Bot Top Trade freq. Strategy Model parameters K CPUs Revenue
Random Forest z-score −∞ 0.01 6 m sell_all Trees: 50 10 12 17.759.224,80

Neural Network z-score −∞ 0 6 m sell_all
Hidden Layer Sizes: 500

Solver: lbfgs
Activation: relu

10 1 12.061.462,50

SVM normal −∞ 0.03 6 m sell_all
C: 0.03125

Gamma: 0.03125
10 1 8.927.041,53

AdaBoost normal −∞ 0.01 6 m sell_all Estimators: 50 10 1 4.870.173,30
Linear Regression z-score −∞ 0.03 6 m sell_all - 10 1 1.736.454,84

Random Forest z-score 0 ∞ 1 y avoid_fees Trees: 50 50 12 131.105,80
AdaBoost normal -0.01 ∞ 1 y sell_all Estimators: 50 100 1 95.609,18

Neural Network normal -0.01 ∞ 1 y sell_all
Hidden Layer Sizes: 15

Solver: lbfgs
Activation: tanh

10 1 33.913,25

Linear Regression z-score -0.01 ∞ 1 y sell_all 50 1 23.294,86

SVM normal -0.03 ∞ 1 y avoid_fees
C: 2048

Gamma: 0.125
100 1 -59.198,42

39

Chapter 6

Conclusions

We have evaluated the parallelization performance of HPC.FASSR through the weak
and strong scaling experiments. The results show that our system has linear speedup
up to 1532 CPUs. However, workload imbalance caused by either too few models to
train per core or by slow models might degrade the performance in some scenarios.
We have also seen that the best results are reported by the slowest models showcas-
ing the importance of having HPC-like computing resources to train them and find
the best configurations in a reasonable amount of time.

For the trading performance, we set up three experiments: first, to compare Gra-
ham’s criteria with classification models in stock screening with long positions; sec-
ond, to compare classification and regression models with long/short positions; and
finally, to evaluate regressors in stock ranking. The results of the first experiment
show that all models have better average returns than Graham’s criteria and all of
them outperform S&P 500 the index. The comparison in Experiment 2 showed that
classifiers and regressors perform similarly and that SVM and random forests are the
best in both tasks with the best SVM gaining a total revenue of around USD 1.8M. In
the last experiment, we used regression information to build a stock ranking to then
pick up the best and worst k stocks. We found that using the regression information
for stock ranking yields much higher revenues and with the best revenues obtained
with 20 stocks in the portfolio. The best model is by a large margin the random
forests which converts the initial USD 100K to 17.5 million.

41

Chapter 7

Further Work

In this last chapter we lay out some ideas for future work which were excluded from
the project due to lack of time or because they were out-of-scope.

We have compared our models to Graham’s criteria, but it would be interesting
to add more expert’s criteria to the benchmark, like Warren Buffett’s, and evaluate
them under different market regimes.

It would also be interesting to add more sklearn models to the mix and eval-
uating them. This could test the performance of HPC.FASSR under much larger
experiments. We would also like to try time-series forecasting models like LSTM
networks [18] and evaluate how to integrate this different kind of models into the
evaluation pipeline.

The checkpointing system, although simple, was crucial to reusing data of the
most massive executions whenever problems like time limit’s or failure happened.
Some great improvements to be done are: cache management options, like removing
models once the execution is successful; and a naming system where the hash is
computed from some fingerprint of the data thus removing the need of knowing all
the parameters’ values used to create the dataset.

The performance of the parallelization may become unbalanced if the model’s
training times vary too much between them. To mitigate this problem, it would
be interesting to set a finer granularity and run the training of each session in a
separate task. Then the resulting model of each training task should be fed to a
trading/evaluation task. To this end, we have recently come across the distributed
computing library [31] (dislib). This library is also built on top of PyCOMPSs and
offers a grid search method out-of-the-box where each parametrization is evaluated
in a separated task. The grid search could be used to, in each session, train all models
and parametrizations and get the best model per trading session instead of just the best
at the end. On the one hand, this would delegate all the grid search handling to the
dislib. On the other, this new structure would allow us to create a new model which
automatically use the model reporting the best results with the training data of the
session.

As a final note, we would like to see HPC.FASSR become a worth and usable
open-source project for research. The first step would be to lay out a clearer specifi-
cation and design a cleaner API so that users can plug in their custom data managers
and models more easily. Anyone interested in contributing or using HPC.FASSR will
be very welcome and appreciated.

43

Appendix A

Parametrizations

This Appendix lists the most important parameters used to train each of the machine
learning models. All implementations come from scikit-learn version 0.20.3, so the
parameters not listed are the default values provided by the library.

When expressing ranges, we use the python notation range(min, max, step) where
min and max are the lower and upper bounds respectively, and step is the distance
between two consecutive items.

The following parameters are common for all models:

• Scaling = standard, z-scores

• Trading frequency = semester, year

• Training data = 1, 2 years

• Trading strategies = avoid_fees, sell_all

• K (stock ranking) = 10, 25, 50

A.1 SVM

• Kernel = RBF

• C = [2i ∀i ∈ range(−5, 15, 2)]

• Gamma = [2i ∀i ∈ range(−15, 3, 2)]

A.2 Random Forest

• Number of trees = [50, 100, 250, 500]

• Criterion = Gini Index

• Max features tested =
√

n_features

• Sample Bootstraping = True

A.3 Neural network

• Size of the hidden layer = [5, 10, 15, 20, 30, 50, 100, 200, 500]

• Activation function = tanh, ReLU

• Solver = LBFGS, Adam

44 Appendix A. Parametrizations

• L2 penalty regularization = 0.0001

• Early stopping = False

A.4 AdaBoost

• Number of estimators = [50, 100, 250, 500]

• Boosting algorithm = SAMME.R [17]

• Base estimator = decision tree (max_depth = 1)

45

Appendix B

Trading strategies pseudocode

Figure B.1 shows how the portfolio positions are updated with the recommendations
with the trading strategy that focuses on avoiding fees.

Figure B.2 shows how the portfolio positions are updated with the avoid fee with
the recommendations with the trading strategy that sells and buys all positions at
each session.

46 Appendix B. Trading strategies pseudocode

update_positions(available_money,
old_positions,
recommendations,
portfolio_size):

new_positions = [] # empty list
for each position in old_positions:

if position \in recommendations:
new_positions.append(position)

else:
profits += sell(position)

pending_stocks = portfolio_size - length(new_positions)
money_per_stock = available_money / pending_stocks

while pending_stocks > 0
stock = choose next(recommendation) in alphabetical order
position, cost = buy(stock, money_per_stock)
if money_per_stock is enough to open the position:

new_positions.append(position)
available_money - cost
pending_stocks -= 1

return new_positions

FIGURE B.1: Pseudocode showing how the positions are updated
with the avoid fees strategy each trading session given the available
amount of money, the old positions, a set of recommendations, and a

desired portfolio size.

Appendix B. Trading strategies pseudocode 47

update_positions(available_money,
old_positions,
recommendations,
portfolio_size):

new_positions = [] # empty list
for each position in old_positions:

profits += sell(position)

pending_stocks = portfolio_size - length(new_positions)
money_per_stock = available_money / pending_stocks

while pending_stocks > 0
stock = choose next(recommendation) in alphabetical order
position, cost = buy(stock, money_per_stock)
if money_per_stock is enough to open the position:

new_positions.append(position)
available_money - cost
pending_stocks -= 1

return new_positions

FIGURE B.2: Pseudocode showing how the positions are updated
with the buy/sell all strategy each trading session given the available
amount of money, the old positions, a set of recommendations, and a

desired portfolio size.

49

Bibliography

[1] Ramon Amela et al. “Enabling Python to Execute Efficiently in Heterogeneous
Distributed Infrastructures with PyCOMPSs”. In: Proceedings of the 7th Work-
shop on Python for High-Performance and Scientific Computing. 2017, 1:1–1:10.

[2] Anton Andriyashin, Wolfgang K Härdle, and Roman Vladimirovich Timofeev.
“Recursive portfolio selection with decision trees”. In: (2008).

[3] Apache Mesos. URL: https://mesos.apache.org/.

[4] Argimiro Arratia. “Computational finance”. In: An Introductory Course with R,
Atlantis Studies in Computational Finance and Financial Engineering 1 (2014).

[5] Michel Ballings et al. “Evaluating multiple classifiers for stock price direction
prediction”. In: Expert Systems with Applications 42.20 (2015), pp. 7046–7056.

[6] Barcelona Supercomputing Center (BSC). Extrae Tool. URL: https://tools.
bsc.es/extrae.

[7] Barcelona Supercomputing Center (BSC). MareNostrum 4 User Guide. 2019. URL:
https://www.bsc.es/support/MareNostrum4-ug.pdf.

[8] Barcelona Supercomputing Center (BSC). Paraver Tool. URL: https://tools.
bsc.es/paraver.

[9] Lars Buitinck et al. “API design for machine learning software: experiences
from the scikit-learn project”. In: ECML PKDD Workshop: Languages for Data
Mining and Machine Learning. 2013, pp. 108–122.

[10] Jesús Labarta et al. Enric Tejedor Rosa M. Badia. “PyCOMPSs: Parallel compu-
tational workflows in Python”. In: The International Journal of High Performance
Computing Applications (IJHPCA) 31 (2017), pp. 66–82. URL: http://dx.doi.
org/10.1177/1094342015594678.

[11] Thomas Fischer and Christopher Krauss. “Deep learning with long short-term
memory networks for financial market predictions”. In: European Journal of Op-
erational Research 270.2 (2018), pp. 654–669.

[12] Python Software Foundation. PEP 318 – Decorators for Functions and Methods.
URL: https://www.python.org/dev/peps/pep-0318/.

[13] Python Software Foundation. Python Language. URL: https://www.python.
org/.

[14] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of
on-line learning and an application to boosting”. In: Journal of computer and
system sciences 55.1 (1997), pp. 119–139.

[15] Benjamin Graham. The intelligent investor. Prabhat Prakashan, 1965.

[16] Interactive Brokers Group. Interactive Brokers. URL: https://www.interactivebrokers.
co.uk.

[17] Trevor Hastie et al. “Multi-class adaboost”. In: Statistics and its Interface 2.3
(2009), pp. 349–360.

https://mesos.apache.org/
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1177/1094342015594678
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/
https://www.python.org/
https://www.interactivebrokers.co.uk
https://www.interactivebrokers.co.uk

50 BIBLIOGRAPHY

[18] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/
neco.1997.9.8.1735. URL: http://dx.doi.org/10.1162/neco.1997.9.8.
1735.

[19] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[20] Thomas Kluyver et al. “Jupyter Notebooks - a publishing format for repro-
ducible computational workflows”. In: ELPUB. 2016.

[21] Christopher Krauss, Xuan Anh Do, and Nicolas Huck. “Deep neural networks,
gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500”.
In: European Journal of Operational Research 259.2 (2017), pp. 689–702.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), p. 436.

[23] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for
large scale optimization”. In: Mathematical programming 45.1-3 (1989), pp. 503–
528.

[24] Burton G. Malkiel and Eugene F. Fama. “EFFICIENT CAPITAL MARKETS: A
REVIEW OF THEORY AND EMPIRICAL WORK*”. In: The Journal of Finance
25.2 (1970), pp. 383–417. DOI: 10.1111/j.1540-6261.1970.tb00518.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.1970.
tb00518.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1540-6261.1970.tb00518.x.

[25] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 51 –56.

[26] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[27] Quantopian. Quantopian. URL: https://www.quantopian.com/.

[28] Pavel Sevastjanov and Ludmila Dymova. “Stock screening with use of multi-
ple criteria decision making and optimization”. In: Omega 37.3 (2009), pp. 659–
671.

[29] Slurm Workload Manager. URL: https://slurm.schedmd.com/.

[30] S. van der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A Struc-
ture for Efficient Numerical Computation”. In: Computing in Science Engineer-
ing 13.2 (2011), pp. 22–30. ISSN: 1521-9615. DOI: 10.1109/MCSE.2011.37.

[31] Workflows and Distributed Computing Group. The Distributed Computing Li-
brary (Dislib). URL: https://dislib.bsc.es.

[32] Eric Zivot and Jiahui Wang. Modeling financial time series with S-Plus®. Vol. 191.
Springer Science & Business Media, 2007.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1111/j.1540-6261.1970.tb00518.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.1970.tb00518.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.1970.tb00518.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1970.tb00518.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1970.tb00518.x
https://www.quantopian.com/
https://slurm.schedmd.com/
http://dx.doi.org/10.1109/MCSE.2011.37
https://dislib.bsc.es

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Document Structure
	Contributions

	Related Work
	Methodology
	Data sources
	Data preprocessing
	Features
	Targets

	Forecasting models
	Graham
	Support Vector Machines
	Neural Networks
	Random Forests
	AdaBoost

	Experimental set-up and evaluation
	Transaction fees
	Selection function
	Trading strategies

	Parallelization
	PyCOMPSs overview
	Programming model
	Runtime
	Tools

	Hardware
	Implementation
	Checkpointing
	Evaluation

	Results and Discussion
	Execution performance
	Strong scaling
	Weak scaling
	Models

	Trading performance
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusions
	Further Work
	Parametrizations
	SVM
	Random Forest
	Neural network
	AdaBoost

	Trading strategies pseudocode
	Bibliography

