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Abstract

Accurate diagnosis in the early stages is an important challenge for the
prevention and effective treatment of Alzheimer’s Disease (AD). This
work proposes a method of analysis of the correlation of Mild Cogni-
tive Impairment (MCI) subtypes and its progression to AD using neu-
roimages such as structural magnetic resonance imaging (MRI) scans.
Basic data pre-processing such as the extraction of brain-tissue related
parts of the image, image registration and standardization to the mean
and deviation is applied. A convolutional autoencoder (CAE) is used
to reduce data dimensionality and learn generic features capturing AD
biomarkers, followed by various clustering techniques in order to de-
tect different patterns on MCI data. In addition, six MCI patient clus-
ters are generated based on AD progression information provided by
ADNI. The method is evaluated on a total of 1069 structural MRI scans
(522 MCI scans, 243 AD scans and, 304 CN scans) on the baseline from
ADNI database. No clearly separable clusters are found after using
CAE model trained on MCI data. Therefore, it is difficult to confirm
a strong correlation between different subtypes of MCI patients and
its progression to AD. Nevertheless, a significant correlation within
the baseline images of the respective six groups identified based on
AD progression is reported. It is hypothesized lack of domain-specific
MRI processing, planned in this work, could be a deciding factor about
the negative findings in this research.
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Sammanfattning

Noggrann diagnos i de tidiga stadierna är en viktig utmaning för före-
byggande och effektiv behandling av Alzheimers sjukdom (AD). Det-
ta arbete föreslår en analysmetod av korrelationen mellan subtyper av
lindrig kognitiv störning (MCI) och dess progression till AD genom
användandet av bildgivande tekniker så som strukturell magnetisk
resonanstomografi (MRI). Grundläggande förbehandling som extrak-
tion av hjärnvävnadsrelaterade delar av bilden, bildregistrering och
standardisering till medelvärdet och standardavvikelse tillämpas. En
faltnings-autoenkoder (CAE) används för att minska datadimensiona-
liteten och lära sig generiska funktioner som tar bort AD-biomarkörer,
följt av olika klusteringstekniker för att upptäcka olika mönster på
MCI-data. Dessutom genereras sex MCI-patientkluster baserade på
AD-progressions-information tillhandahållen av ADNI. Metoden ut-
värderades på totalt 1069 strukturella MR-skanningar (522 MCI, 243
AD och 304 CN) på baslinjen från ADNI-databasen. Inga tydligt se-
parerbara kluster finns efter användning av CAE-modell tränad på
MCI-data. Det är därför svårt att bekräfta en stark korrelation mellan
olika subtyper av MCI-patienter och dess progression till AD. Trots
detta rapporteras en signifikant korrelationinom baslinjebilderna för
respektive sex grupper som identifierats baserat på AD-progression.
Hypotesen är att det saknas domänspecifik MR-behandling, som pla-
nerats i detta arbete, skulle kunna vara avgörande för de negativa re-
sultaten i denna forskning.
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Resum

El diagnòstic precoç i acurat és un repte important per a la prevenció
i el tractament efectiu de la malaltia d’Alzheimer (AD). Aquest treball
proposa un mètode d’anàlisi de la correlació dels subtipus de deterio-
rament cognitiu lleu (MCI) i la seva progressió a AD mitjançant neu-
roimatges com són les imatges per ressonància magnètica (MRI). S’a-
plica un pre-processat de dades bàsic com ara l’extracció de parts de la
imatge relacionades amb el teixit cerebral, la normalització espacial de
les imatges i la normalització respecte a la mitjana i la desviació. S’u-
tilitza un auto-codificador convolucional (CAE) per reduir la dimen-
sionalitat de les dades i aprendre les característiques genèriques que
capturen biomarcadors d’AD. Seguidament, s’apliquen diverses tèc-
niques de clustering per tal de detectar diferents patrons de dades de
pacients MCI. A més a més, es generen sis grups (o clusters) de paci-
ents MCI basant-se en la informació de progressió AD proporcionada
per ADNI. El mètode és evaluat en un total de 1069 imatges de resso-
nància magnètica estructural (522 exploracions MCI, 243 exploracions
AD i 304 exploracions CN) de la base de dades ADNI les quals corres-
ponen a imatges del primer diagnòstic dels respectius pacients. No es
troben clusters clarament separables després d’utilitzar el model CAE
entrenat amb les dades de pacients MCI. Per tant, és difícil confirmar
una forta correlació entre els diferents subtipus de pacients MCI i la
seva progressió a AD. No obstant això, es reporta una correlació signi-
ficant entre les imatges del primer diagnòstic dels sis grups respectius
basats en la progressió cap a l’AD. Es planteja la hipòtesi que la manca
de processament de domini específic de MRI, ja previst en aquest tre-
ball, podria ser un factor decisiu sobre els resultats negatius d’aquesta
investigació.
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Chapter 1

Introduction

Alzheimer’s disease (AD), an irreversible neurodegenerative disorder
characterized by progressive memory loss and cognitive impairment,
is expected to double during the next 20 years due to the increasing
life expectancy [1]. AD is the most common type of dementia and cur-
rently there is no cure for it. However, the possibility of an effective
treatment to delay its progression, especially if diagnosed at an early
stage, generates new clinical AD research challenges. One of the most
important challenges is to obtain an accurate diagnosis of AD during
life, which is based on the presence of cognitive deficits in two or more
domains severe enough to interfere with normal daily functioning [1].
It becomes clearer that one should focus on the diagnosis and prog-
nosis in the very early stages when any intervention would have the
biggest impact.
The interest to characterize the earliest symptoms of the neurodegen-
erative process that is likely to convert to AD led to the concept of mild
cognitive impairment (MCI), which represents the transitional zone
between normal ageing or normal control (NC) and AD. MCI refers to
a group of subjects who have some cognitive impairment but of insuf-
ficient severity to constitute dementia [2]. There are four categories of
MCI: amnestic single and multiple domain, non-amnestic single and
multiple domain [3]. MCI, and normally amnestic subtypes, is con-
sidered as the prodromal phase of AD. However, not all MCI patients
progress to AD. Some of them remain stable for several years, some
progress to another dementia and others even improve.
There are several studies [4, 5, 6, 7, 8, 9] which predict the conversion
from MCI to AD and thus distinguish stable MCI (sMCI) from progres-
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sive MCI (pMCI). The most common approach consists in group com-
parisons of grey matter (GM) volumes based on magnetic resonance
imaging (MRI) in restricted cortical areas [4]. More recently, diffusion
tensor imaging (DTI), an imaging technique which provides informa-
tion on the integrity of white matter (WM) tracts [10], has also been
employed [4].
In recent years, measurements of structural changes based on brain
MRI scans have been used in order to classify AD patients versus cog-
nitively normal (CN) subjects and to predict the risk of evolution from
MCI to AD. Machine learning techniques such as principal component
analysis (PCA), linear discriminant analysis (LDA), regression models,
support vector machine (SVM) and artificial neural networks (ANNs)
have been successfully applied to both structural and functional neu-
roimaging data for this prediction [7, 11, 12, 13, 8]. Lately, deep learn-
ing networks, such as Convolutional Neural Networks (CNNs), have
been used in order to attempt the prognosis of AD and to extract rep-
resentative features capting AD biomarkers for image classification,
avoiding the necessity of expert knowledge [9, 14, 15]. The accuracy
rates obtained when separating CN subjects from AD and also from
MCI are quite high. Nevertheless, it is expected that performance of
the prediction of the conversion of MCI patients to AD patients can be
improved but this still remains a challenge.

1.1 Research Question

There are different subtypes of MCI depending on which cognitive do-
mains are most impaired and the annual conversion rate of amnestic
MCI to AD is about 12% per year [1]. However, there is not much in-
formation about other subtypes that could help in obtaining a higher
accuracy prediction from MCI to AD. In addition, in almost all data
collections there are no labels about the MCI subtype in MCI subjects.
This is the case of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1. Therefore, in this project structural brain imaging
data from ADNI data is used.

1ADNI is a longitudinal multicenter study launched in 2004 and designed to de-
velop clinical, imaging, genetic, and biochemical biomarkers for the early detection
and tracking of AD [16].
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The key question addressed in this thesis is whether the conversion
rate to AD is higher for any specific MCI type that could be identified
based on sMRI biomarkers. This question implies the capability to find
subtypes of MCI which can be clearly identified from sMRI data.
In order to address the question, the following tasks are intended:

1. To perform a relevant feature extraction and feature selection
from ADNI structural MRI (sMRI) data.

2. To identify MCI subtypes from characteristics shown in data with
unsupervised learning methods.

3. To study correlations between groups found in point 2 and the
likelihood of progression to AD.

1.2 Aims and Scope

The aim of this project is to investigate the potential of machine learn-
ing for exploratory analysis of brain imaging biomarkers of AD in
early stages. The ambition is to identify subtypes from MCI subjects.
Better understanding of MRI biomarkers for detection and prediction
of early stages of AD may have an important impact on successful
treatments.
The amount and type of data from clinical studies is a limitation. Pe-
tersen et al. [17] suggests that approximately 16% of elderly subjects
not suffering from dementia are affected by MCI, and amnestic MCI
is the most common type. So one limitation is that in ADNI MCI data
there will probably be more amnestic MCI subtype and it is not certain
whether the four subtypes of MCI (accounting for single and multiple
domain distinction) are present since MCI subtypes are not labeled in
ADNI. Another limitation of using data from one study center could
be to what extent an algorithm developed in one research center can
be generalized to individuals examined in other centers.
Some assumptions are made in this project. First, due to time con-
straints, the pre-processing of image data is done in a simple way.
Regions of interest (ROIs) such us the entorhinal cortex and the hip-
pocampus volume aren’t extracted by using ROI analysis extraction
tools 2. Images are cut by the edges following ICBM brain ATLAS [18]

2Typical neuroimaging softwares used for ROI: SPM, AFNI, FreeSurfer
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in order to have a box around ROIs. This decision will reduce the per-
formance of the exploratory study of biomarkers, which is expected
to be offset by the use of state-of-the-art machine learning techniques.
Another assumption is that genetic and biochemical information avail-
able in ADNI will be not used. This information could improve the
results but in the project the focus is on imaging biomarkers.

1.3 Thesis outline

This thesis consists of six chapters, including the present one which
serves as an introduction, and is structured as follows:

• Chapter 2, Background: Provides an overview of topics surround-
ing Alzheimer’s Disease, enabling for a deeper understanding of
the topic at hand. It also reviews the related work in the context
of diagnosis and prognosis of the disease, the characterization of
the different subtypes of MCI subjects, and the analysis of MRI
images using machine learning.

• Chapter 3, Method: Describes all the decisions and steps done
throughout this project.

• Chapter 4, Results: Contains information about the results ob-
tained from this research.

• Chapter 5, Discussion: Analyzes the results, problems and limi-
tations of the work.

• Chapter 6, Conclusions and Future Work: Presents the conclu-
sions from the technical, academic, and personal point of view,
and it also includes challenges and future directions.



Chapter 2

Background

2.1 Alzheimer’s Disease (AD)

AD is the most common type of dementia, but there are many kinds.
Dementia is characterized by the loss of cognitive functioning and be-
havioral abilities to such an extent that it interferes with the daily life of
a person. The earliest signs are an impairment of recent memory func-
tion and attention, followed by failure of language skills, visual-spatial
perception, abstract thinking and self-management. Alterations of per-
sonality inevitably accompany these defects [19].
Dementia is caused by damage to nerve cells in the brain (neurons in
the brain stop working, lose connections with other brain cells and
die). While everyone loses some neurons as they age, people suffering
dementia experience far greater loss [20].
The majority of AD cases arise sporadically after age 60 (late-onset
type of AD), but it can rarely occur between a person’s 30s and mid-
60s (early-onset type of AD). The most important known risk factor for
AD is increasing age, about one-third of all people age 85 and older
may have AD [20].
Although treatment can help manage symptoms in some people, there
is currently no cure for AD. Increasing evidence that the molecular
pathomechanisms of AD become active several years before neurons
start dying and cognitive deficits manifests led to the concept of MCI
(transitional zone between NC and AD) [1]. It is at that stage, when
effective treatment would have the biggest impact since the cognitive
function could be preserved.

5
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2.2 MCI subtypes

Patients are rated based on the severity of their cognitive impairment
in four domains: memory, language, visuospatial, and executive [21].
Then, it is possible to classify MCI patients in four categories defined at
the first key conference on MCI [2] and based on the affected cognitive
domain:

1. Amnestic MCI single domain (aMCI-s): patients with moderate
to severe impairment in only the memory domain.

2. Non-amnestic MCI single domain (naMCI-s): patients with mod-
erate to severe impairment in a non-memory single domain.

3. Amnestic MCI multiple domain (aMCI-m): patients with mod-
erate to severe impairment in 2 or more memory domains.

4. Non-amnestic MCI multiple domain (naMCI-m): patients with
moderate to severe impairment in 2 or more domains.

In Figure 2.1 the MCI classification is presented. There, it is possible
to recognize that MCI could result from a variety of etiologies and not
just AD.
Some studies deal with a more general classification of MCI due to
limited sample size: aMCI and naMCI. While aMCI and naMCI are
theoretically different entities, only a few investigations studied the
structural brain differences between these subtypes of MCI.

2.3 Medical images

A medical image is the representation of the internal structure or func-
tion of an anatomic region in the form of an array of picture elements
called pixels or voxels [22]. It is a discrete representation resulting
from a sampling/reconstruction process that maps numerical values
to positions in space.

2.3.1 Data properties

Many medical images capture volumetric images which results in large
data sizes for each sample, affecting computational and memory costs
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Figure 2.1: Broaden MCI classification scheme adapted from [3]. DLB
= Dementia with Lewy bodies; FTD = Frontotemporal Dementia; VCI
= Vascular Cognitive Impairment.

[23]. To deal with this challenge, different strategies in deep learning
are used, such as working with 2D slices sampled along one axis from
3D images or the use of 3D subvolumes.
Medical images are obtained under controlled conditions allowing more
predictable data distributions. However, there are some challenges,
for example, the fact that small image features can have large clini-
cal importance or that some rare pathologies can be life-threatening.
To account for these challenges in medical image analysis researchers
must deal with large class imbalances.

2.3.2 Data format

Medical image data is typically stored in different formats than in
many computer vision tasks [23]. The image format describes how
the image data is organized within the image file and how the pixel
data should be interpreted by a software for the correct loading and
visualization. All the information that describes the image is found in
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metadata 1 and the numerical values of the pixels are found in image
data 2 or pixel data.
There are two categories of medical image file formats. The first is in-
tended to standarize the images generated by diagnostic modalities.
An example from this category is DICOM (Digital Imaging and Com-
munications in Medicine) [24]. The second is born with the aim to
facilitate and strengthen post-processing analysis. Examples from this
category are Analyze [25], Nifti (Neuroimaging Informatics Technol-
ogy Initiative) [26] and Minc [27]. Moreover, there are two possible
configurations. The most common is the one where metadata and im-
age data are stored in the same file. However there is another configu-
ration used by the oldest image file format that stores the metadata in
one file and the image data in another one.
The characteristics of the 2 most used file formats are the following:

1. Nifti: Images are typically saved as a single ".nii" file with the
header and image data merged. Data can be compressed which
changes the file extension to "nii.gz". The file represents the 3D
image of the brain. The format is supported by many viewers
and image analysis software.

2. DICOM: DICOM standard is the backbone of every medical imag-
ing department. It is not only a file format but also a network
communication protocol. Metadata and image data are stored in
a unique file (".dcm") and the header contains the most complete
description of the entire procedure used to generate the image,
by giving information about acquisition and also about the pa-
tient. Unlike Nifti, a Dicom file represents one slice of the brain,
where a 3D volume is thus described by a series of files contain-
ing single slices. DICOM has been widely accepted and success-
fully used in a clinical context.

1Metadata is usually stored at the beginning of the file as a header and contains
at least the image matrix dimensions, the spatial resolution (anatomical orientation
and voxel ansiotropy), the pixel depth and the photometric interpretation [22]. It
frequently contains also patient information and acquisition information.

2Image data is located after the header. According to the data type, pixel data is
stored as integers or floating-point numbers.
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2.3.3 Brain imaging techniques in AD

Brain imaging or neuroimaging techniques are a non-invasive way
to visualize the structure or the activity/pharmacology of the brain.
There are two main categories of neuroimaging: structural imaging
and functional imaging. Structural imaging provides information about
brain atrophy (loss of tissue components such as neurons, synapses,
glial cells, etc), while functional imaging provides information about
the human brain’s function or activity [28]. The neuroimaging tech-
niques most used in AD are the following:

• Magnetic Resonance Imaging (MRI): An imaging technique that
uses magnetic fields and radio waves to generate high quality 2D
or 3D images of brain structures without the use of ionizing ra-
diation (X-rays) or radioactive tracers [29]. In AD the focus is on
structural MRI which is a widely used method to measure brain
volumes in vivo in order to detect brain atrophy.

• Positron Emission Tomography (PET): A radiotracer-based imag-
ing technique where high radioactivity areas are associated with
brain activity [30]. Typical tracers used for AD are amyloid and
fluorodeoxyglucose (FDG) [28].

• Diffusion Tensor Imaging (DTI): A MRI-based imaging tech-
nique sensitive to differences in the microstructural architecture
of water molecules. It measures the directionality of water diffu-
sion and makes it possible to estimate the location, orientation,
and anisotropy of the brain’s white matter tracts [31].

2.4 MRI biomarkers

The term biomarker or biological biomarker refers to a broad subcat-
egory of medical signs – that is, objective indications of medical state
observed from outside the patient – which can be measured accurately
and reproducibly [32]. There are several definitions. The International
Programme on Chemical Safety defines biomarkers as "any substance,
structure, or process that can be measured in the body or its products
and influence or predict the incidence of outcome or disease" [33].

Characteristics of an ideal biomarker for AD are analyzed in [34] as
follows. The biomarker should:
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1. Detect a fundamental feature of AD’s neuropathology.

2. Be validated in neuropathologically confirmed AD cases.

3. Be precise, able to detect AD early, and distinguish it from other
forms of dementias.

4. Be reliable, non-invasive, simple to perform and inexpensive.

There are three main categories of biomarkers providing additional
information for AD: genetic, biochemical and neuroimaging. In this
project MRI biomarkers (neuroimaging biomarkers) will be analyzed
since they offer great potential as biomarkers for AD.
Atrophic changes that had been detected by structural MRI images af-
fect primarily the entorthinal cortex and the hippocampus in an early
stage of MCI, progress to temporal and parietal lobes in AD and finally
involve frontal lobes in late stages of AD [1].
By using functional MRI and DTI to measure changes in functional
and structural connectivity, it may be possible to detect neurons im-
paired by AD process but not yet irreversibly damaged (as it happens
in structural imaging). These novel techniques offer new possibili-
ties as biomarkers in AD but need standardization and validation to
make them clinically useful. Thus structural MRI, in particular the
hippocampus volume, remains the most validated and widely used
MRI biomarker for AD [35].

2.5 Relevant unsupervised ML and visualiza-
tion techniques

2.5.1 Data dimensionality reduction

Autoencoders (AEs)

An autoencoder is an artificial neural network which is trained in or-
der to learn a representation from the original input in an unsuper-
vised way. The network can be viewed as two parts: the encoder
h = f (x) which compresses the input into a latent-space representa-
tion and the decoder that generates the reconstruction x̂ = g(h) from
this representation. This network can be trained by minimizing the
reconstruction error, L(x, x̂), which measures the differences between
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our original input and the consequent reconstruction.
AEs have typically been used for dimensionality reduction or feature
learning. Recently, they have been more widely used for generative
models of data [36]. Autoencoders may be thought of as being a spe-
cial case of feedforward networks, and may be trained with the same
techniques, typically minibatch gradient descent following gradients
computed by back-propagation. If the autoencoder is built as a linear
network, then the optimal solution is strongly related to the dimen-
sionality reduction in principal component analysis (PCA).

• Convolutional autoencoder

Figure 2.2: Structure of a convolutional autoencoder.

A common use for autoencoders is to apply them to image data.
When dealing with images the standard procedure is to replace
fully connected layers by convolutional layers.
By using convolutional and pooling layers the encoder converts
the input from wide and thin to narrow and thick. This helps the
network to extract visual features from the images, and there-
fore obtains a much more accurate latent space representation.
In each convolutional layer a set of filters (also called kernels) are
applied to the input layer, which consists of a 3D tensor (width,
height and number of channels). The outputs of the convolutions
with the different filters are stacked and form a new image. Then,
a non-linear activation function is applied to each element of this
new image, typically the rectified linear unit (ReLU) activation.
ReLU performs the easy operation of h = max(0,x). Finally,
sometimes a pooling layer is applied to reduce the spatial size
of the representation and thus reduce the number of network
parameters. It operates over each response/activation map in-
dependently. The most common approach used is max pooling,
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which applies a window function to the input patch, and com-
putes the maximum in the neighborhood.
The decoder uses upsampling and convolutional layers to recon-
struct the data. The upsampling layer upsamples the input im-
age to a higher resolution by using resampling and interpolation.

PCA

Principal Components Analysis (PCA) is an unsupervised approach
where a set of linearly uncorrelated variables (eigenvectors) and their
corresponding values (eigenvalues) are computed by using an orthog-
onal transformation (Singular Value Decomposition). It aims to find
a lower-dimensional subspace onto which to project the data. The di-
mensions with large eigenvalues are chosen since they contain lots of
variation and are therefore useful dimensions, while the ones that have
small eigenvalues are discarded since there is not much variation in
that direction [37].
The common applications are dimensionality reduction in order to sig-
nificantly speed up our feature learning algorithm and data visualiza-
tion. PCA is sensitive to the relative scaling of the original variables.

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimension-
ality reduction technique particularly well suited for the visualization
of high-dimensional data. [38].
t-SNE converts similarities between data points to probability distribu-
tions and tries to minimize the Kullback-Leibler divergence between
the probability distributions of the low-dimensional embedding and
the high-dimensional data. Its cost function is not convex, which means
that with different initializations different results can be obtained.
There are two characteristic parameters in t-SNE: perplexity (related to
the number of close neighbors each point has) and early exaggeration
(related to how tight natural clusters in the original space are in the
embedded space and how much space will be between them).

2.5.2 Clustering

The two most relevant clustering techniques for this project are ex-
plained below:
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• Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)
DBSCAN is a density based clustering technique that creates an
arbitrary number of clusters in areas with high density, and as-
sumes they are separated by areas of lower density. One of the
main advantages is that it does not require the number of clus-
ters in the data to be specified a priori. Another advantage is that
it has a notion of noise. It is governed by the two parameters eps
and min_samples which have to be found by exhaustive search.
eps is the maximum distance between two samples for them to be
considered as being in the same neighborhood and min_samples
is the minimum number of samples in a neighborhood required
to form a dense region.
DBSCAN can be seen as an efficient variant of spectral clustering
where the connected components found correspond to optimal
spectral clusters.

• Agglomerative Clustering
Agglomerative Clustering attempts to cluster the data hierarchi-
cally, using a bottom up approach. The algorithm starts with
each point in its own cluster and then, for each cluster, uses some
criterion to choose another cluster to merge with [39]. The algo-
rithm merges by using a linkage metric, the default being Eu-
clidean. The clusters are linked together if they minimize this
distance.

2.5.3 Manifold visualization

In order to visualize the structure of a high-dimensional dataset, its
dimension must be reduced. One approach is to assume that the data
lies on an embedded non-linear manifold within the high-dimensional
space. Then, the data can be visualized in the low-dimensional space
of the manifold. A widely used technique to perform manifold visu-
alization is t-SNE, introduced in subsection 2.5.1. Figure 2.3 shows the
manifold visualization done in [15] of AD, CN and MCI subjects. This
visualization is performed after each convolution step from the pre-
trained 3D CAE and it shows that data is more separable each time.
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Figure 2.3: Manifold visualization of ADNI training data, by t-SNE
projection adapted from [15].

2.6 Related Work

2.6.1 ML for identification of MRI biomarkers of AD

In later years, machine learning techniques started to be applied in
order to have better diagnosis and prognosis of AD. Haller et al. [4]
obtained a highly accurate individual classification of stable versus
progressive MCI regardless the MCI subtype. They performed a SVM
analysis of 35 NC and 67 MCI subjects with DTI baseline data recruited
in Geneva and Lausanne counties. Nho et al. [5], who also used SVM
with radial basis function kernels, predicted the conversion of amnes-
tic MCI to AD using ADNI data. They discarded the other subtypes as
it is shown that the amnestic subtype is the most considered subtype
of the prodromal phase of AD. They obtained 90.5% cross-validation
accuracy for classifying AD and NC, and 72.3% accuracy for predict-
ing MCI conversion to AD. Features were extracted using two analy-
sis techniques, one using FreeSurfer software (a brain segmentation
and cortical parcellation tool) and the other using SPM5 (Statistical
Parametric Mapping tool). The best prediction of MCI conversion to
probable AD was obtained for a number of features between 24 and
26. The most important feature identified was left entorhinal cortical
thickness. The other two were right hippocampal volume and APOE
ε4 status.
One year later Costafreda et al. [6] used just the hippocampal volume
to predict MCI subjects that will convert to AD. The study consists
of 103 MCI subjects from the AddNeuroMed study. Preprocessing of
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data is performed by FreeSurfer and the classification analysis consists
of a SVM with non-linear Gaussian radial basis kernel. The model was
trained on the full training sample of AD and NC subjects and then
applied to MCI subjects. The accuracies achieved within a year are
85% for AD vs NC and 80% for the MCI conversion to AD. Finally
they stated that the incorporation of entorhinal atrophy could increase
the prognostic performance relative to the analysis of hippocampal
changes alone.
SVM is one of the most used techniques when classifying AD versus
CN and sMCI versus pMCI; in [10] a critical review of different SVM
studies is provided. These used both structural and functional neu-
roimaging, applied in the context of disease diagnosis, transition pre-
diction and treatment prognosis.
In 2015, five key features that potentially discriminate between MCI
subjects who convert to AD and stable MCI patients over a period of
three years were provided in Eskildsen et al. [7]. These features are the
left and right hippocampus, cortical thicknesses of left precuneus, left
superior temporal sulcus, right anterior part of the parahippocampal.
They achieved an accuracy of 72% using ADNI data.
With the growing availability of data for AD and CN subjects, Ning
et al. [13] used brain imaging and genetic data from ADNI (138 AD
patients, 225 CN subjects and 358 MCI patients) for these AD classifi-
cation and prediction tasks. They trained a neural network (NN) and
Logistic Regression (LR) to classify AD versus CN subjects given brain
and genetic features as predictors. The most important brain features
found in the NN model were the left middle temporal gyrus, the left
hippocampus, the right entorhinal cortex volume, the left interior lat-
eral ventricle and the right inferior parietal lobe. And the most rele-
vant genetic feature was APOE ε4 risk allele.
In March of 2018 Liu et al. [9] stood out with the proposed Cascaded
Convolutional Neural Network (CNN) that can gradually and auto-
matically learn the multi-level and multimodal features of MRI and
PET brain images for AD classification. Since no image segmentation
and rigid registration are required in pre-processing data, an expert’s
knowledge is not necessary, which is an advantage with respect to
other studies where they extract hand-craft imaging features and then
train a classifier. The study consists of 93 AD patients, 204 MCI pa-
tients and 100 NC subjects from ADNI. The accuracies achieved are
93.26% for classification of AD vs NC and 82.95% for classification of
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progressive MCI vs NC.
Also in 2018, Duraisamy et al. [8] developed a classification algorithm
which combines both supervised and unsupervised learning techniques
and analyzed the brain images from ADNI related to sMRI for bet-
ter discrimination of AD, CN and MCI labels. ROIs related to Hip-
pocampus and Posterior Cingulate Cortex from the brain images are
extracted using an Automated Anatomical Labeling (AAL) method at
the first stage. Then 19 highly relevant AD related features are se-
lected through Multiple-criterion feature selection method. Finally,
they apply their novel FCM-based Weighted Probabilistic Neural Net-
work (FWPNN) classification algorithm. The accuracies achieved are
98.63% for AD vs NC, 95.4% for MCI vs NC and 96.4% for AD vs MCI.

2.6.2 Analysis of MCI subtypes

In 2006 Yaffe et al. [21] studied different subtypes of MCI and assessed
the rate of progression to dementia. They found that there is a corre-
lation between the conversion to different types of dementia and prior
subtypes of MCI. In addition, among the patients who evolved to AD,
76% had amnestic MCI, 11% single non-memory MCI and 16% multi-
ple domain MCI. This explains why many studies focus on the amnes-
tic subtype of MCI.
One year later, a comparison of the rates of conversion to AD between
2 subtypes of MCI is done by Fischer et al. [40]. The study was done
with 141 MCI patients at age 75 and followed up after 30 months which
were categorized into 2 subtypes: amnestic and non-amnestic. Con-
version rates to AD were 48,7% for amnestic, 26.8% for non-amnestic,
while for NC it was 12,6%. Although the rate of conversion was higher
for amnestic MCI than for non-amnestic MCI, nearly identical num-
bers of subjects developed AD from each subtype. Therefore two cat-
egories were not useful in identifying early stages of various types of
dementia.
A differentiation between amnestic and non-amnestic MCI by struc-
tural MRI is done in Csukly et al. [41]. 62 subjects with aMCI, naMCI
and NC were included in the study based on the Petersen criteria
[2]. They were recollected in the Department of Psychiatry and Psy-
chotherapy, Semmelweis University, Budapest. The volumes of the
hippocampus and the entorhinal cortex, and the thickness of the en-
torhinal cortex and the fusiform gyrus are significantly decreased in
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the aMCI relative to the naMCI group. But the largest difference was
detected in the volume and thickness of entorhinal cortex, which is in
line with the fact that the atrophy in AD starts in this region. Based on
their results MRI can be a useful tool for the more precise separation
of MCI subtypes. They conclude that the assignment of MCI subtypes
will be useful to improve the prediction of dementia type and the risk
of conversion to dementia.

2.6.3 Exploratory analysis of MRI images using ML

An MRI scan usually contains hundreds of millions of voxels (volume
elements that represents a value in the 3D space, corresponding to a
pixel for a given slice thickness). The amount of noise voxels is much
larger than the informative voxels and makes typical machine learn-
ing algorithms, such as SVM, have a lower performance. Moreover
this represents a high computational cost.
When working with SVM classifiers it is necessary to suppress non in-
formative voxels from MRI scans and reduce its dimensionality. One
option is the use of voxels in a particular ROI instead of using the
whole brain. There are many available tools that allow ROI extrac-
tion and other processing operations such as FSL [42], FreeSurfer [43]
and SPM [44]. This feature extraction process normally needs exper-
tise knowledge about the underlying problem.
Meaningful features were designed mostly by human experts on ba-
sis of their knowledge about the target domain, making it challenging
for nonexperts to exploit machine learning techniques for their own
studies [45]. However, recently, thanks to the success of deep learn-
ing methods, feature extraction process requires no longer expert’s
knowledge. Deep learning is able to discover the discriminant rep-
resentations inherent in data by incorporating the feature extraction
into the task learning process. Complex patterns can be learned with
deep learning.
CNNs have been explored to learn generic features of neuroimages for
AD and other purposes. In 2015 Payan et al. [14] proposed a sparse au-
toencoder (AE) and 3D convolutional neural networks based on both
structural and functional MRI data to predict the AD status of a pa-
tient. The difference of this approach compared to other classifiers is
that the whole MRI image is used, which yields better performance
than using slices from the brain and 2D CNNs. Randomly selected
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3D patches of size 5x5x5 extracted from MRI scans are used to train
the sparse AE. Later, the trained weights from the autoencoder are
used as 3D convolutional filters of 3D CNN. Finally, the fully con-
nected layers of 3D CNN are fine-tuned for classification (the convo-
lutional layer is pre-trained but not fine-tuned). One year later Hos-
seini et al. [15] proposed a deep 3D CNNs method to predict AD us-
ing structural MRI scans from ADNI. The 3D CNNs was built, similar
than in [14], upon 3D Convolutional AEs pre-trained on CADDemen-
tia dataset, followed by fully connected network for classification. Al-
though both methods used in [14, 15] can learn generic features captur-
ing AD biomarkers, they require the convolutional filters pre-trained
on AE with carefully preprocessed data.
There are more works where deep learning has been successfully ap-
plied to MRI data. In 2013 Shin et al. [46] used stacked AEs (SAEs) to
detect multiple organs in a time series of 3D MRI data by separately
learning both visual and temporal features from an unlabeled multi-
modal DCE-MRI dataset. Unlike conventional SAEs, the SAE in this
study involved the application of a pooling operation after each layer
so that features of progressively larger input regions were essentially
compressed. They showed the potential of the deep learning model
for application to medical images, despite the difficulty of obtaining
libraries of correctly labeled training datasets and despite the intrinsic
abnormalities present in patient datasets.

Deep learning has been also explored for segmentation tasks, such as
the important step in the brain image preprocessing which is remov-
ing nonbrain regions such as the skull. Kleesiek et al. [47] presented
a 3D convolutional deep learning architecture for brain extraction in
2016, a technique that was not limited to nonenhanced T1-weighted
MR images (it is applicable to MRI data including 4 channels). While
training their 3D CNN, they constructed minibatches of multiple cubes
that were larger than the actual input to their 3D CNN for computa-
tional efficiency. Over three different data sets, their method achieved
the highest average specificity measures in comparison to six com-
monly used tools (BET, BEaST, BSE, ROBEX, HWA, and 3dSkullStrip),
whereas its sensitivity displayed about average results. Another seg-
mentation task difficult to perform is segmentation of infants’ brain
MR images. Comparing to adults’ brain, in infants’ brain tissue con-
trast is reduced, noise is increased and, WM and GM exhibit similar
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levels of intensity [45]. In 2015 Zhang et al. [48] proposed 4 CNN
architectures to segment isointense stage (infants of approximately 6-
8 months age) brain tissues using multimodal MRI scans. To each
CNN 3 convolutional layers, one fully connected layer and an out-
put layer with a softmax operation for tissue classification are applied.
Each CNN included three input feature maps corresponding to T1,
T2 and fractional ansiotropy (FA) images patches measuring 13x13
voxels. Results showed that the proposed model significantly outper-
formed competing methods on infant brain tissue segmentation. In
2016 Pereira et al. [49] presented an automatic segmentation method
based on CNNs. They explored small-sized 3x3 kernels, the use of
intensity normalization as a preprocessing step (not common in CNN-
based segmentation methods) and data augmentation which proved
to be very effective for brain tumor segmentation in MRI data. They
trained different CNN architectures for low and high grade tumors.
Their method was validated in the 2013 Brain Tumor Segmentation
(BRATS) Challenge, where they obtained the first position for the com-
plete, core, and enhancing regions for the Challenge dataset.
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Methods

The work of this project is structured as in Figure 3.1 and the code can
be found in my KTH and my personal git repository 1.

Figure 3.1: Diagram of all the steps of the study process.

1KTH git repository: https://gits-15.sys.kth.se/annacg/Master-thesis
Personal git repository: https://github.com/annacanal/Master-thesis
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The steps done in this project are highlighted in Figure 3.1, where
each number corresponds to the respective step. The first step (1) is
the decision, selection and acquisition of the data to be used in the
study. Structural MRI scans of AD, MCI and CN subjects from ADNI
Data Collection are downloaded. Structural MRI is chosen as the neu-
roimaging technique since it is the most common approach in previous
related work. Similarly, ADNI database is chosen because, to the best
of my knowledge, it is the largest AD database and the most used in
previous work. This step is detailed in Section 3.1.
The second step (2) is to prepare the data for the application of ma-
chine learning techniques. Four different standard processing steps
are performed according to the standard pre-processing done in pre-
vious studies in which domain-specific MRI pre-preprocessing is not
performed either [9]. These pre-processing steps will be explained in
Section 3.2
The third step (3) is to reduce the dimensionality of the data. Several
techniques are used, but the main focus has been on the development
of a CAE model which was motivated by the work in [15]. CAE’s
structure and parameters, and the configuration of other techniques
such as PCA and tSNE are described in Subsection 3.3 for the applica-
tion of dimensionality reduction.
Once the dimensionality of the images is reduced two clustering tech-
niques (4) are applied and a study of similarities of the data within
groups and dissimilarities of the data between different groups is per-
formed (5).
Finally, by using the follow-up information, six clusters of MCI pa-
tients are generated regarding its progression to AD (6). This is ex-
plained in Section 3.6.

3.1 Data

A total of 1069 sMRI scans of CN, MCI and AD patients with sev-
eral years of follow-up data from ADNI2 database are selected for this
project. There are 3 different phases of ADNI to date: ADNI1, ADNI
GO/2 and ADNI3. In this project the images are from a standardized

2The database is publicly available in http://adni.loni.usc.edu. ADNI partici-
pants consist of AD, MCI and elderly CN, aged 55-90 years and recruited across
North America during each phase of the study.

http://adni.loni.usc.edu
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set with 1.5T MRI scans collected during ADNI13 phase, which con-
sists of 522 MCI scans, 243 AD scans and 304 CN scans. There are 2
scans for almost all the subjects.

3.1.1 ADNI1 Standardized Data Collections

Standardized Data Collections are collections of pre-processed scans
corresponding to each of the standardized datasets created in order to
speed up the download of images for researchers. The file format used
in these collections is Nifti.
Collection names and descriptions from ADNI1 for 1.5T scans are shown
in Table 3.1.

Table 3.1: ADNI1 Standardized Data Collections for 1.5T [50].

Collection Name Collection Description
ADNI1: Screening 1.5T Contains screening or baseline scans

ADNI1: Complete 1Yr 1.5T Contains screening, 6 and 12 months scans
ADNI1: Complete 2Yr 1.5T Contains screening, 6 months, 1 year,

18 months (MCI only) and 2 year scans
ADNI1: Annual 2 Yr 1.5T Contains screening, 1, and 2 years scans

ADNI1: Complete 3Yr 1.5T Contains screening, 6 months, 1 year,
18 months (MCI only), 2 years, and

3 years (normal and MCI only) scans

ADNI1: Screening 1.5T is the standardized data collection down-
loaded for this project in order to have as much data as possible to
train and test. Follow-up scans are not necessary since the study is
based on differences between groups of patients, in concrete within
MCI subjects, during the baseline. What is needed is the follow-up in-
formation about the evolution of MCI patients and this is provided by
an Excel document. Patients with follow-up data are needed but the
analysis is performed during the baseline.

3ADNI1(2004-2009) contains in total 200 CN subjects, 400 MCI subjects and 200
mild AD subjects. The MRI protocol used in ADNI1 focuses on consistent longi-
tudinal structural imaging on 1.5T scanners using T1- and dual echo T2-weighted
sequences. One-fourth of ADNI1 subjects were also scanned using essentially the
same protocol on 3T scanners.
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3.1.2 MRI scans

In order to visualize the MRI scans saved in the Nifti format, FSL soft-
ware is used. Figure 3.2 shows the visualization of an AD patient using
FSL eyes tool.

Figure 3.2: MRI scan of an AD patient.

3.2 Data processing

3.2.1 Brain extraction tool (BET)

FSL is used in order to process the data. FSL is a comprehensive library
of analysis tools for fMRI, MRI and DTI brain imaging data [42]. The
tool used in this project to extract brain tissue from images is the Brain
extraction tool (BET). BET is an automated method for segmenting
magnetic resonance head images into brain and non-brain by deleting
the non-brain tissue from them [51], which is a crucial step in many
analysis pipelines.

Figure 3.3: MRI scan of a MCI patient before applying BET.

A script is made to generate all the commands needed to apply BET
the data using its default parameters. Figure 3.4 shows a MRI scan
before and after applying BET. The Brain extraction tool method does
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Figure 3.4: MRI scan of a MCI patient after applying BET.

not require any pre-processing before application, and it does not take
much time to process data.

3.2.2 Conversion of Nifti data to compressed numpy
arrays

The NiBabel [52] module is used in order to access data in neuroimag-
ing file formats. It is used to load the MRI scans and get the image
data from Nifti images. Nibabel is a pure Python package which can
be installed using pip. A NiBabel image contains:

• The image data array: a 3D or 4D array of image data. Figure 3.5
shows the image data of one MRI scan.

• An affine array: gives information about the position of the im-
age array data in a reference space. Figure 3.6 shows the affine
array from one MRI scan.

• Image metadata: In form of an image header, it describes the
image. The header is shown in Figure 3.7.

Figure 3.5: Center slices of a MRI scan from an AD patient.
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Figure 3.6: Affine array information.

Figure 3.7: Header information of a MRI scan.

Finally the image data array is saved in a numpy array and com-
pressed which results in a ".npz" file format.

3.2.3 Normalization

Image registration or Spatial Normalization

Since human brains differ in size and shape the use of spatial normal-
ization is necessary. The aim of this normalization is the spatial trans-
formation of brain scans into a common space, making them compara-
ble to each other [53]. This is also known as image registration, which
is the process of transforming different sets of data into one coordinate
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system.
There are two commonly used neuroimaging reference spaces: Ta-
lairach and MNI (proposed by Montreal Neurological Institute). By
using Nilearn, a neuroimaging package from Sklearn [54], data is re-
sampled to an MNI space. A 3-dimensional nonrigid transformation
model for warping a brain scan to the ICBM152 template (the cur-
rent standard MNI template) is used. Linear ICBM Average Brain
(ICBM152) Stereotaxic Registration Model is an average of 152 T1-
weighted MRI scans, linearly transformed into the common MNI152
coordinate system, which is based on Talairach space. This template
is widely used, for example in FSL and in SPM. Figure 3.8 shows the
same scan from Figure 3.5 after transforming it to the ICBM152 tem-
plate.

Figure 3.8: Center slices of a resampled MRI scan from an AD patient.

Figure 3.9: Affine array and shape information of the original image,
the resampled image, and the template.
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In Figure 3.9 one can observe how the image size and its affine ma-
trix change to the same as the template. Independently of the original
images size and orientation, after applying the transformation to the
MNI152 space all of them are comparable. All the image data has the
dimension 91x109x91.

Cut images

After the spatial normalization, data is cut to dimension 80x80x80 in
order to have a zoom in the ROI. Figure 3.10 shows a scan after this
zoom.

Figure 3.10: Edges of the 3D image array from an AD patient are cut
to dimension 80x80x80.

Standardization

Finally, data is centered to the mean and component wise scaled to unit
variance, which is a common pre-processing in machine learning, by
using sklearn.preprocessing package. Figure 3.11 shows a scan after
this procedure.

Figure 3.11: Center slices of a resampled and standarized MRI scan
from an AD patient.
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2D Slices

2D slices over the first, second, and third dimensions of the 3D numpy
array are used in order to compare the performance of using 3D or 2D
data.

3.3 Data dimensionality reduction

3.3.1 CAE

Figure 3.12 shows the structure of the CAE developed in this project
when the input are 3D images.

Figure 3.12: CAE structure for 3D data input.
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The encoder consists of three convolutional layers with 8 filters of di-
mension 3x3x3, three max-pooling layers with filters 2x2x2, a fully
connected layer and two dense layers with 5500 nodes and 128 nodes
respectively. The fully connected layer produces a feature vector of
dimension 8000. The decoder consists of two dense layers with 5500
nodes and 8000 nodes, with the final layer to be able to reshape data
into dimension 10x10x10x8, followed by the same convolutional layers
as in the encoder and three upsampling layers with the same filters as
in max-pooling layers. The commonly used rectified linear unit (RLU)
is selected as the activation function.
The CAE is trained with 60% of the data, while the remaining 40% is
for testing. The loss function is the cross entropy loss and the opti-
mization is done by using the Adadelta algorithm with a learning rate
of 0.1 (which is reduced by a factor of 2-10 when the validation loss
has stopped improving). The model training is stopped when the val-
idation loss has stopped improving (with patience bigger than for the
learning rate decay). The CAE is trained in PDC 4 which is a High
Performance Computing center at KTH, Royal Institute of Technology
[56]. The data is stored in CFS5 system since it occupies a large amount
of memory. CAE is executed on TEGNER compute nodes and uses K80
GPUs.
The implementation of this CAE has been done with Keras library [57]
(open source neural network library written in Python) running on top
of TensorFlow [58] (open-source software library). This architecture
presented in Figure 3.12 has the same number of convolutional layers
with the same characteristics (size and number of filters) as the CAE
used in [15], with the addition of the dense layers to force a smaller
compressed representation of the images.
A dimensionality reduction analysis with 2D slices from MRI scans is
performed with the same CAE structure but then there are 2D filters
and the first dense layer in the encoder has 512 nodes, instead of 5500.

4It is the largest and fastest high performance computing (HPC) system in Swe-
den. The main HPC system at PDC is Beskow. PDC’s services are made available
to Swedish and European researchers, via the Swedish National Infrastructure for
Computing (SNIC) and PRACE respectively. SNIC is a national research infrastruc-
ture that provides a balanced and cost-efficient set of resources and user support for
large scale computation and data storage to meet the needs of researchers from all
scientific disciplines and from all over Sweden [55].

5CFS system or Lustre is one of the two storages systems of PDC. It is a parallel
file system highly optimized for fast access with computational processes.
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3.3.2 PCA

A linear dimensionality reduction is done by using PCA function from
Scikit-learn library in order to compare with the reduction from CAE.
To use this function, data is first standardized to have zero mean and
unit variance. The parameters used are the default, except for the di-
mensions. Data is reduced to 128, 50 and 2 dimensions.

3.3.3 t-SNE

t-SNE is used to reduce the dimensionality of the data to 2 dimensions
and compare the performance with the other dimensionality reduction
techniques. The parameters are the default except for perplexity, early
exaggeration and learning rate. Perplexity is fixed to a value of 20 while
different early exaggeration values (12, 50 and 80) and learning rate val-
ues (500 and 650) are evaluated.
Moreover, it is also used to visualize the data reduced in 2D by the
CAE. Scikit-learn [54] library is used for the implementations of t-SNE
in both dimensionality reduction and visualization applications.

3.4 Clustering

Kmeans was used as the first clustering technique since it is an easy
and well known algorithm. Then exploration of agglomerative and
DBSCAN clustering is performed by using Scikit-learn [54] library.
In agglomerative clustering, the Euclidean distance is used together
with ward linkage which minimizes the variance of the clusters being
merged. In DBSCAN the euclidean distance is used as a metric and
different eps values and min_samples values are evaluated.

3.5 Data statistics

A statistical analysis of the processed 3D MRI scans and the reduced
data (by the CAE, PCA and t-SNE) is done in order to check the simi-
larities and differences within groups and between groups of patients.
The purpose of a similarity measure is to give a value indicating how
well two samples match. Motivated by the work in [59] where an eval-
uation of eight different similarity measures for MRI images is done,
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Pearson correlation6 is chosen as a similarity measure. The Pearson
product-moment correlation coefficient rxy for two samples is calcu-
lated as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ))

σxσy
(3.1)

where n is the sample size, x̄ and ȳ the sample means ( x̄ = 1
n

∑n
i=1 xi),

and σx and σy are the standard variations of the each sample

(
√∑n

i−1(xi − x̄)2).

Pair-wise Pearson correlation is calculated for all the images of each
group of patients and then between images from different groups. The
studied groups are first AD, CN and MCI; and later subgroups of MCI
(explained in Section 3.6). In this project Pearson correlation imple-
mentation from scipy library is used.

3.6 Clusters based on progression to AD

MCI patients from ADNI with follow-up until 5-10 years are clustered
into different groups with respect to their progression to AD (if they
develop AD or not, and if they do, after how many years from the
baseline). These groups are the following:

1. Stable MCI: patients that remain stable during all the follow-up
years.

2. Progressive 1: Patients which progress to AD within a year.

3. Progressive 2: Patients that progress to AD in 2 years.

4. Progressive 3: Patients that progress to AD in 3 years.

5. Progressive 4: Patients that progress to AD in between 3 and 5
years.

6. Progressive 5: Patients that progress to AD in more than 5 years.

6 Pearson correlation is the most widely-used type of correlation and it is also
called linear or product-moment correlation. It is a measure of the linear correlation
between two random variables X and Y and takes values between +1 and -1.
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Results

4.1 Analysis of different groups of patients
with the reduced data

First of all, from the CAE’s structure explained on 3.3, four different
models are built and trained with pre-processed MRI images from AD,
CN and MCI patients. The first model is trained with 3D scans and
the other three with 2D slices over each dimension. In those four mod-
els, all the groups of patients are used since the data is labeled, which
makes it possible to test if the CAE as the dimensionality reduction
and feature extraction approach is helpful to cluster the data. Further-
more, it helps to decide whether latent representations obtained with
the CAE are more suitable for further analysis with 3D scans or 2D
slides.

(a) Training loss (b) Validation loss

Figure 4.1: Training and validation loss functions of CAE with input
images of size 80x80x80. Starting η = 0.1, epochs= 40.
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Figure 4.1 shows the training and validation loss functions of the CAE
model 1 trained with 80x80x80 size images for 40 epochs. The ini-
tial learning rate used when training this model is 0.1 and it is reduced
when validation loss has stopped improving (this function is called Re-
duce Learning Rate on Plateau). As can be seen in Figure 4.1, the model
did not converge after 40 epochs, but due to the computational cost of
the training and the non-significant improvement in the training loss
and validation loss, which was monitored by TensorBoard1, it was not
worth continuing the training for longer.

(a) Slice 1 Training loss (b) Slice 1 Validation loss

(c) Slice 2 Training loss (d) Slice 2 Validation loss

(e) Slice 3 Training loss (f) Slice 3 Validation loss

Figure 4.2: Training and validation loss of the three CAE models with
the three 2D slices over each dimension as input. Starting η = 0.1,
epochs= 120.

1Visualizing learning tool of Tensorflow [60]
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Figure 4.2 shows the training loss and validation loss functions of the
other three CAE models which are trained with 2D images of size
80x80 for 120 epochs. The initial learning rate is the same as in the
3D CAE, and it also uses the function Reduce Learning Rate on Plateau
and early stopping with the validation loss as metric for both cases.
As shown in Figure 4.2, the three models have similar loss curves and
they converge before the 120 epochs.
Once the models are trained, manifold visualization of the reduced
data is done by using t-SNE in order to see if the main 3 classes (AD,
CN and MCI) of patients become separable. Figure 4.3 shows the 2-
dimensional representation of the reduced data by CAE 2D trained on
images from slice 1 (X and Y dimensions).

Figure 4.3: Manifold visualization of reduced data by CAE with 2D
slices 1. Data was compressed into 128 nodes (left) and 512 nodes
(right). On the left there is the representation of the data when re-
duced into 128 nodes and visualized using t-SNE parameters: learning
rate = 500 and early exaggeration = 50. On the right we can see the rep-
resentation of the data when reduced into 512 nodes and visualized
with t-SNE parameters: learning rate = 650 and early exaggeration = 80.

Figure 4.4 shows the 2-dimensional representation of the reduced data
by the CAE with 3D input data. As can be seen, neither the reduced
data obtained from the CAE trained on 3D images nor from the CAE
models trained on 2D images has led to a clear separation of the three
main classes. Although the manifold visualization results are not in-
dicative of suitable data representations obtained with CAE, agglom-
erative and DBSCAN clustering are performed because the data could
be separable when using 128 or more dimensions. Other dimensional-
ity techniques are used such as PCA and t-SNE. The algorithms are not
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Figure 4.4: Manifold visualization of reduced data by CAE with 3D
images as input. Data was compressed into 128 nodes (left) and 5500
nodes (right). On the left is presented the representation of the data
when reduced into 128 nodes and visualized using t-SNE parameters:
learning rate = 500 and early exaggeration = 80. On the right there is the
representation of the data when reduced into 5500 nodes and visual-
ized with t-SNE parameters: learning rate = 650 and early exaggeration
= 50.

able to find the original three clusters (AD, MCI and CN) neither with
the reduced data from CAE, nor reduced with the other techniques.
Finally, even if it was not possible to cluster the three main groups,

(a) Training loss (b) Validation loss

Figure 4.5: Training and validation loss functions of the CAE model 5
with input MCI images of size 80x80x80. Starting η = 0.1, epochs= 30.

CAE model 5 is trained with MCI input data which has the same pa-
rameters as the first model but uses MCI data only. It is expected that
the CAE gets a better output when training with images from the same
group. Figure 4.5 shows the training and validation loss functions of
the CAE model 5 with 80x80x80 size MCI images for 30 epochs.
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Manifold visualization is performed on the reduced data before and
after applying clustering algorithms. Figure 4.6 shows the represen-
tation of the 128-dimensional compressed data by the CAE model 5.
Figure 4.6(a) depicts how the six MCI clusters regarding the conver-
sion to AD (explained in Section 3.6) are located and Figure 4.6(b) de-
scribes the representation of the clusters found by the agglomerative
clustering technique. Figure 4.7 shows the same than Figure 4.6 but
with 5500-dimensional compressed data.

(a) MCI progression clusters (b) Found clusters

Figure 4.6: Manifold visualization of 128-dimensional data by CAE
model 5 before and after applying agglomerative clustering.

(a) MCI progression clusters (b) Found clusters

Figure 4.7: Manifold visualization of 5500-dimensional data by CAE
model 5 before and after applying agglomerative clustering.

The clusters obtained by agglomerative clustering are not close to the
six MCI clusters regarding the AD progression and DBSCAN cluster-
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ing can just find one cluster in the data. The MCI data is rather evenly
spread and it is difficult to find distinct groups.

4.2 MCI clusters regarding AD progression
analysis

Using the information provided by ADNI, six clusters of MCI patients
are generated as explained in Section 3.6. There is a total of 516 MCI
subjects scans and they are clustered as follows: 231 Stable MCI scans,
78 Progressive 1 scans, 106 Progressive 2 scans, 44 Progressive 3 scans, 29
Progressive 4 scans, and 28 Progressive 5 scans.
A comparison of image similarities is performed with the processed
3D MRI baseline scans of these six clusters. The motivation for this
analysis is to examine whether at the baseline it is already possible to
distinguish patients that will remain stable or develop AD at a certain
time. Figure 4.8 shows the Pearson correlation matrix where the diag-
onal elements represent the mean of the pair-wise Pearson correlation
between images of the same group and the off-diagonal elements rep-
resent the mean of the pair-wise Pearson correlation of images from
two different groups.

Figure 4.8: Pearson matrix correlation of stable, progressive 1, progres-
sive 2, progressive 3, progressive 4 and progressive 5 clusters.
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As expected, the diagonal values are higher than the off-diagonal val-
ues. This indicates that there are some differences, although small, in
the images at the baseline that could help to cluster patients into dif-
ferent MCI subtypes regarding its progression to AD.
In addition to the Pearson correlation measure, another test is run in
order to see whether the clusters are distinct. The mean of the max-
imum radius of the clusters is compared to the mean of the distance
between cluster centers. This empirical statistic is calculated as fol-
lows:

D =
1
n

∑n
i=1 rmi

1
(n−1)n/2

∑n−1
i=1

∑n
j=i+1 cdij

(4.1)

where n is the number of clusters, rmi is the maximum radius of clus-
ter i and cdij is the distance between centers of the two clusters i and
cluster j. Figure 4.9 explains rm and cd graphically.

Figure 4.9: rm and cd measures from six clusters.

This difference D is calculated for the six original clusters and it is
repeated 100 times for random clusters in the spirit of the random per-
mutation test. Doriginal is 3.19 while the mean of the 100 Drandom is 3.91.
Moreover Doriginal is smaller than Drandom for the 100 random cases
with a difference margin = 0.1 and probability = 93%, and with a dif-
ference margin = 0.5 and probability = 71%.



CHAPTER 4. RESULTS 39

The results obtained with this test indicate that the spread of each clus-
ter is larger when they are random and that the distance between clus-
ters is smaller, due to the proximity of the new random clusters. Since
the D value of the comparison is larger than 1 we know that the radii
of the clusters are larger than the distances between cluster centroids.
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Discussion

Throughout this work an analysis of the potential of machine learn-
ing and deep learning applied to the field of neuroimaging has been
evaluated. This analysis has been conditioned to the main assump-
tion of working with data processed as little as possible, thus avoid-
ing expert knowledge on brain image pre-processing. The aim of the
analysis was to increase the understanding of AD biomarkers in early
stages, in concrete MCI subtypes. Despite intensive investigations into
data representations including various approaches to dimensionality
reduction I could not find clearly separable clusters based on sMRI
data with machine learning.
An important question that has arisen in the project is concerned with
the evaluation of the results of unsupervised learning. In the context
of this research, it relates to both the autoencoder representations and
clustering outcomes. It is not clear how to determine whether CAE
performed well as a dimensionality reduction and feature extraction
approach. Similarly, an identification of meaningful clusters in MCI
data could either depend on the CAE’s performance or the intrinsic
differences in MRI recordings for different MCI subtypes.
Although MCI clusters found by clustering following the data dimen-
sionality reduction were not representative, observed meaningful cor-
relation with the baseline images of different MCI progression groups
based on information provided by ADNI is found. This observation is
in line with Yaffe et al.’s work in [21] where an association between the
conversion to different dementia and prior subtype of MCI was found,
which inspired the main question in this thesis.
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The measure D described in Section 4.2 has scaling problems when us-
ing different amount of clusters. However, in this study a fixed num-
ber of six clusters is used, thus the aforementioned scaling problem
does not have any effect on the outcome. Another similar measure
that could have been used to analyze the clusters generated is Davies
Bouldin index (DBI) [61], a cluster similarity indication. This measure
accounts for dispersion of a cluster and dissimilarity between clusters
[62]. Nevertheless, DBI offers a paired comparison of clusters whilst
with the measure proposed in this work the general similarities are an-
alyzed without focusing on specific clusters.
In this work a convolutional autoencoder was chosen as an unsuper-
vised learning method for dimensionality reduction as it has proven
useful in previous work in the area of AD diagnosis. However, there
are other alternatives that could be considered such as Self-organizing
map (SOM) [63], which produces a low-dimensional topographical
representation of the data based on a specific similarity measure.

5.1 Problems and limitations

Several problems have occurred during the execution of this work and
there have been some limitations that have had an impact on the result
of this research, they are the following:

• The evaluation of CAE’s performance was not easy. Based on the
performance when using AD and CN patients data in addition
to MCI, I can see that it is not good enough to extract features
from MRI images processed as described in Chapter 3. Its mani-
fold representation is not comparable to manifold representation
done in Hosseini et al.’s work [15] where generic features captur-
ing AD biomarkers are learnt from using a similar structure of
CAE with bigger 3D images. However, in that case CAEs convo-
lutional filters had to be pre-trained with carefully pre-processed
data.

• As expected at the beginning of the work, the small number of
images available has been a limitation when working with a deep
learning approach. Nevertheless, data augmentation was stud-
ied but due to rather poor performance of the CAE and the large
volume of the generated data, this technique was discarded.
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• Another limitation was to train and test the model with PDC due
to the long queuing time. It would have been much easier to have
GPU resources just for this project and not shared with so many
users.

5.2 ML on raw data vs processed MRI data

In the light of these difficulties, I have hypothesized lack of domain-
specific sMRI processing, planned in this work, could be a deciding
factor about my negative findings. I strongly believe that it is still in-
teresting to explore MCI subtypes, however with carefully processed
data since the atrophy differences of amnestic and non-amnestic MCI
types by structural MRI have been demonstrated in [41].
While most of the work done for diagnosis and prognosis of AD uses
domain-specific pre-processed sMRI data [5, 6, 7, 13], Liu et al. [9],
motivated by the success of CNN in image classification, used a Cas-
caded CNN to learn multi-level and multimodal features of MRI and
PET brain images for AD classification avoiding then this specific pre-
processing.

5.3 Ethical, Societal and Sustainability as-
pects

There is a enormous ethical and social responsibility when working
with medical data and this responsibility is assumed by ADNI in this
work. ADNI provides a secure research data repository where access
is controlled and patients’ anonymity is ensured.
In addition, better understanding of sMRI biomarkers for detection
and prediction of early stages of AD may have an important impact
on successful treatments and thus on the society that suffer from this
disease. As stated in [41], the assignment of MCI subtypes would be
useful to improve the prediction of dementia type and the risk of con-
version to dementia. Thus, for the long-term goal of this research one
of the main motivations is to extend and improve the quality of life
of people suffering from AD. Therefore, I believe that this work has a
clear ethical component as it allocates technological resources and sci-
entific knowledge to this purpose.
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Moreover, to work with less processed data ensures saving of time and
resources such as the licenses of brain imaging software.
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Conclusions and Future Work

The analysis done in this work did not lead to a clear answer about the
likelihood of the conversion rate for any specific types of MCI since it
has not been possible to find clearly separable clusters using machine
learning and deep learning. However, a significant correlation within
the baseline images of the respective six groups identified based on
AD progression has been found which shows the possibility to identify
different patterns in MCI patients sMRI scans related to the progres-
sion to AD. To the best of my knowledge, there is no previous work
where MCI patients are clustered in an automated way and even less
researchers working without hand-craft imaging features; thus I be-
lieve more research in this direction is necessary in order to obtain new
insights to the understanding of AD biomarkers. Moreover, despite
the inconclusive results, it opens a research line on using non domain-
specific pre-processing in the purpose of the study of AD early stages
biomarkers.

There are several aspects that could be explored in the future, such
as:

• To repeat the same methodology but using properly processed
images (using brain imaging software like FreeSurfer or FSL).
For example to perform ROI extraction (extract the hippocampus
and entorhinal) and to apply masks to the data. This is some-
thing that could be possible to do in a future collaboration with
Professor Joana Pereira from the Department of Neurobiology,
Care Sciences and Society (NVS) in Karolinska Institutet, which
offers to share their processed data from ADNI sMRI scans for

44
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this study.

• To use other techniques than convolutional neural networks for
the feature extraction. For example try to cluster MCI patients
and obtain significant discriminative features using Random for-
est pairwise similarity, as it is done in [64]. This also implies
performing a domain-specific pre-processing to the data.
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