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Abstract

Fuzzy subgroups are revisited considering their close relationship
with indistinguishability operators (fuzzy equivalences) invariant un-
der translations.

Different ways to obtain new fuzzy subgroups from a given one are
provided and different ways to characterize normal fuzzy subgroups
are obtained.

The idea of double coset of two (crisp) subgroups allow us to relate
them via their equivalence classes. This is generalized to the fuzzy
framework.

The conditions in which a fuzzy relation R on a group G can be
considered a fuzzy subgroup of G×G are obtained.

Keywords: fuzzy subgroup, normal fuzzy subgroup, T -indistinguishability
operator, invariance under translations, double coset.

1 Introduction

Indistinguishability operators, also called fuzzy equivalence relations or fuzzy
equalities, fuzzify the concepts of crisp equivalence relation and crisp equality.
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They were introduced by Zadeh in [15] and there is a big amount of literature
dealing with them.

The natural generalization of crisp subgroup of a group (G, ◦) to the
fuzzy framework was given by Rosenfeld [13] using the minimum t-norm
for modelling closeness and many works have been devoted to the topic.
One of the most interesting properties of these fuzzy subgroups is that their
alpha–cuts are crisp subgroups, a result intimately related to the fact that
the alpha–cuts of a min-indistinguishability operator on a universe X are
partitions of X. Lately, fuzzy subgroups with respect to general t-norms
have been considered and studied [2, 5, 11].

To every fuzzy subgroup µ of a group (G, ◦) two indistinguishability op-
erators Eµ and µE can be associated that are left and a right invariant under
translations respectively. If the fuzzy subgroup µ is normal, then the left and
right indistinguishability operators Eµ and µE coincide and the operation of
the group is compatible with them.

To mention only one field where invariance under translations is usu-
ally assumed and needed, we can consider Fuzzy Mathematical Morphol-
ogy [3]. In the study of objects in the plane R2, isotropy is usually as-
sumed and hence the used relations must be invariant under translations.
For one of these relations R, two of the basic operators, dilation D and
erosion E, can be defined by D(µ)(~x) = sup~y∈R2 T (R(~y − ~x), µ(~y)) and

E(µ)(~x) = inf~y∈R2

−→
T (µ(~y)|R(~y − ~x)). If R is an indistinguishability oper-

ator, then the structural element is the fuzzy subgroup R((0, 0), ·) of R2.
The study of the closed relation between fuzzy subgroups and indistin-

guishability operators will be continued in this paper. After a Section 2 of
basic or known results needed to make the paper as self contained as pos-
sible, Section 3 will focus on different ways to obtain new fuzzy subgroups
from a given fuzzy subgroup µ and on the relation between the indistin-
guishability operators associated to these new fuzzy subgroups and the ones
associated to µ. Being normality of a fuzzy subgroup such important, several
characterizations of this property are obtained.

A fuzzy subgroup µ of G, considered as a fuzzy subset of G, generates
an indistinguishability operator Eµ [14, 11]. Section 4 is devoted to the
relationship between Eµ and the right and left invariant indistinguishability
operators associated to µ.

Double cosets are a way to relate two subgroups. In Section 5 the con-
cept of double coset is fuzzified and the indistinguishability operators having
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double cosets as columns are studied.
A fuzzy relation R on a group G is a fuzzy subset of G×G and therefore

a candidate to be a fuzzy subgroup of G×G. This will be studied in Section
6 where conditions on R to be a fuzzy subgroup are given.

In the section of Concluding Remarks, some interesting examples of the
real line and the plane will be analyzed.

2 Preliminaries

This section contains some definitions and properties related to fuzzy sub-
groups, indistinguishability operators and their connection that will be needed
later on. All the results are known and the reader is referred to [5, 7, 10, 11]
for comments and proofs.

Throughout the paper T will denote a given t-norm.
Fuzzy subgroups were introduced by Rosenfeld [13] as a natural general-

ization of the concept of subgroup and have been widely studied [10].

Definition 2.1. Let (G, ◦) be a group, e its identity element and µ a fuzzy
subset of G. Then µ is a T -fuzzy subgroup (or simply a fuzzy subgroup) of G
if for all x, y ∈ G the following properties hold

a) µ(e) = 1

b) µ(x) = µ(x−1)

c) T (µ(x), µ(y)) ≤ µ(x ◦ y). (Closeness)

A fuzzy subset of G satisfying a) and c) is called a T -fuzzy monoid or fuzzy
monoid.

Proposition 2.2. Let (G, ◦) be a group, e its identity element, µ a fuzzy
subgroup of G with µ(e) = 1 and λ ∈ [0, 1] satisfying T (λ, λ) = λ. Then the
λ-cut of µ is a (crisp) subgroup of G. In particular, the core H of µ (i.e.:
the set of elements x of G such that µ(x) = 1) is a (crisp) subgroup of G.

Definition 2.3. A fuzzy relation E on a set X is a T -indistinguishability
operator (or simply indistinguishability operator) on X if for all x, y, z of X
satisfies the following properties

a) E(x, x) = 1 (Reflexivity)

3
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b) E(x, y) = E(y, x) (Symmetry)

c) T (E(x, y), E(y, z)) ≤ E(x, z) (Transitivity)

A fuzzy relation satisfying a) and c) is called a fuzzy preorder.

Indistinguishability operators extend the concept of equivalence relation
and equality to the fuzzy framework and they are also called fuzzy equiva-
lences and fuzzy equality relations. E(x, y) can be viewed as the degree of
similarity or indistinguishability between x and y. A general panorama on
indistinguishability operators can be found in [11].

We recall the sup−T product between fuzzy relations.

Definition 2.4. Let X, Y, Z be sets and R : X×Y → [0, 1] and S : Y ×Z →
[0, 1] fuzzy relations. The sup−T product R ◦T S of R and S is the fuzzy
relation R ◦T S : X × Z → [0, 1] defined for all x ∈ X, z ∈ Z by

R ◦T S(x, z) = sup
y∈Y

T (R(x, y), S(y, z)).

To every fuzzy subset µ of a group (G, ◦) a pair of fuzzy relations can be
associated that are indistinguishability operators if and only if µ is a fuzzy
subgroup of G. This two indistinguishability operators coincide when µ is a
fuzzy normal subgroup and then they are compatible with the operation ◦
of the group.

Definition 2.5. Let ◦ be a binary operation on a set G and E a fuzzy relation
on G. E is invariant under translations with respect to ◦ if for all x, y, z ∈ G,

a)
E(x, y) = E(z ◦ x, z ◦ y) (left invariant)

and

b)
E(x, y) = E(x ◦ z, y ◦ z) (right invariant).

Definition 2.6. Let µ be a fuzzy subset of a group (G, ◦). The fuzzy relations
Eµ and µE on G defined for all x, y ∈ G by

Eµ(x, y) = µ(x ◦ y−1)

4
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and

µE(x, y) = µ(y−1 ◦ x)

are the right and left fuzzy relations associated to µ respectively.

Proposition 2.7. Let µ be a fuzzy subgroup of a group (G, ◦). Then Eµ

and µE are right and left invariant indistinguishability operators on G re-
spectively.

Lemma 2.8. If µ is a fuzzy subgroup of a group (G, ◦) and e is the identity
element of G, then Eµ(x, y) = Eµ(e, x ◦ y−1) and µE(x, y) =µ E(e, y ◦ x−1)
∀x, y ∈ G.

Reciprocally, to every right (left) indistinguishability operator on (G, ◦)
a fuzzy subgroup of G can be assigned.

Proposition 2.9. Let E be a right (left) invariant indistinguishability op-
erator on a group (G, ◦) with identity element e. Then the column µe of E
(i.e., the fuzzy subset µe of G defined by µe(x) = E(e, x) ∀x ∈ G) is a fuzzy
subgroup of G and E = Eµe (E =µeE).

Corollary 2.10. Let (G, ◦) be a group. There exist bijections between the
set of fuzzy subgroups of G, the set of right invariant indistinguishability
operators on G and the set of left invariant indistinguishability operators on
G mapping every fuzzy subgroup µ of G into its associated indistinguishability
operators Eµ and µE.

The following definition fuzzifies the concept of normal subgroup.

Definition 2.11. A fuzzy subgroup µ of a group (G, ◦) is a normal fuzzy
subgroup if µ(x ◦ y) = µ(y ◦ x) ∀x, y ∈ G.

Proposition 2.12. Let (G, ◦) be a group and µ a normal fuzzy subgroup of
G. The indistinguishability operators Eµ and µE associated to µ coincide
and are invariant under translations.

Reciprocally,

Proposition 2.13. Let (G, ◦) be a group, µ a fuzzy subgroup of G and Eµ

and µE its associated indistinguishability operators. If Eµ and µE coincide,
then µ is a normal fuzzy subgroup of G.

5
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Corollary 2.14. Let (G, ◦) be a group. There is a bijection between the set
of normal fuzzy subgroups of G and the set of indistinguishability operators
on G invariant under translations mapping every normal fuzzy subgroup µ of
G into its associated indistinguishability operators Eµ.

In fact, the bijections of Corollaries 2.10 and 2.14 are lattice isomor-
phisms.

3 Indistinguishability Operators and Fuzzy Sub-

groups

This section will deepen on the relation between fuzzy subgroups and left and
right indistinguishability operators. It starts showing two ways of obtaining
a fuzzy subgroup from a given fuzzy monoid (or fuzzy semi-group) ν by
symmetrization and relating the associated fuzzy preorders of ν with the
indistinguishability operators associated to the obtained fuzzy subgroup.

Some ways to obtain new fuzzy subgroups from a given fuzzy subgroup
µ of a group G are provided and at the end of the section some ways to
derive fuzzy subgroups on some subgroups of the group of bijections of G are
shown.

Normality of a fuzzy subgroup is important because its associated indis-
tinguishability operator and the operation of the group are compatible. In
this section we provide characterizations of normal fuzzy subsets and conse-
quently to indistinguishability operators invariant under translations.

Lemma 3.1. If ν is a fuzzy monoid of a group (G, ◦), then the fuzzy subset
ν ′ of G defined for all x ∈ G by ν ′(x) = ν(x−1) is a fuzzy monoid.

Proof. Trivial.

In fact, considering the dual group (G, ∗) of (G, ◦) (where ∗ is defined for
all x, y ∈ G by x ∗ y = y ◦ x) the mapping f : (G, ◦) → (G, ∗) is a group
isomorphism and ν and ν ′ can be considered as dual monoids.

Proposition 3.2. Let (G, ◦) be a group and ν a fuzzy monoid of G. Then
the fuzzy subset µ of G defined for all x ∈ G by

µ(x) = T (ν(x), ν(x−1)) = T (ν(x), ν ′(x))

is a fuzzy subgroup of G.

6
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Proof. Properties a) and b) of Definition 2.1 are clear.
Le us prove c) i.e.: for x, y ∈ G, T (µ(x), µ(y)) ≤ µ(x ◦ y):

µ(x ◦ y) = T (ν(x ◦ y), ν(y−1 ◦ x−1))

≥ T (T (ν(x), ν(y)), T (ν(y−1), ν(x−1)))

≥ T (T (ν(x), ν(x−1), T (ν(y), ν(y−1)))

= T (µ(x), µ(y)).

Example 3.3. In R consider the fuzzy subset ν defined by

ν(x) =


1 if x ≥ 0

1 + x if − 1 < x < 0

0 if x ≤ −1.

ν is a fuzzy monoid of (R, +) with respect to the t-norm  L of  Lukasiewicz
and µ(x) =  L(ν(x), ν ′(x)) is the  L-fuzzy subgroup defined by

µ(x) =

{
1− |x| if − 1 ≤ x ≤ 1

0 otherwise.

In a similar way we could prove the following proposition.

Proposition 3.4. Let (G, ◦) be a group and ν a fuzzy monoid of G. Then
the fuzzy subset µ of G defined for all x ∈ G by

µ(x) = min(ν(x), ν(x−1)) = min(ν(x), ν ′(x))

is a fuzzy subgroup of G.

In the same way as a fuzzy subgroup generates a left and a right invariant
indistinguishability operator, a fuzzy monoid generates a right and a left
invariant fuzzy preorder. The next two results show the relation between
the preorders generated by ν and the indistinguishability operators of the
obtained fuzzy µ in Propositions 3.2 and 3.4.
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Proposition 3.5. Let (G, ◦) be a group, ν a fuzzy monoid of G and µ the
fuzzy subgroup of G defined by µ(x) = T (ν(x), ν(x−1)) = T (ν(x), ν ′(x)) for all
x ∈ G. If P is the right (left) invariant fuzzy preorder associated to ν, then
the right (left) indistinguishability operator E associated to µ is E(x, y) =
T (P (x, y), P (y, x)) for all x, y ∈ G.

Proof. Let P be right invariant. Then

E(x, y) = µ(x ◦ y−1)

= T (ν(x ◦ y−1), ν(y ◦ x−1)

= T (P (x, y), P (y, x))

and E is also right invariant.
For left invariance a similar proof applies.

In a similar way we could prove the following result.

Proposition 3.6. Let (G, ◦) be a group, ν a fuzzy monoid of G and µ the
fuzzy subgroup of G defined by µ(x) = min(ν(x), ν(x−1)) = min(ν(x), ν ′(x))
for all x ∈ G. If P is the right (left) invariant fuzzy preorder associated
to ν, then the right (left) indistinguishability operator E associated to µ is
E(x, y) = min(P (x, y), P (y, x)) for all x, y ∈ G.

There are several ways to obtain a fuzzy subgroup from a given one. Some
interesting ones are Propositions 3.7, 3.9 and 3.10.

Proposition 3.7. Let µ be a T -fuzzy subgroup of a group (G, ◦), T a con-
tinuous Archimedean t-norm with an additive generator t, and f a map
f : [0, 1] → [0, 1]. If there exists a metric transform s (i.e.: a sub-additive
and non-decreasing map s : [0,∞) → [0,∞) with s(0) = 0) such that
f = t[−1] ◦ s ◦ t, then f ◦ µ is a T -fuzzy subgroup of G.

Proof.

a) f(µ(e)) = (t[−1] ◦ s ◦ t)(µ(e)) = 1.

b) It is clear that f(µ(x)) = f(µ(x−1))

c)

T (f(µ(x)), f(µ(y))) = t[−1](t(t[−1] ◦ s ◦ t)(µ(x)))+ t(t[−1] ◦ s ◦ t)(µ(y)))).

8
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i) If (s◦t)(µ(x)) > t(0) or (s◦t)(µ(y)) > t(0), then
(
t[−1] ◦ s ◦ t

)
(µ(x)) =

0 or
(
t[−1] ◦ s ◦ t

)
(µ(y)) = 0 and therefore T (f(µ(x)), f(µ(y))) ≤

f(µ(x ◦ y)).

ii) Otherwise, t(µ(x)) + t(µ(y)) ≥ t(µ(x ◦ y)) and

T (f(µ(x)), f(µ(y))) = t−1((t ◦ f)(µ(x)) + (t ◦ f)(µ(y)))

= t−1((t ◦ t−1 ◦ s ◦ t)(µ(x)) + (t ◦ t−1 ◦ s ◦ t)(µ(y)))

= t−1((s ◦ t)(µ(x)) + (s ◦ t)(µ(y)))

≤ (t−1 ◦ s ◦ t)(µ(x ◦ y))

= f(µ(x ◦ y)).

Example 3.8. The map s : [0,∞) → [0,∞) defined by s(x) = xα for all
x ∈ [0,∞) with 0 < α ≤ 1 is a metric transform. Consider a group (G, ◦).

a) If µ is a T -fuzzy subgroup of G with T the  Lukasiewicz t-norm, t(x) =
1− x an additive generator of T , then

f(µ(x)) = (t−1 ◦ s ◦ t)(µ(x)) = 1− (1− µ(x))α

is also a T -fuzzy subgroup of G.

b) If µ is a T -fuzzy subgroup of G with T the Product t-norm and t(x) =
− ln x an additive generator of T , then

f(µ(x)) = e−(− ln µ(x))α

is also a T -fuzzy subgroup of G.

Proposition 3.9. Let µ be a min-fuzzy subgroup of a group (G, ◦) and f :
[0, 1] → [0, 1] a non-decreasing map with f(1) = 1. Then f ◦µ is a min-fuzzy
subgroup of G.

Proof. Trivial.

If E is an indistinguishability operator on a set X and f : X → X
is a map, then the fuzzy relation Ef on X defined for all x, y ∈ X by
Ef (x, y) = E(f(x), f(y)) clearly is an indistinguishability operator on X.
Hence, mappings f preserving invariance under translations will provide a
way to obtain new fuzzy subgroups from a given one.

9
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Proposition 3.10. Let µ be a fuzzy subgroup of (G, ◦), Eµ its right invariant
associated indistinguishability operator and f : G → G a bijection. If (Eµ)f

is right invariant, then its associated fuzzy subgroup µf is µf (x) = µ(f(x) ◦
(f(e))−1).

Proof.

µf (x) = (Eµ)f (x, e)

= Eµ(f(x), f(e))

= Eµ(f(x) ◦ (f(e))−1, e)

= µ(f(x) ◦ (f(e))−1).

Similarly,

Proposition 3.11. Let µ be a fuzzy subgroup of (G, ◦), µE its left invariant
associated indistinguishability operator and f : G → G a bijection. If (µE)f

is left invariant, then its associated fuzzy subgroup fµ is fµ(x) = µ((f(e))−1◦
f(x)).

Example 3.12. Let (G, ◦) be a group and µ a fuzzy subgroup of G.

a) The fuzzy subset ν of G defined for all x ∈ G by ν(x) = µ(x−1) is a
fuzzy subgroup of X and Eν(x, y) = Eµ(x−1, y−1).

The following common actions of G on G also provide new fuzzy subgroups.

b) Fixing z ∈ G, from the conjugation fz(x) = z ◦ x ◦ z−1 we obtain
Efz(x, y) = E(z ◦ x ◦ z−1, z ◦ y ◦ z−1) and µfz(x) = µ(z ◦ x ◦ z−1).

c) Fixing z ∈ G, from the right translation fz(x) = x ◦ z we obtain
Efz(x, y) = E(x ◦ z, y ◦ z). If E is left invariant, then Efz(x, y) =
E(x ◦ z, y ◦ z) = E(z−1 ◦ x ◦ z, z−1 ◦ y ◦ z) and µfz(x) = µ(z−1 ◦ x ◦ z).

c) Fixing z ∈ G, from the left translation zf(x) = z◦x we obtain Ezf (x, y) =
E(z ◦x, z ◦y). If E is right invariant, then Ezf (x, y) = E(z ◦x, z ◦y) =
E(z ◦ x ◦ z−1, z ◦ y ◦ z−1) and µzf (x) = µ(z ◦ x ◦ z−1).

Normality is an important property of fuzzy subgroups because their as-
sociated indistinguishability operators are invariant under translations and
the operation is compatible with them. The next propositions provide char-
acterizations for normal fuzzy subgroups.

10
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Proposition 3.13. A fuzzy subgroup µ of (G, ◦) is normal if and only if for
all x, y, z, t ∈ G, µ(x ◦ y ◦ (z ◦ t)−1) ≥ T (µ(x ◦ z−1), µ(y ◦ t−1)).

Proof.

⇒) If µ is normal, then

µ(x ◦ y ◦ t−1 ◦ z−1) = µ(z−1 ◦ x ◦ y ◦ t−1)

≥ T (µ(z−1 ◦ x), µ(y ◦ t−1))

= T (µ(x ◦ z−1), µ(y ◦ t−1)).

⇐) By symmetry, it is sufficient to prove µ(y ◦ x) ≥ µ(x ◦ y).

µ(y ◦ x) = µ(y ◦ x ◦ y ◦ y−1)

≥ T (µ(y ◦ y−1), µ(x ◦ y))

= µ(x ◦ y).

The result of Proposition 3.13 can be rewritten in a more convenient
manner as in the next corollary.

Corollary 3.14. A fuzzy subgroup µ of (G, ◦) is normal if and only if for
all x, y, z, t ∈ G, µ(x ◦ z ◦ t ◦ y) ≥ T (µ(x ◦ y), µ(z ◦ t)).

Proposition 3.13 has the following translation to indistinguishability op-
erators.

Proposition 3.15. An indistinguishability operator E on a group (G, ◦) is
invariant under translations if and only if for all x, y, z, t ∈ G E(x◦y, z◦t) ≥
T (E(x, z), E(y, t)).

Proof. E is the indistinguishability operator associated to a normal fuzzy
subgroup µ of G. Then

E(x ◦ y, z ◦ t) = µ(x ◦ y ◦ (z ◦ t)−1)

≥ T (µ(x ◦ z−1), µ(y ◦ t−1))

= T (E(x, z), E(y, t)).

11
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Proposition 3.16. [8] A fuzzy subgroup µ of (G, ◦) is normal if and only if
for all x, y ∈ G, µ(x) = µ(y ◦ x ◦ y−1).

The next proposition is the counterpart of this last result to indistin-
guishability operators.

Proposition 3.17. Let E be an indistinguishability operator on a group
(G, ◦).

a) If E is invariant under translations, then for all x, y ∈ G E(x, y) =
E(x−1, y−1).

b) If E(x, y) = E(x−1, y−1) for all x, y ∈ G and E is left (right) invariant,
then E is invariant under translations.

Proof.

a)

E(x, y) = E(x ◦ x−1, y ◦ x−1) = E(e, y ◦ x−1) = µ(y ◦ x−1)

E(x−1, y−1) = E(x−1 ◦ x, y−1 ◦ x) = E(e, y−1 ◦ x) = µ(y−1 ◦ x).

But µ(y ◦ x−1) = µ(y−1 ◦ x) because E is invariant under translations
and, hence, µ is normal.

b) If E is left invariant, then there exists a fuzzy subgroup of G with
E(x, y) = µ(x−1 ◦ y) and E(x−1, y−1) = µ(x ◦ y−1) = µ(y ◦ x−1). So µ
is normal and hence E is invariant under translations.

A similar proof applies if E is right invariant.

The next proposition shows a way to obtain a right invariant indistin-
guishability operator Er from an arbitrary indistinguishability operator E
and therefore a way to obtain fuzzy subgroups. Moreover, if E is left invari-
ant, then the obtained fuzzy subgroup is normal.

Proposition 3.18. Let E be an indistinguishability operator on a group
(G, ◦). Consider the indistinguishability operator Er on G and the fuzzy
subset of G defined for all x, y ∈ G by

Er(x, y) = inf
z∈G

E(x ◦ z, y ◦ z),

12
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µr(x) = inf
z∈G

E(x ◦ z, z)

Then

a) Er is right invariant and µr is a fuzzy subgroup.

b) If E is left invariant, then Er is invariant under translations and µr is
normal.

c) If E is right invariant, then Er = E.

Proof.

a)

Er(x◦ t, y ◦ t) = inf
z∈G

E(x◦ t◦ z, y ◦ t◦ z) = inf
u∈G

E(x◦u, y ◦u) = Er(x, y).

µ(x) = inf
z∈G

E(x ◦ z, z) = Er(x, e).

b)

Er(t ◦x, t ◦ y) = inf
z∈G

E(t ◦x ◦ z, t ◦ y ◦ z) = inf
z∈G

E(x ◦ z, y ◦ z) = Er(x, y).

So Er is left invariant and thanks to a) it is also right invariant.

c) If E is right invariant, then

Er(x, y) = inf
z∈G

E(x ◦ z, y ◦ z) = E(x, y).

The next proposition is dual to Proposition 3.18.

Proposition 3.19. Let E be an indistinguishability operator on a group
(G, ◦). Consider the indistinguishability operator El on G and the fuzzy sub-
set of G defined for all x, y ∈ G by

El(x, y) = inf
z∈G

E(z ◦ x, z ◦ y),

µl(x) = inf
z∈G

E(z ◦ x, z)

Then

13
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a) El is left invariant and µl is a fuzzy subgroup.

b) If E is right invariant, then El is invariant under translations and µl

is normal.

c) If E is left invariant, then El = E.

From an indistinguishability operator E on a group (G, ◦), several indis-
tinguishability operators on the set of mappings f : G → G can be obtained.
Considering their restrictions to the group B (under composition) of bijec-
tive mappings f : G → G, if E is right (left) invariant, then the obtained
indistinguishability operators are right (left) invariant and hence from fuzzy
subgroups of G fuzzy subgroups of B can be obtained.

Proposition 3.20. [11] Let E be an indistinguishability operator on a set
X, x ∈ X and F the set of mappings f : X → X. Then the fuzzy re-
lation Ex on F defined for all f, g ∈ F by Ex(f, g) = E(f(x), g(x)) is an
indistinguishability operator.

Corollary 3.21. [11] Let E be an indistinguishability operator on a set X and
F the set of mappings f : X → X. Then the fuzzy relation EF on F defined
for all f, g ∈ F by EF (f, g) = infx∈X E(f(x), g(x)) is an indistinguishability
operator.

If X is a group, we get the following result concerning invariance.

Proposition 3.22. Let E be an indistinguishability operator on a group
(G, ◦) and B the group (under composition) of bijective mappings f : G → G.
Then EB (EF restricted to B) is a right invariant indistinguishability oper-
ator.

Proof. We only need to prove that EB is right invariant under translations.

EB(f ◦ h, g ◦ h) = inf
x∈G

E(f(h(x)), g(h(x)))

= inf
y∈G

E(f(y), g(y))

= EB(f, g).

Corollary 3.23. If µ is a fuzzy subgroup of (G, ◦). Then the fuzzy subset
µB of B defined for all f ∈ B by µB(f) = infx∈G µ(f(x) ◦ x−1) is a fuzzy
subgroup of B.

14
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Proof. Let Eµ be the right invariant indistinguishability operator associated
to µ. Then (Eµ)B is a right invariant indistinguishability operator on B
and its associated fuzzy subgroup µ is defined for all f ∈ B by µ(f) =
(Eµ)B(f, id) = infx∈G Eµ(f(x), x) = infx∈G µ(f(x) ◦ x−1) = µB(f).

4 Relationship between Natural, Right and

Left Invariant Indistinguishability Opera-

tors

A fuzzy subgroup µ of a group G is in particular a fuzzy subset of G and
therefore it generates an indistinguishability operator Eµ in a natural way
(Definition 4.3). In this section the relation between this operator and the
left and right ones associated to µ (Eµ and µE) will be studied. In partic-
ular it will be proved that Eµ ≥ max(Eµ,µE). In general equality is not
given; in fact, in order to achieve equality µ must be normal and G must be
idempotent.

In this section the t-norm T will be assumed to be left continuous.

Definition 4.1. [1, 9]

• The residuation
−→
T of a t-norm T is the map

−→
T : [0, 1]× [0, 1] → [0, 1]

defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

• The biresiduation
↔
T of a t-norm T is the map

↔
T : [0, 1]× [0, 1] → [0, 1]

defined for all x, y ∈ [0, 1] by

↔
T (x|y) = min{

−→
T (x|y),

−→
T (y|x)}.

If T is used to model the logical conjunction, then the residuation and
biresiduation model the implication and biimplication respectively.

Proposition 4.2. [14, 11]
↔
T is an indistinguishability operator on [0, 1] and

is also denoted by ET and called the natural indistinguishability operator as-
sociated to T .

15
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Proposition 4.3. [14] If µ is a fuzzy subset of a set X, then Eµ defined by
Eµ(x, y) = ET (µ(x), µ(y)) for all x, y ∈ X is an indistinguishability operator
on X.

Lemma 4.4. If µ is a fuzzy subgroup of the group (G, ◦), then Eµ(x, y) =
Eµ(x, y−1) = Eµ(x−1, y−1) for all x, y ∈ G.

Proof.

Eµ(x, y) = ET (µ(x), µ(y)) = ET (µ(x), µ(y−1)) = ET (µ(x−1), µ(y−1)).

Corollary 4.5. If µ is a fuzzy subgroup of a group (G, ◦), then Eµ(x, x−1) =
1 for all x ∈ G.

Proof.
Eµ(x, x−1) = Eµ(x, x) = 1.

Proposition 4.6. Let µ be a fuzzy subgroup of of a group (G, ◦). Then
Eµ(x, y) ≥ µ(x ◦ y) for all x, y ∈ G.

Proof.
T (µ(x ◦ y), µ(x)) = T (µ(x ◦ y), µ(x−1)) ≤ µ(y)

which is equivalent to

−→
T (µ(x)|µ(y)) ≥ µ(x ◦ y).

In a similar way,
−→
T (µ(y)|µ(x)) ≥ µ(x ◦ y).

As a corollary we have the following proposition.

Proposition 4.7. Let µ be a fuzzy subgroup of G. Then Eµ(x, y) ≥ Eµ(x, y)
and Eµ(x, y) ≥µ E(x, y) for all x, y ∈ G, where Eµ(x, y) = µ(x ◦ y−1) and

µE(x, y) = µ(x−1 ◦ y).

Proof.

Eµ(x, y) = Eµ(x, y−1) ≥ µ(x ◦ y−1) = Eµ(x, y)

Eµ(x, y) = Eµ(x−1, y) ≥ µ(x−1 ◦ y) =µ E(x, y).

16
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As an alternative proof, we can see that µ, being a column of Eµ and of

µE, is extensional with respect to these two indistinguishability operators,
which is equivalent to the assertion of the proposition.

Proposition 4.8. Let µ be a fuzzy subgroup of G and x, y, z ∈ G. Then
Eµ(z ◦ x, z ◦ y) ≥µE(x, y) and Eµ(x ◦ z, y ◦ z) ≥µE(x, y).

Proof.

Eµ(z ◦ x, z ◦ y) = ET (µ(z ◦ x), µ(z ◦ y))

= ET (µE(z−1, x),µE(z−1, y)) ≥µE(x, y).

Eµ(x ◦ z, y ◦ z) = ET (µ(x ◦ z), µ(y ◦ z))

= ET (Eµ(x, z−1), Eµ(y, z−1)) ≥ Eµ(x, y).

Proposition 4.9. Let µ be a fuzzy subgroup of G. If Eµ is invariant under
translations, then Eµ = Eµ =µE and µ is a normal fuzzy subgroup.

Proof. If Eµ is invariant under translations, then there exists a normal fuzzy
subgroup ν of G such that Eµ = Eν . For x ∈ G,

µ(x) = ET (µ(x), µ(e)) = Eν(x, e) = ν(x ◦ e−1) = ν(x).

Corollary 4.10. If Eµ is invariant under translations, then for all x ∈ G,
µ(x2) = 1.

Proof.
1 = Eµ(x, x−1) = Eµ(x, x−1) = µ(x ◦ x).

This result shows the difficulty for Eµ to be invariant under translations.
This will be analyzed in the examples of the section of Concluding Remarks.

Definition 4.11. [12] Two fuzzy relations E and F on a universe X com-
mute or are permutable if R ◦ S = S ◦R.
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Proposition 4.12. [4] Let E and F be two indistinguishability operators
on a universe X. Then E and F are permutable if and only if E ◦ F is
an indistinguishability operator. Moreover, this occurs if and only if E ◦ F
coincides with the transitive closure max(E, F ) of max(E, F ).

Proposition 4.13. [12] If Eµ and νE are the right and left invariant in-
distinguishability operators associated to two fuzzy subgroups µ and ν of a
group (G, ◦) respectively, then they commute. In particular, max(Eµ,µE) is
an indistinguishability operator.

Corollary 4.14. If µ is a fuzzy subgroup of a group (G, ◦), then Eµ ≥
max(Eµ,µE).

5 Double cosets

For two subgroups H and K of a group G, a double coset is an equivalence
class of the equivalence relation for which two elements of G are equivalent
if they differ by left multiplication with an element in H and right multi-
plication with an element of K. In this way the interrelation between the
left equivalence relation associated to H and the right equivalence relation
associated to K can be studied.

This section fuzzifies the concept of double coset on a group G.

Definition 5.1. Let (G, ◦) be a group and µ, ν fuzzy subgroups of G. A fuzzy
subset D of G is a fuzzy double coset for µ and ν if there exists x ∈ G such
that

D(y) = sup
k∈G

T (ν(k), µ(x ◦ k ◦ y−1)) = sup
h∈G

T (µ(h), ν(x−1 ◦ h ◦ y))

for all y ∈ G. We will denote D also by Dx or Dµ,ν
x .

Proposition 5.2. The fuzzy relation Eµ,ν on G defined by Eµ,ν(x, y) = Dx(y)
for all x, y ∈ G is an indistinguishability operator.

Proof.

Reflexivity
Eµ,ν(x, x) = sup

k∈G
T (ν(k), µ(x ◦ k ◦ x−1)) ≥ T (ν(e), µ(e)) = 1.

18
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Symmetry

Eµ,ν(x, y) = sup
k∈G

T (ν(k), µ(x ◦ k ◦ y−1))

= sup
k∈G

T (ν(k−1), µ(y ◦ k−1 ◦ x−1)) = Eµ,ν(y, x).

Transitivity

T (Eµ,ν(x, y), Eµ,ν(y, z)) = T (sup
k∈G

T (ν(k), µ(x ◦ k ◦ y−1)), sup
l∈G

T (ν(l), µ(y ◦ l ◦ z−1)))

= sup
k,l∈G

T (ν(k), ν(l), µ(x ◦ k ◦ y−1), µ(y ◦ l ◦ z−1)

≤ sup
k,l∈G

T (ν(k ◦ l), µ(x ◦ k ◦ y−1 ◦ y ◦ l ◦ z−1))

= sup
k,l∈G

T (ν(k ◦ l), µ(x ◦ k ◦ l ◦ z−1)) = Eµ,ν(x, z).

The duality between Dµ,ν
x and Dν,µ

x is stated in the following proposition.

Proposition 5.3. Let G be a group and µ, ν fuzzy subgroups of G. For all
x, y ∈ G we have Eµ,ν(x, y) = Eν,µ(x−1, y−1).

Proof.

Eµ,ν(x, y) = Dµ,ν
x (y)

= sup
k∈G

T (ν(k), µ(x ◦ k ◦ y−1))

= sup
h∈G

T (µ(h), ν(x−1 ◦ h ◦ y))

= Dν,µ
x−1(y

−1)

= Eν,µ(x−1, y−1).

Special case when µ or ν are the trivial subgroup {e}:

Proposition 5.4.

a) If ν = {e}, then the fuzzy double cosets of µ and ν are the fuzzy right
cosets of µ.
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b) If µ = {e}, then the fuzzy double cosets of µ and ν are the fuzzy left
cosets of ν.

Proof. a)

Dµ,{e}
x (y) = sup

k∈G
T ({e}(k), µ(x ◦ k ◦ y−1))

= T ({e}(e), µ(x ◦ e ◦ y−1))

= µ(x ◦ y−1).

b)

D{e},ν
x (y) = sup

h∈G
T ({e}(h), ν(x−1 ◦ h ◦ y))

= T ({e}(e), ν(x−1 ◦ e ◦ y))

= µ(x−1 ◦ y).

Proposition 5.5. Let µ be a normal fuzzy subgroup of G. Then the double
cosets for µ and µ coincide with the right and left fuzzy cosets of µ.

Proof.

Dµ,µ
x (y) = sup

k∈G
T (µ(k), µ(x ◦ k ◦ y−1)

= sup
k∈G

T (µ(k), µ(y−1 ◦ x ◦ k)

≥ T (µ(e), µ(y−1 ◦ x ◦ e)) = µ(y−1 ◦ x)

because µ is normal.
But

sup
k∈G

T (µ(k), µ(y−1 ◦ x ◦ k) = sup
k∈G

T (µ(k−1), µ(y−1 ◦ x ◦ k) ≤ µ(y−1 ◦ x)

because µ is a fuzzy subgroup.
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6 Indistinguishability Operators as Fuzzy Sub-

groups

If (G, ◦) is a group, then G×G is also a group. Being a fuzzy relation on G
a fuzzy subset of G × G, it becomes a candidate to be a fuzzy subgroup of
G×G. This question is studied in this section.

The next lemma is a re-writing of Proposition 3.15.

Lemma 6.1. Let E be an indistinguishability operator on a group (G, ◦).
E is closed under products in G × G if and only if E is invariant under
translations.

Proposition 6.2. Let E be an indistinguishability operator on a group G.
The following are equivalent:

i) E is closed under products in G×G.

ii) E is a fuzzy subgroup of G×G.

Proof.

i) ⇒ ii)

E(x, y) = T (E(x−1, x−1), E(x, y)) ≤ E(e, x−1 ◦ y)

= T (E(e, x−1 ◦ y), E(y−1, y−1))

≤ E(y−1, x−1) = E(x−1, y−1)

and equality follows from symmetry.

ii) ⇒ i) is trivial.

Proposition 6.3. Let E be an indistinguishability operator on a group G.
If E is a fuzzy subgroup of G × G, then the fuzzy subset µ of G defined for
all x ∈ G by µ(x) = E(e, x) (i.e., the column µe of E) is a normal fuzzy
subgroup of G.

Proof. It is a consequence of Lemma 6.1.

Reciprocally,
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Proposition 6.4. Let µ be a normal fuzzy subgroup of a group G. The
fuzzy relation Eµ defined for all x, y ∈ G by Eµ(x, y) = µ(x ◦ y−1) is a fuzzy
subgroup of G×G.

Proof. Eµ is an indistinguishability operator invariant under translations.
So, from Lemma 6.1 it is closed under products and thanks to Proposition
6.2 it is a fuzzy subgroup of G×G.

Invariance under translations for a fuzzy relation is essential in many
applications. In the introductory section, for instance, its need in Fuzzy
Mathematical Morphology is pointed out. Then, from an algebraic point
of view, the structural element turns out to be then a (normal) fuzzy sub-
group. Similarly occurs in (R3, +) when considering voxels instead of pixels.
Another example can be found in music (and in signal theory), where the
relation between sounds (notes) is measured by the quotient of their fre-
quencies, so that we obtain a fuzzy equivalence relation on (R+, ) invariant
under products. The results of this section provide an alternative way of
considering the invariance; namely by stating that this property for an indis-
tinguishability operator E on (G, ◦) is equivalent to being a fuzzy subgroup
of G × G. Thanks to this, some results of Section 3 can be rewritten in a
more algebraic way. For example

Proposition. A fuzzy subset µ of a group (G, ◦) is a normal fuzzy subgroup
of G if and only if the fuzzy subset E of G × G defined for all x, y ∈ G by
E(x, y) = µ(x ◦ y−1) is a fuzzy subgroup of G×G.

7 Concluding Remarks

In this paper we have studied fuzzy subgroups taking into account the close
relation between them and their associated left and right invariant indis-
tinguishability operators. In this way different ways to obtain new fuzzy
subgroups from a given one are provided. The relation between the associ-
ated invariant indistinguishability operators to a fuzzy subgroup µ and the
operator Eµ generated by µ as a fuzzy subset is also analyzed. The conditions
in which a fuzzy relation R on a group G can be seen as a fuzzy subgroup of
G×G are obtained.

There is an important relation between Propositions 2.7 and 2.9 and the
results of Section 4 and 5 of [6]. In fact, these two propositions can be
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regarded as particular cases of Theorems 11 and 13 of [6]. Indeed, given
a set S, consider the set ΣS of permutations or bijective maps of S which
is a group under composition. Then Theorem 11 of [6] states that if µ is
a fuzzy subgroup of ΣS, then the fuzzy relation Eµ on S defined for all
x, y ∈ S by Eµ(x, y) = supg∈ΣS

{µ(g) | g(x) = y} is an indistinguishability
operator. Reciprocally, Theorem 13 of [6] states that given an indistinguish-
ability operator E on S, the fuzzy subset µ of ΣS defined for all f ∈ ΣS by
µ(f) = infx∈S E(x, f(x)) is a fuzzy subgroup. If S is a group (G, ·), then the
mapping < · >: G → ΣG sending x to < x > defined by < x > (y) = x · y is
an embedding of g in ΣG and to every fuzzy subgroup µ of G corresponds a
fuzzy subgroup µ′ of ΣG defined for all f ∈ ΣG by µ′(f) = µ(x) if f =< x >
and 0 otherwise. Then for all x, y ∈ G, Eµ(x, y) = Eµ′(x, y) = µ(x · y−1) =
µ′(< x > ◦ < y >−1) and we recover Propositions 2.7 and 2.9.

Let us finish this work with a couple of examples on the real line and a
third one on the plane.

Example 7.1. For the t-norm T of  Lukasiewicz, the fuzzy set µ of (R, +)
defined by all x ∈ R by µ(x) = max(1 − |x|, 0) (a triangular fuzzy number)
is a fuzzy subgroup (normal because R is an Abelian group). Its associated
indistinguishability operator E is defined for all x, y ∈ R by E(x, y) = µ(x−
y) = max(1 − |x − y|, 0). The indistinguishability operator Eµ is defined by
Eµ(x, y) = 1− |µ(x)− µ(y)|. They coincide in [0, 1]2 and in [−1, 0]2.

Example 7.2. For the Product t-norm, the fuzzy set µ of (R+, ·) defined by
all x ∈ R by

µ(x) =

{
x if x ≤ 1
1
x

otherwise

is a fuzzy subgroup (normal because R+ is an Abelian group). Its associated
indistinguishability operator E is defined for all x, y ∈ R by

Eµ(x, y) = µ(
x

y
) =

{
x
y

if x ≤ y
y
x

otherwise.
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The indistinguishability operator Eµ is defined by

Eµ(x, y) = min(
µ(x)

µ(y)
,
µ(y)

µ(x)
) =



x
y

if x ≤ y ≤ 1
y
x

if x ≥ y ≥ 1

x · y if x ≥ 1 and x ≥ 1
y

x · y if y ≥ 1 and y ≥ 1
x

1
x·y otherwise.

They coincide in [1,∞[2 and in [0, 1]2.

It is interesting to note that in both examples there are some subsets of
the cartesian power of the group where Eµ and Eµ coincide. In particular,
in the second example, they coincide exactly in the positive and negative
cones of R+ considered as a totally ordered group. This opens the problem
of finding conditions in which this result holds.

Example 7.3. In the plane R2 we can consider the fuzzy subgroup with re-
spect to the  Lukasiewicz t-norm µ defined by µ(x, y) = min(1 − |x|, 1 − |y|)
(a square pyramid with vertex in (0, 0, 1)). The associated invariant indistin-
guishability operator Eµ is Eµ((x, y), (x′, y′)) = µ((x, y)− (x′, y′)) = min(1−
|x− x′|, 1− |y − y′|) and Eµ is Eµ((x, y), (x′, y′)) = 1− |µ(x, y)− µ(x′, y′)|.
In the context of fuzzy mathematical morphology µ can be considered as a
structural element.
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