
Extension of the parallel Sparse Matrix Vector Product

(SpMV) for the implicit coupling of PDEs on

non-matching meshes

G. Houzeauxa,∗, R. Borrella, J.C Cajasa, M. Vázqueza

aBarcelona Supercomputing Center, Nexus II Building c/Jordi Girona, 29 08034
Barcelona (Spain)

Abstract

The Sparse Matrix Vector Product (SpMV) is one of the main operations of

iterative solvers, and, in a parallel context, it is also the siege of point-to-

point communications between the neighboring MPI processes. The parallel

SpMV is built in such a way that it gives, up to round off errors, the same re-

sult as its sequential counterpart. In this regards, nodes on the interfaces (or

halo nodes if halo are considered) are duplicated nodes of the same original

mesh. It is therefore limited to matching meshes. In this work, we generalize

the parallel SpMV to glue the solution of non-matching (non-conforming)

meshes through the introduction of transmission matrices. This extension of

the SpMV thus enables the implicit and parallel solution of partial differential

equations on non-matching meshes, as well as the implicit coupling of multi-

physics problems, such as fluid-structure interactions. The proposed method

is developed similarly to classical parallelization techniques and can therefore

∗Corresponding author
Email addresses: guillaume.houzeaux@bsc.es (G. Houzeaux),

ricard.borrell@bsc.es (R. Borrell), juan.cajas@bsc.es (J.C Cajas),
mariano.vazquez@bsc.es (M. Vázquez)

Preprint submitted to Computers & Fluids January 30, 2018



be implemented by modifying few subroutines of an already MPI-based code.

According to the proposed framework, the classical parallelization technique

appears as a particular case of this general setup.

Keywords: Parallel sparse-matrix vector product, SpMV, MPI,

Parallelization, Non-matching meshes, Coupling

1. Introduction

At the algebraic level, historical methods to glue non-matching meshes

are the mortar method [1, 2] and the Finite Element Tearing and Intercon-

necting (FETI) method [3], where the continuity of the solution is imposed

through a Lagrange multiplier. See [4] for a comparison of both methods.

The main drawback of these strategies is, apart from introducing additional

unknowns to the original problem, their non-trivial implementations. The

alternative method we propose was introduced in [5] and this work concen-

trates on implementation aspects, in a parallel computing environment. It is

based on extending the parallel matrix-vector product through the introduc-

tion of transmission matrices, to express Dirichlet and Neumann couplings

between non-matching subdomains. Also, these transmission can be built in

such a way to obtain local and global conservation properties. The resulting

method is implicit and can be implemented on the top of already existing

parallelization methods for the sparse matrix-vector product (SpMV). Fig-

ure 1 shows some applications of the method, from the coupling of one single

physics on several subdomains to the coupling of different sets of equations,

like the case of fluid-structure interactions. The only requirements are that

the different sets of equations are solved with the same iterative solver for

2



the same variable (e.g. velocity), as the coupling is carried out at the SpMV

level.

Figure 1: Example of applications of the proposed methodology.

The parallel version of a SpMV is constructed in such a way to give the

same result as its sequential counterpart. The way parallel SpMV is carried

out depends on whether full-row or partial-row matrices are built on each

MPI partition [6]. On the one hand, if full row matrices are considered, the

nodes and associated matrix rows are assigned exclusively to one MPI par-

tition. To construct such matrices, halo elements or extra-communications

are thus required. In the finite element context, partial-row matrices are

quite common as local matrices are assembled from element matrices coming

from a partition into disjoint sets of elements. The rows of the duplicated

interface nodes are thus not fully assembled on the interfaces. In this case,

parallelization of the SpMV consists in exchanging the local results of the

SpMV to assemble the interface contributions coming from the neighbors.

This work extends this technique to cases where the nodes on the interfaces

do not coincide. The proposed methodology thus generalizes the concept of

coupling, for matching and non-matching meshes.

3



To introduce the method, we will start by considering the particular case

of two subdomains. In Section 2, we will present the classical parallelization

strategy used when dealing with partial-row local matrices and matching

meshes. This strategy will be reinterpreted in terms of a Domain Decompo-

sition method (DD), based on a Dirichlet/Neumann coupling to couple the

different local meshes. In Section 3, this DD framework will enable us to

devise the same strategy for non-matching meshes, by introducing transmis-

sion matrices to transfer Dirichlet and Neumann data from one mesh to the

other. The resulting methodology can thus be used for both couplings be-

tween matching meshes, where each mesh represent a partition, and between

non-matching meshes. In this context, the SpMV for matching meshes is

just a particular case of this extended SpMV. Then, we will give in Section 5

some hints on how other operations of iterative solvers can integrate the non-

matching context as well. We will finally generalize the proposed strategy to

an arbitrary number of subdomains in Section 4, by integrating in the same

framework matching subdomains (as in the case of classical parallelization

techniques) and non-matching subdomains as proposed here. The method

will be illustrated through the analysis of the trace of a typical SpMV.

The algorithms presented in this work will be given in such a way that

operations can be carried out locally on each subdomain and when needed,

communications will be indicated. The proposed framework should thus

enable one to introduce non-matching meshes coupling in an already existing

parallel code, where point-to-point communications are the main glue to

obtain a global solution.

4



2. Revisiting the parallel SpMV

In this section we will reinterpret the parallel SpMV in the context of

domain decomposition methods. This framework will help us to devise the

version for non-matching degrees of freedom coming from the gluing of non-

conforming meshes. This will be done in next section. First of all, we will

describe the classical strategy to parallelize the matrix-vector product. For

this, we consider the following algebraic system coming from the discretiza-

tion of a Partial Differential Equation (PDE) in a domain Ω:

Au = b. (1)

2.1. Classical SpMV

For the sake of simplification, we consider a partitioning of Ω into two

subdomains Ω1 and Ω2. We denote by u1 and u2 the vectors of interior un-

knowns of Ω1 and Ω2 respectively, excluding the interface vector of unknowns

denoted by uΓ. By performing a simple node reordering, System (1) can be

written as: 


A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ






u1

u2

uΓ


 =




b1

b2

bΓ


 . (2)

In a parallel context, by considering a partition into disjoint subsets of

elements, interface nodes are duplicated and the latter system is never fully

assembled. See Figure 2 (Left). Instead, we obtain two independent systems

5



Figure 2: Two-subdomain decomposition with matching and non-matching meshes on the

interface.

for each subdomains:
 A11 A1Γ

AΓ1 A
(1)
ΓΓ




 u1

u
(1)
Γ


 =


 b1

b
(1)
Γ


 ,


 A22 A2Γ

AΓ2 A
(2)
ΓΓ




 u2

u
(2)
Γ


 =


 b1

b
(2)
Γ


 ,

where we have AΓΓ = A
(1)
ΓΓ + A

(2)
ΓΓ and bΓ = b

(1)
Γ + b

(2)
Γ . From now on, we

will append a superscript (i) to indicate a partial matrix or vector obtained

locally in subdomain i.

Let us consider the matrix-vector product y = Ax in this two-domain

context. The parallelization of this product is based on the distributivity

property of the multiplication. On the one hand, the product for interior

6



nodes is straightforward as each subdomain is able to perform it indepen-

dently, that is yi = Aiixi + AiΓx
(i)
Γ for i = 1, 2, provided x

(1)
Γ = x

(2)
Γ = xΓ.

For the interface we have:

yΓ = AΓ1x1 +AΓ2x2 +AΓΓxΓ,

= (AΓ1x1 +A
(2)
ΓΓxΓ) + (AΓ2x2 +A

(2)
ΓΓxΓ),

= y
(1)
Γ + y

(2)
Γ , (3)

where y
(i)
Γ can be calculated independently for i = 1, 2. In the MPI context,

the assembled result on the interface yΓ is obtained by exchanging the lo-

cal values y
(1)
Γ between neighbors, through the MPI non-blocking functions

MPI Isend and MPI Irecv. A classical and non-optimized implementation

is shown in Algorithm 1. In practice, communication of the interface values

Algorithm 1 SpMV for matching meshes.

1: Compute local results for i = 1, 2:

yi = Aiixi +AiΓxΓ,

y
(i)
Γ = AΓixi +A

(i)
ΓΓxΓ.

2: Exchange results y
(1)
Γ and y

(2)
Γ between subdomains.

3: Assemble results in subdomains 1 and 2:

yΓ = y
(1)
Γ + y

(2)
Γ .

y
(i)
Γ can be overlapped with the computation of the interior result yi [7].

7



2.2. SpMV as a domain (de)composition method

The parallelization technique used previously to obtain the right answer

on the interface can be reinterpreted in terms of a domain decomposition

method. Let us duplicate formally the interface Γ into Γ1 and Γ2 and its

associated unknowns, uΓ1 and uΓ2 , respectively. We then set the following

Dirichlet/Neumann problem at the algebraic level [5]:
 A11 A1Γ1

0 I




 u1

uΓ1


 =


 b1

uΓ2





 A22 A2Γ2

AΓ22 AΓ2Γ2




 u2

uΓ2


 =


 b2

bΓ2


+


 0

rΓ1




(4)

where the residual is

rΓ1 = bΓ1 −AΓ11u1 −AΓ1Γ1uΓ1 .

The Dirichlet condition is the second equation that states that uΓ1 = uΓ2

and the Neumann condition consists in assembling Neumann data rΓ1 of

subdomain 1 in subdomain 2 interface equation. We can easily check that

this system is equivalent to system (2). Last system can be rewritten as:


A11 A1Γ1 0 0

0 I 0 −I

0 0 A22 A2Γ2

AΓ11 AΓ1Γ1 AΓ22 AΓ2Γ2







u1

uΓ1

u2

uΓ2




=




b1

0

b2

bΓ2 + bΓ1




A matrix vector y = Ax product using this matrix gives on the interface:

yΓ2 = (AΓ11x1 +AΓ1Γ1xΓ1) + (AΓ22x2 +AΓ2Γ2xΓ2),

yΓ1 = yΓ2 .

8



In practice, this SpMV can be carried out exactly as in Equation 3, by doing

local matrix-vector products and then exchange the solution.

We have briefly shown how the substructuring method classically used

to implement the parallel SpMV can be reinterpreted in terms of a Dirich-

let/Neumann method at the algebraic level. Based on this domain decom-

position framework, we devise in next section an equivalent method for non-

matching meshes, by introducing transmission matrices.

Finally, it should be stressed that despite the fact that we use the for-

malism of the Dirichlet/Neumann method, the proposed implementation has

nothing to do with the classical implementations presented in the litterature.

In general, the method is implemented in a staggered way (a la Jacobi o a

la Gauss-Seidel), sometimes as a preconditioner, sometimes as solver [8]. In

our case the method is implicit and the associated matrix is exactly the same

as the monolithic one, upon elimination of uΓ1 . Thus the convergence of any

iterative solver will be the same as the monolithic case, contrary to the case

of staggered methods where the coupling does not even necessarily converge.

3. Extended SpMV to non-matching meshes

We now consider non-matching meshes on the interface, as depicted in

the right part of Figure 2. For the sake of calrity, we still consider only two

subdomains.

3.1. Domain decomposition framework

As degrees of freedom do not coincide, we need to introduce some trans-

mission matrices to express the couplings between the unknowns on the sub-

domain interfaces. Let us introduce transmission matrices for the Dirichlet

9



and Neumann conditions, TD and TN respectively, as explained in [5]. In

this non-matching case, Equation (4) becomes:
 A11 A1Γ1

0 I




 u1

uΓ1


 =


 b1

TDuΓ2





 A22 A2Γ2

AΓ22 AΓ2Γ2




 u2

uΓ2


 =


 b2

bΓ2


+


 0

TNrΓ1


 .

The Dirichlet condition is now uΓ1 = TDuΓ2 while the Neumann data trans-

forms into TNrΓ1. These matrices are rectangular and their sizes are:

size(TD) = size(uΓ1)× size(uΓ2), (5)

size(TN ) = size(uΓ2)× size(uΓ1). (6)

Monolithic system. As done in the matching case, this system of equations

can be recast in the following monolithic form:


A11 A1Γ1 0 0

0 I 0 −TD

0 0 A22 A2Γ2

TNAΓ11 TNAΓ1Γ1 AΓ22 AΓ2Γ2







u1

uΓ1

u2

uΓ2




=




b1

0

b2

bΓ2 +TNbΓ1



(7)

10



Note that upon elimination of uΓ1 , we obtain the following equivalent system:


A11 0 A1Γ1T
D

0 A22 A2Γ2

TNAΓ11 AΓ22 AΓ2Γ2 +TNAΓ1Γ1T
D






u1

u2

uΓ2




=




b1

b2

bΓ2 +TNbΓ1




(8)

3.2. Transmission matrices

The selection of the transmission matrices depends on the interpolation or

projection schemes used to express the couplings among the unknowns of the

subdomain interfaces, that is to transmit the Dirichlet and Neumann data.

One judicious choice consists in opting for TN = (TD)t in order to preserve

the symmetry of the original system, as can be checked in last system of

equations. Figure 3 shows examples of transmission matrix, computed using

a linear interpolation and L2 projection, from coarse-to-fine and fine-to-coarse

meshes transmissions. Among others, two important properties that should

satisfy the transmission matrices are the conservation of a constant unknown

and the conservation of the total residual. The first property is satisfied

by TD whenever the sum of the coefficients of each row is equal to one.

The second property concerns the residual rΓ1 , which represents the reacting

“force” to the Dirichlet condition. In order to conserve this “force”, we can

show that the sum of the coefficients of each column should be equal to one

11



Figure 3: Example of transmission matrices.

as well. To summarize:

Constant field conservation :
∑
b

TD
ab = 1 ∀a

Total residual conservation :
∑
a

TN
ab = 1 ∀b.

The first property is inherited by both linear interpolation and L2 projec-

tion. The second property is automatically satisfied if TD satisfies the first

one and TN = (TD)t. See [5] for a description of the properties of different

transmission matrices.

To illustrate these conservation properties when computing transmission

matrices, let us consider the example of Figure 4. It consists of a deforming

solid fixed on the bottom left node and under a force applied on the top right

node. A large deformation problem governed by a linear constitutive model

12



Figure 4: Large deformation of a solid. Dirichlet/Neumann for coinciding meshes and

meshes with mesh ratio 1:4, using different methods to compute the transmission matrices.

is solved. A Dirichlet condition is imposed on the left part of the interface

and a Neumann condition on the right part. When meshes coincide, when

using linear interpolation for both the Dirichlet and Neumann conditions,

the solution is the same as the one-domain solution. Now let us consider

non-matching meshes, with a ratio of 4 from the Dirichlet to the Neumann

subdomains. The Dirichlet condition is based on a simple linear interpola-

tion, while for the Neumann condition, L2 projection and the transpose of

the Dirichlet transmission matrix are compared. We observe a good agree-

ment with the reference solution obtain on a mesh with the same size as the

Neumann subdomain. The transpose is not only very practical from the im-

plementation point of view, but inherits some nice conservation properties.

It conserves symmetry as well as the total force, as explained in [5].

13



3.3. Partitioned formulation

System (7) couples non-matching subdomains. To obtain an implicit cou-

pling, we have basically two options. The first option attacks this monolithic

system by assembling the connection matrices TNAΓ11, T
NAΓ1Γ1 and right-

hand side TNbΓ1 , which, in practice, can be non trivial to implement. The

second option consists in achieving the coupling through the matrix-vector

product, involving the transmission matrices. This can be done as follows:

yΓ2 = (AΓ22x2 +AΓ2Γ2xΓ2) + (TNAΓ11x1 +TNAΓ1Γ1xΓ1),

= y
(2)
Γ2

+TNy
(1)
Γ1
, (9)

followed by a Dirichlet step which consists in imposing yΓ1 = TDyΓ2 . A

straightforward implementation is shown in Algorithm 2.

However these sequence is not efficient, as it involves two separate com-

munications, given by steps 2 and 4 of the algorithm. Instead, Algorithm

3 joins these communications while being strictly equivalent to the previous

one. In practice, the communications shown in step 3 of last algorithm can

be overlapped with the computations of y1 and y2.

What about the Dirichlet condition?. We have developed a strategy to obtain

an implicit coupling for non-conforming meshes by modifying the matrix-

vector product. But why is this equivalent to the matrix-vector product one

would obtain the monolithic system (7). By observing the result after the

Neumann step we can easily check that step 3 gives the same result as Equa-

tion (9). We also guarantee that the result of the matrix-vector product also

satisfies the Dirichlet condition on xΓ1 . But can we make sure that we get

the same solution as that of the monolithic system through iterative solvers

14



Algorithm 2 SpMV for non-matching degrees of freedom: method 1

1: Compute local results for i = 1, 2:

yi = Aiixi +AiΓi
xΓi

,

y
(i)
Γi

= AΓiixi +AΓiΓi
xΓi

.

2: Subdomain 1 sends y
(1)
Γ1

to subdomain 2.

3: Assemble result in subdomain 2:

yΓ2 = y
(2)
Γ2

+TNy
(1)
Γ1
.

4: Subdomain 2 sends yΓ2 to subdomain 1.

5: Apply Dirichlet condition in subdomain 1:

yΓ1 = TDyΓ2 .

Algorithm 3 SpMV for non-matching degrees of freedom: method 2

1: Compute local results for i = 1, 2:

yi = Aiixi +AiΓi
xΓi

,

y
(i)
Γi

= AΓiixi +AΓiΓi
xΓi

.

2: Exchange results y
(1)
Γ1

and y
(2)
Γ2

between subdomains.

3: Assemble results in subdomain 1 and 2:

yΓ2 = y
(2)
Γ2

+TNy
(1)
Γ1
,

yΓ1 = TD
(
y
(2)
Γ2

+TNy
(1)
Γ1

)
.

iterations?

15



In general, Krylov solvers [9] are based on simple solution updates like:

uk+1 = uk + αpk.

This equation corresponds to the solution update of the classical Conjugate

Gradient method. Let us consider the first iteration with k = 1:

p0 = b−Au0,

u1 = u0 + αp0,

and compute the updates on the interfaces. We need two initial conditions

which satisfy the following relations to make it work:

1. RHS satisfies the Dirichlet condition: bΓ1 = TDbΓ2,

2. Initial solution satisfies the Dirichlet condition: u0
Γ1 = TDu0

Γ2. (10)

We have

p0
Γ1 = bΓ1 −Au0 |Γ1,

= TDbΓ2 −TD(Au0 |Γ2),

= TD(bΓ2 −Au0 |Γ2),

= TDp0
Γ2, (11)

where we have used Equation (10) and step 5 of Algorithm 2, or, equivalently,

step 3 of Algorithm 3. We observe that the Dirichlet condition is directly

transferred to the conjugate direction p. Then the update of the solution u

16



on Γ1 yields:

u1
Γ1 = u0

Γ1 + αp0
Γ1,

= TDu0
Γ2 + αTDp

0
Γ2,

= TD(u0
Γ2 + αp0

Γ2),

= TDu1
Γ2,

where we have used Equations (10) and (11). Thus, the first update satisfies

the Dirichlet condition as well. We could show that, recursively, the new

updates will always satisfy the Dirichlet condition.

Key message. If meshes are coinciding on the interface, then TD = TN =

I, and we recover the classical parallel implementation of the SpMV given

by Equation (3) with yΓ1 = yΓ2 = yΓ. The proposed technique is thus a

generalization of the parallel SpMV for non-matching meshes.

4. Extension to an arbitrary number of subdomains

Let us consider a parallel context with nMPI MPI partitions, referred to as

parallelization subdomains, and which consist of disjoint sets of elements. Let

us consider also ncou coupling subdomains, possibly non-matching, and cou-

pled through Dirichlet and Neumann conditions. The intersections between

the parallelization and coupling subdomains define a more general disjoint set

of elements, simply referred to as subdomain. Figure 5 shows an example of

four parallelization subdomains involving a non-matching coupling between

two coupling subdomains. In practice, we start with an MPI partition into

nMPI parallelization subdomains. Then, each MPI partitions is divided into

17



Figure 5: Example of four parallelization subdomain and two coupling subdomains.

subdomains if it involves elements belonging to several coupling subdomains.

In the example of the figure, we end up with six subdomains.

To generalize the coupling algorithm for parallelization and coupling sub-

domains, we have to discriminate between Dirichlet and Neumann nodes.

In this general context, the relation between Neumann and Dirichlet nodes

should be understood as a master-worker relation, the master being the Neu-

mann node, as shown in Algorithm 2:

Neumann nodes accumulate residuals, and Dirichlet nodes trans-

mit these residuals.

Figure 6 shows the process for selecting Dirichlet and Neumann nodes when

parallelization and coupling subdomains coexist.

18



Figure 6: Selection of Dirichlet and Neumann nodes in two steps.

Step 1: selection of parallelization Dirichet and Neumann nodes. Let us start

with the couplings between the parallelization subdomains, used in a classical

parallelization strategy. The Dirichlet and Neumann nodes discrimination

consists in selecting one of the duplicated nodes on the interfaces, mark it

as Neumann, and then mark the duplicates as Dirichlet nodes. This is an

explicit or implicit common practice in parallel codes, as illustrated on the left

part of the figure. In fact, for the SpMV, the relation between duplicated

interface nodes does not need to be explicit, as transmission matrices are

equal to identity (see Algorithm 1). The distinction between these nodes

is only necessary in the scalar product, where only the contributions of the

interior and Neumann nodes are required to avoid duplication of the scalar

product on the interfaces, as explained in Section 5.1.

19



Step 2: selection of coupling Dirichet and Neumann nodes. To fully establish

a coupling for non-matching meshes, we have to select the Dirichlet and Neu-

mann sides as well as the algorithms to compute the transmission matrices

(interpolation, projection, transpose). The second step of the Dirichlet and

Neumann node selection consists in marking as Dirichlet nodes the nodes lo-

cated on the Dirichlet side of the coupling interface. In particular, Neumann

nodes selected in the first step and located on the Dirichlet side must be con-

verted into Dirichlet nodes (see the bottom marked zone on the right part of

Figure 6). On the Neumann side, we then mark all the non-Dirichlet nodes

as Neumann nodes (see the top marked zone on the right part of Figure 6).

By performing steps 1 and 2, we thus ensure that Neumann nodes are

uniquely defined on parallelization and coupling subdomains interfaces.

The complete algorithm to couple the subdomains is very simple to de-

scribe, and a bit cumbersome to write formally. In brief, the Neumann nodes

accumulate the residuals coming from its neighbors, through transmission

matrices. The Dirichlet nodes are related to their Neumann counterparts

through matrix TD and thus depend on the same neighbors as its master

(Neumann) node. Nos let us go to the formal algorithm.

Let ni be the number of neighbors of subdomain i, including itself, and

nΓi
be the size (number of nodes) of the interface of i. For the sake of

simplicity, the transmission matrix TN
ij which transmits data from subdomain

j to subdomain i is dimensioned as nΓi
×nΓj

. In fact, only a sub-block of TN
ij

would be necessary as only subsets of Γi and Γj give non-zero coefficients on

20



the matrix. The rows corresponding to Dirichlet nodes and the rows which

do not involve neighbors j are set to zero. To account for its local residual,

we also set TN
ii = I. Using this formalism, the Neumann condition reads:

yN
Γi

=

ni∑
j=1

TN
ijy

(j)
Γj
. (12)

As far as the Dirichlet transmission matrix TD
ij is concerned, the rows

corresponding to the Neumann nodes are set to zero, and we set TD
ii = 0.

The Dirichlet condition on Γi coming from subdomain j is thus

yD
Γij

= TD
ijy

N
Γj

= TD
ij

(
nj∑
k=1

TN
jky

(k)
Γk

)
,

where we have used Equation (12). Now we need to sum over all the neighbors

of i in order to take into account all the Dirichlet conditions coming from all

the Dirichlet neighbors so that

yD
Γi

=

ni∑
j=1

yD
Γij

=

ni∑
j=1

TD
ij

(
nj∑
k=1

TN
jky

(k)
Γk

)
.

Therefore, as TN
ij has no null rows on Neumann nodes and TD

ij has no

null rows on Dirichlet nodes, we can sum up yN
Γi

and yD
Γi

to obtain yΓi
=

yN
Γi
+ yD

Γi
. We finally end up with algorithm 4 which describes the extended

SpMV for parallelization and coupling subdomains, and which consists of a

generalization of Algorithm 3.

This algorithm illustrates the extended SpMV, but this should not be

implemented as is. In fact, when receiving the contribution of a neighbor

j (step 3), not all the interface result of j is needed, but only that where

columns of the transmission matrices are non-zero. In addition, just like in

21



Algorithm 4 Extended SpMV.

1: Compute local results on each MPI partition i:

y
(i)
i = Aiixi +AiΓi

xΓi
,

y
(i)
Γi

= AΓiixi +AΓiΓi
xΓi

.

2: Send y
(i)
Γi

to all neighbors j.

3: Receive y
(j)
Γj

from all neighbors j.

4: Assemble the result on the interface Γi:

yΓi
=

ni∑
j=1

TN
ijy

(j)
Γji

+

ni∑
j=1

TD
ij

(
nj∑
k=1

TN
jky

(k)
Γk

)
.

classical parallelization techniques, interface communications represented in

steps 2 and 3 can be overlapped with the SpMV for interior nodes using the

non-blocking MPI communication subroutines.

Let us analyze the performance of Algorithm 4. We consider the geometry

illustrated in Figure 7 and compare the SpMV for three cases, all on 64 CPUs.

Case 1 consists of a one domain simulation with only parallelization coupling.

Case 2 involves two separate domains with only parallelization coupling.

Finally, case 3 involves the same two separate domains, with parallelization

coupling in each, and non-matching coupling between then. For the three

cases, the total number of elements and nodes is around 4M, which results

in an average of 62500 nodes per MPI partitions. By comparing case 3

with 2, we wish to measure the extra-communications due to the coupling.

By comparing case 3 with case 1, we wish to point out the fact that the

22



Figure 7: Example to test the performance of the extended SpMV. (Top) Geometries and

mesh sizes. (Mid.) Connectivities between the different MPI partitions due to paralleliza-

tion and coupling. (Bot.) Partitioning.

23



partitioner (herein METIS[10]) sees two non-connected geometries and is

thus unable to minimize the interface sizes on the non-matching meshes. See

for example [11] for coupling aware partitioning techniques.

On the middle part of the figure, we show the connectivities between the

different subdomains. Each sphere represents a subdomain and its location

corresponds to the subdomain center of gravity, while the lines symbolize

connections between two subdomains. We can observe the extra connections

between the MPI partitions in case 3 with respect to case 2. By taking a

look at the MPI partititions, we also observe that the partitions of cases 2

and 3 are not aware of the coupling. In fact, in this work, the transmission

matrices are computed in parallel after the partitioning.

Figure 8 shows three different traces of one single SpMV, representing the

different tasks (colors) carried out by the different preocesses (y-axis) along

time (x-axis). The blue color represents the SpMV on the interfaces (Dirichlet

and Neumann). The white color represents the non-blocking communications

using the MPI functions MPI ISend and MPI IRecv. The red color, which

dominates the computation, is the SpMV for the interior nodes. Finally,

the purple represents the MPI Waitall which finalizes the SpMV. The top

trace is that of the one-domain problem (case 1), the middle one the two-

domain problem without coupling (case 2) and the bottom one the two-

domain problem with coupling (case 3). We can observe the effects of the

extra-communications involved in case 3. These communications do not exist

in case 2, but they do in case 1. However, in this last case, METIS was able

to take into account the minimization of the interfaces and thus to reduce

24



Figure 8: Traces of the SpMV on the geometries presented in Figure 7. The size of the

window represents 2.7 ms. From Top to Bot.: Case 1: uncoupled problem represented

by Algorithm 1; Case 2: coupled problem using a two-step communication scheme repre-

sented by Algorithm 2; Case 3: coupled problem using the one-step communication scheme

represented by Algorithm 4.

25



communications. Even if the impact of communications in case 3, is limited,

the traces suggest that a coupling aware partitioning should be used [11].

Note on the cost. The extra cost induced by the use of transmission matrices

depends on the interpolation or projection used, as well as the mesh sizes

on both sides of the interface. Noting that in the case of matching meshes

the transmission matrices are unity, Equations (5) and (6) give an estimate

of this extra cost. For example, in the case of boundary interpolation from

a bilinear surface, the number of operations is four times higher than in the

case of matching meshes, where only node-to-node information is needed.

5. Beyond SpMV: other solver operations

Matrix vector-product is obviously not the only operation of iterative

solvers. In the parallel implementation of iterative solvers (e.g. Krylov solvers

[9]), if one wants to get the same parallel sequence as the sequential one given

by Equation (8), some additional implementation details are necessary. We

will treat two of them in the context of non-matching meshes, namely the

scalar product and the preconditioning phase. We will remain in the two-

domain context for the sake of simplification, the extension to any number

of subdomains being straightforward.

5.1. Scalar product

In classical parallelization techniques, the scalar product can be computed

in different ways in order to obtain the same as the sequential one. One

common approach consists in dividing the ownership of the interface nodes

26



between neighbors so that the scalar product contributions are not duplicated

and its calculation is equally distributed.

In the domain decomposition context, the interpretation can be made

differently. In fact, the Dirichlet unknowns are virtually eliminated from the

solution process. Therefore, one could argues that the scalar product should

be exclusively carried out on the Neumann interface. Using this domain de-

composition jargon, the ownership aforementioned is equivalent to declaring

the node as Neumann node. A generic scalar product α = x · y can be

computed as in Algorithm 5, which gives the same result as in the sequential

(monolithic) case given by system of equations (8).

Algorithm 5 Scalar product for non-matching meshes.

1: Compute local results:

α(1) = x1 · y1,

α(2) = x2 · y2 + xΓ2 · yΓ2.

2: Sum up the two contributions:

α = α(1) + α(2).

5.2. Preconditioning

General case. The monolithic matrix A of our couple system is given by

Equation (8). The preconditioner M should ideally be built based on this

matrix. However, we mentioned in previous sections that it may not be

convenient to build such a matrix, and this is the reason why we devised the

implicit method by extending the parallel SpMV to non-matching meshes. In

27



practice, each subdomain could approximate its local interface matrices using

only their local contributions. During the preconditioner step, symbolized

by the solution of a generic problem Mx = y, the following operations are

carried out on each subdomain interface:

xΓ1 = M−1y |Γ1 ,

xΓ2 = M−1y |Γ2 ,

However, as pointed out at the end of Section 3, the preconditioner, as well

as any operation should satisfy the important property that xΓ1 = TDxΓ2 .

However, this is not always possible, and some communication step is likely

to be required to impose this Dirichlet condition once xΓ2 has been updated.

We will see in a moment that even for a simple preconditioner this is a hard

task. Therefore, in general, the preconditioning step can be computed as

shown in Algorithm 6. In this algorithm, communications are assumed to

Algorithm 6 Scalar product for non-matching degrees of freedom

1: Compute partial local preconditioning:

xΓ2 = M−1y |Γ2 ,

x1 = M−1y |1 .
2: Subdomain 2 sends xΓ2 to subdomain 1.

3: Subdomain 1 waits for xΓ2 .

4: Finish preconditioning:

x2 = M−1y |2,

xΓ1 = TDxΓ2.

be non-blocking, and subdomain 2 can go to step 4 of the algorithm just

28



after sending its interface contribution in step 2. This communication step is

penalizing as it does not appear in classical parallelization methods, where

transmission matrices are equal to identity. Let us examine the simplest

preconditioner, the diagonal preconditioner.

Diagonal preconditioning. The question is whether or not we can construct

two local diagonal preconditioners on the interfaces while avoiding commu-

nication. On the Neumann interface, referring to Equation (8), we have

DΓ2 = diag(AΓ2Γ2) + diag(TNAΓ1Γ1T
D).

Thus, provided subdomain 2 has both transmission matrices, the diagonal

can be computed. The Dirichlet side is more problematic. We wish to devise

a diagonal matrix DΓ1 to solve the following system

DΓ1xΓ1 = yΓ1 ,

having in mind that yΓ1 satisfies the Dirichlet condition yΓ1 = TDyΓ2 , and

with the requirement that eventually xΓ1 = TDxΓ2 . Therefore

DΓ1T
DxΓ2 = TDyΓ2 ,

DΓ1T
DxΓ2 = TDDΓ2xΓ2 ,

which should be satisfied for all xΓ2 , so that we end up with the following

equation for DΓ1:

DΓ1T
D = TDDΓ2. (13)

Matrix TD is in general a rectangular matrix so that a classical inverse

does not necessarily exist. The right inverse (TD)−1,right of a rectangular

29



matrix is a matrix such that TD(TD)−1,right = I. One example is the pseudo

inverse defined as:

(TD)−1,right := (TD)t[TD (TD)t ]−1.

If we assume such a matrix exists, then Equation (13) reads

DΓ1 = TDDΓ2(T
D)−1,right.

Fist of all, we do not have the guarantee that such an inverse exists. For

example, only the fine to coarse transmission matrices given in Figure 3 are

invertible. They are:

Linear interpolation : (TD)−1,right =




1 0 0

0 0 0

0 1 0

0 0 0

0 0 1




L2 projection : (TD)−1,right =




394/305 −4/5 94/305

1269/1220 3/10 −171/1220

−7/10 11/5 −7/10

−171/1220 3/10 1269/1220

94/305 −4/5 394/305




In addition, should this matrix exist, DΓ1 is also unlikely to be diagonal,

which was our first requirement. Therefore, even in the simple case of a

diagonal preconditioning, we eventually need communication to ensure that

xΓ1 = TDxΓ2 .

30



6. Conclusions

The parallel solution of PDEs employing iterative methods like Krylov

methods as algebraic solvers relies mainly on the parallelization of the sparse

matrix-vector product (SpMV). If the local matrices to each MPI partition

come from element integrations on disjoint sets of elements, the matrix rows

of interface nodes are only partial. Then, the parallel version of the SpMV

consists in performing local SpMVs, and then exchanging and assembling the

results between neighbors on the interfaces.

We have developed in this work an extension of this parallel SpMV to ac-

count for non-matching meshes. This was achieved by introducing transmis-

sion matrices to express the couplings between the non-matching unknowns

on the interface. This method was then merged with the classical parallel

version of the SpMV in order to construct a more general and unified SpMV.

This extended SpMV enables the implicit and parallel solution of PDEs for

matching and non-matching meshes.

As implemented in this work, the coupling between non-matching subdo-

mains, represented by the calculation of the transmission matrices, is carried

out after the partitioning used for parallelization purpose. The partitioning

is thus not aware of this coupling, and cannot minimize the communica-

tions. As a future work, coupling aware partitioning will be investigated.

In addition, the method can be used to couple multiphysics problems (solv-

ing different sets of PDEs) implicitly and on non-matching meshes, provided

they make use of the same iterative solvers.

[1] C. Bernardi, Y. Maday, A. Patera, Domain Decomposition by the Mor-

tar Element Method, Springer Netherlands, Dordrecht, 1993, pp. 269–

31



286. doi:10.1007/978-94-011-1810-1 17.

URL https://doi.org/10.1007/978-94-011-1810-1 17

[2] C. Bernardi, Y. Maday, F. Rapetti, Basics and some applications

of the mortar element method, GAMM-Mitt 28 (2) (2005) 97–123.

doi:10.1002/gamm.201490020.

URL http://dx.doi.org/10.1002/gamm.201490020

[3] C. Farhat, F.-X. Roux, A method of finite element tearing and inter-

connecting and its parallel solution algorithm, Int. J. Num. Meth. Eng.

32 (6) (1991) 1205–1227. doi:10.1002/nme.1620320604.

URL http://dx.doi.org/10.1002/nme.1620320604

[4] C. Lacour, Y. Maday, Two different approaches for matching noncon-

forming grids: the mortar element method and the feti method, BIT

Numer. Math. 37 (3) (1997) 720–739. doi:10.1007/BF02510249.

URL https://link.springer.com/article/10.1007/BF02510249

[5] G. Houzeaux, J. Cajas, M. Discacciati, B. Eguzkitza, A. Gargallo-

Peiró, M. Rivero, M. Vázquez, Domain decomposition methods for

domain composition purpose: Chimera, overset, gluing and sliding

mesh methods, Arch. Comp. Meth. Eng. 24 (4) (2017) 1033–1070.

doi:10.1007/s11831-016-9198-8.

URL https://link.springer.com/article/10.1007/s11831-016-9193-0

[6] G. Houzeaux, R. Borrell, Y. Fournier, M-Garcia-Gasulla, J. Göbbert,

E. Hachem, V. Mehta, Y. Mesri, H. Owen, M. Vázquez, Computational

32



Fluid Dynamics, Adela Ionescu Edition, Intech, 2017, Ch. High perfor-

mance computing: dos and don’ts.

[7] F. Magoulès, F.-X. Roux, G. Houzeaux, Parallel Scientific Computing,

Computer Engineering Series, Wiley-ISTE, 2015.

URL http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1848215819.html

[8] Domain decomposition methods for partial differential equations, Nu-

merical mathematics and scientific computation, Oxford University

Press, New York, 1999.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

doi:10.1137/1.9780898718003.

URL https://doi.org/10.1137/1.9780898718003

[10] K. Lab, Metis - serial graph partitioning and fill-reducing matrix order-

ing.

URL http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

[11] M. Predari, Load Balancing for Parallel Coupled Simulations, Theses,

Université de Bordeaux, LaBRI ; Inria Bordeaux Sud-Ouest (Dec. 2016).

URL https://hal.inria.fr/tel-01518956

33


