On Assessing the Viability of Probabilistic
Scheduling with Dependent Tasks

Jaume Abella, Enrico Mezzetti, Francisco J. Cazorla
Barcelona Supercomputing Center (BSC), Spain
Email: { jaume.abella, enrico.mezzetti, francisco.cazorla } @bsc.es

Abstract—Despite the significant interest, in the last years,
in probabilistic scheduling and probabilistic timing analysis,
the interrelation between them has been scarcely addressed.
Probabilistic scheduling approaches typically build on a series
of assumptions on the probabilistic behavior of each task — or
single jobs activations — that have not been shown to be entirely
fulfilled by the distributions computed with probabilistic timing
analysis. This paper aims at providing a clear understanding of
probabilistic Worst-Case Execution Time distributions (pWCET)
as a common concept of probabilistic timing and schedulability
analysis. We focus on independence of pWCET estimates as the
main concern in the application of probabilistic scheduling, with
particular emphasis on measurement-based probabilistic timing
analyses, for which independence across pWCET estimates may
not be guaranteed. We relate pWCET (in)dependence to the
platform-induced timing dependencies that occur among tasks,
and even jobs of the same task. We conclude that independent
pWCET distributions can be obtained, even if dependencies exist,
by either controlling the measurement protocol, or by deriving
distinct pWCET estimates for particular instances of a task.

I. INTRODUCTION

The increasing need for computing performance in critical
real-time embedded systems is relentlessly pushing towards
the adoption of high-performance hardware features, making
current-practice timing analysis more complex, expensive and
less effective [1]. The latter aspect also relates to the fact
that execution time behavior for programs running on high-
performance platforms typically exhibits a tremendously large
variability, turning the Worst-Case Execution Time (WCET)
behavior into an extreme scenario that hardly happens in prac-
tice. Relying on overly pessimistic and extremely infrequent
WCET bounds leads to poor utilization and over-provisioning.
Symmetrically, it also causes schedulability tests to reject task
sets that would be perfectly schedulable in practice, or for
which occasional deadline misses would be deemed accept-
able. In this scenario, probabilistic scheduling approaches [2],
[3], [4], [5] compensate for overly pessimistic and rarely
triggered WCET overruns by considering the probability of
occurrence of a given timing behavior when assessing the
schedulability of a task set.

In the context of probabilistic scheduling, the absolute,
monolithic WCET value is typically replaced by a probability
distribution. Probabilistic timing analysis (PTA) identifies a
family of techniques that has been proposed as a promising
approach to deliver WCET estimates for platforms comprising
high-performance features, e.g. cache hierarchies and multi-
cores [6]. PTA naturally enables probabilistic scheduling by

© {Owner/Author | ACM} {2019}. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in
{SAC '19 Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing }, http://dx.doi.org/10.1145/3297280.3297339. Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for projt or commercial advantage and that copies bear this notice and the full
citation on the jrst page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permited. To copy otherwise, or republish, to post

delivering a probabilistic WCET (pWCET) distribution where
each execution time value is associated to an exceedance
probability. The latter, in turn, upper-bounds the probability
that one run of the program exceeds such execution time.

Existing probabilistic scheduling analyses build on the
assumption that pWCET estimates are probabilistically in-
dependent so that subsequent activations of jobs (whether
from the same task or not) do not carry time dependencies.
Roughly speaking, independence allows the same pWCET
distribution to stay valid across jobs. However, we observe that
independent pWCET are not guaranteed in the general case for
all PTA approaches [7], and in particular for Measurement-
Based Probabilistic Timing Analysis (MBPTA), which is the
focus of our work.

Within the MBPTA framework, the relation between the
platform states (i.e. hardware and software) observed during
the test campaign at analysis time and those triggered during
operation, determines pWCET estimate’s scope of applicabil-
ity. In fact, the pWCET distribution typically computed by
MBPTA approaches is not representing the distribution of the
timing behavior of a program but it models the probability
of its worst-case behavior to exceed a given threshold value.
As a consequence, the pWCET does not generally model
the behavior of any possible execution. In practice, this may
restrict the pWCET distributions to be only valid for a specific
job of a task (i.e. activation) but not for any job or sequences
of jobs, as may not account for dependencies across jobs and
tasks. As an illustrative example, let us assume the pWCET
distribution of an actuator system that reacts to periodic
inputs from the external temperature. Let us further assume
the system exhibits its worst-case timing behavior when the
monitored temperature exceeds a given threshold. In general,
the pWCET provides us with an estimate and probability for
a single exceedance event (corresponding to a temperature
peak exceeding a given threshold) but, for example, it does
not convey any information on whether multiple exceedance
events can happen in a row. This is because the scenario
after a first exceedance depends on the natural temperature
progression, which would not be properly captured by the
probabilistic model.

The scope of applicability of pWCET estimates has only
been sporadically and superficially addressed in the litera-
ture. In this paper, we cover this gap by identifying the
key properties that make pWCET distributions probabilisti-
cally independent (dependent), and thus amenable (or not) to

on servers or to redistribute to lists, requires prior specifyc permission and/or a fee. Request permissions from permissions@acm.org.

schedulability analysis. We abstract away from the particular
approach to derive pWCET estimates and discuss the main
aspects at hardware/software level that might create and
convey dependencies between tasks and across jobs of the
same task. In particular we relate the presence of dependence
in the execution time (ET) sample — MBPTA input — and
in the computed pWCET distribution. We identify and an-
alyze a taxonomy of dependence scenarios considering ET
and pWCET dependence and relate each scenario to both
synthetic examples and benchmarks. We provide both negative
and positive evidence on pWCET (in)dependence. On the
negative side, we identify concrete examples where pWCET
distributions cannot meet the independence requirement of
probabilistic scheduling, and show how this can jeopardize
schedulability results. On the positive side, we also show that
independent pWCET can be achieved despite the existence
of time dependencies among tasks both during analysis and
operation.

II. SCHEDULING WITH PROBABILISTIC WCET
DISTRIBUTIONS

Schedulability analyses’ [8] objective is to determine
whether a task set is schedulable under a given scheduling
algorithm. Response Time Analysis (RTA) [9], [10] focuses
on determining the worst-case response time of all tasks in
the task set, under a given scheduling algorithm. Multiple
RTA variants exist, typically differing in the complexity of
the underlying task model: the WCET of a task is invariably
an essential input parameter to RTA. The tighter the WCET
the larger task set can be deemed schedulable by RTA.

The adoption of high-performance hardware, which may
produce extremely variable ETs, has motivated the use of prob-
abilistic means to model high execution times on the account
that worst-case scenarios can typically happen with extremely
low probabilities. Probabilistic real-time systems [11], [2], [4],
[3] rely on task models where at least one parameter takes the
form of a random variable. Typically the WCET bound of
a task is not any longer an exact value but a distribution of
pWCET values with associated probability of occurrence (or
exceedance).

The most natural way of using probabilistic WCET bounds
is by adapting the analysis framework to handle distributions
instead of deterministic (scalar) values. A formulation of the
probabilistic RTA equation is given in [12] to compute the
worst-case response time of a job 7; ;, released at time instant
)\i, je

R, ; = Bi(\ij) @ C; @ Ii(Nij) (D

where B;(); ;) stands for the backlog of higher priority
tasks that have not completed their execution at A; j, C is
the pWCET distribution for 7; and I;()\; ;) is modeling the
interference of higher priority tasks at A; ;. All terms in Eq. 1
are probability distribution functions (PDFs) whose combined
effect is obtained by applying the convolution operator, ®.
For a correct application of convolution, however, operands
(i.e. pWCET) are required to be probabilistically independent.

Probabilistic scheduling reduces the amount of over-
provisioning in real-time systems and increases the number
of systems that are deemed schedulable. Alternatively, when
probabilistic independence cannot be demonstrated, there are
still at least two options: more complex (yet less mature)
dependent-aware formulations can be used [13]; or, alterna-
tively, a single deterministic WCET value can be selected
from the pWCET at the probability of exceedance that is
considered to be acceptable, for example, from the standpoint
of a certification authority. The latter solution enables the
adoption of standard (deterministic) schedulability analyses.

Note that probabilistic independence is a requirement on
pWCET distributions and not on single job-level probabilistic
ETs [7]. The distinction here is relevant as we may very
well detect probabilistic dependence or stationarity [14] among
job ETs, but this does not necessarily mean that those de-
pendencies are preserved in the pWCET distribution. This
consideration will be analyzed in detail in the next Sections.

A. Computing probabilistic ET bounds

PTA 1is the branch of timing analysis that aims at the
computation of pWCET distributions. Two main families of
PTA exist. Static Probabilistic Timing Analysis (SPTA), alike
standard static timing analysis, is capable of deriving the
pWCET distribution of a program without actually executing
it. SPTA models the probabilistic execution-time distribution
of all instructions in a program and then combines them
according to the program static structure. At any granularity,
probabilistic execution-time (discrete) distributions are repre-
sented as execution time profiles (ETPs) that associate each
timing behavior to a probability of occurrence [15], [16],
[17]. SPTA (not to be confused with [18]) assumes that the
probabilistic behavior directly emanates from a characteristic
of the execution platform (e.g., a random replacement cache).
Current SPTA approaches [16], [17] build on convolutions
to sum up the ETPs from different instructions and blocks
thereof. The use of convolutions is permitted as ETPs are nor-
mally considered by definition independent: ETPs are assumed
to be absolute, in the sense that they hold for any possible
execution condition [7] and hence impose no constrain in the
scope of applicability of the obtained pWCET estimates.

MBPTA, instead, is based on collecting ET evidence di-
rectly from the actual hardware and program (normally at
the level of individual program units). That evidence is later
used to fit some known probability distribution, which in
turn allows to derive a pWCET estimate. In particular, most
MBPTA approaches aim at modeling the WCET of a program
as a rare event, and typically achieve this by resorting to
the Extreme Value Theory (EVT) [19], [20] framework. EVT
builds upon the fact that the asymptotic tail distribution of
a sample of independent and identically distributed (i.i.d.)
random variables converges to specific families of (extreme
value) distributions, known as Generalized Extreme Value [21]
and Generalized Pareto Distribution [22]. Although some
differences exist among specific formulations [23], [24], [25],
MBPTA instantiates the EVT framework by following well-

defined procedural steps: (1) assessment of statistical prereq-
uisites for the application of EVT (e.g., i.i.d. and stationarity);
(2) data filtering to select those values that belong to the tail
of the ET distribution; (3) parameter selection and fitness,
a partially guided process to select the most suitable (best
likelihood) pWCET distribution to model the sample and
assess its precision.

This paper builds on the critical observation that pWCET
distributions computed with MBPTA and SPTA do not coin-
cide exactly. While pWCET estimates computed with SPTA
are generally considered to be absolutely valid, the validity
of pWCET distributions produced by MBPTA is limited to
the execution conditions observed at analysis. This is in fact
a common trait of measurement-based approaches as they
involve two distinct phases in the execution of the target
program: analysis and operation. MBPTA is applied on the
system at analysis time and is expected to produce results
that are valid during operation. As an implied argument, the
properties on the timing behavior at analysis are automatically
transferred to the timing behavior at operation, from which two
observations arise. First, the computed pWCET bounds can be
considered reliable only if the observed execution conditions
are representative of the execution conditions that may rise at
operation [24], [26], [27]. Guaranteeing representativeness is
not an easy task as execution conditions are determined by
the combination of several factors, linked to the software and
hardware execution layers. Second, the pWCET distributions
obtained with MBPTA are tightly linked to the execution con-
ditions represented in the sample fed to EVT. The particular
execution conditions observed at analysis (and in which order
and number) determine how the pWCET distribution relates
to the ET of the single task activations during operation. It is
however difficult to understand this relation: the pWCET can
be a valid prediction for (i.e. its scope of applicability covers)
a specific job, any single job, or any sequence of jobs. As a
consequence, whenever a pWCET does not hold for any se-
quence of jobs, then it likely carries some sort of dependencies,
as conveyed by specific execution conditions. Consequently,
MBPTA distributions cannot be seamlessly used to perform
probabilistic RTA without assuring they meet the probabilistic
independence requirement imposed by convolution.

B. Related work

Some authors analyze the differences across pWCET dis-
tributions obtained with SPTA and MBPTA, claiming that
the latter may be subject to both, aleatoric variability and
epistemic uncertainty, whereas the former are only subject to
aleatoric variability [28]. However, SPTA is free of epistemic
uncertainty just as long as the timing model on which it builds
is reliable, which has been shown unattainable in the general
case [1]. Hence, in this work we do not consider epistemic un-
certainty as a differentiator across pWCET estimates obtained
with either SPTA or MBPTA.

Probabilistic independence is relevant for both SPTA and
MBPTA [13], [16], [14], [23], [29], [17]. Under SPTA, it en-
ables the convolution of the ETPs of any sequence of instruc-

tions along an execution path. Independence is not a given and
needs to be guaranteed by either making assumptions on the
underlying hardware platform [16] or flattening dependencies
by implementing conservative assumptions on ETPs. Under
MBPTA, independence is a main requirement in the original
formulation of EVT, which operates on i.i.d. observations,
although the i.i.d. requirement can be softened [14], [20]. For
this reason, statistical tests are usually applied to check for
dependencies within the sample fed to EVT. However, the
pWCET obtained for a task may carry out dependencies across
jobs or across tasks.

Probabilistic scheduling approaches typically focus on the
characterization of the task model and formalization of a
schedulability test. In general, they do not discuss on how
the probabilistic parameters are obtained in practice. Although
generally acknowledged, the independence requirement has
not been directly questioned and hastily assumed to be ful-
filled [3], [4], [5].

A first attempt to better understand the independence re-
quirement has been made in [30], [12] where it is observed that
independence is typically assumed by definition, thus putting
no extra requirement on probabilistic scheduling than those
generally accepted in deterministic scheduling. The pWCET
is defined as an upper bound to all possible probabilistic ETs
of a program, so that it cannot depend on any event. While
we agree with the definition, we also think that it cannot be
always met in practice. As shown later, independent pWCET
distributions may not be had, which challenges the use of
probabilistic scheduling.

The conclusions from [30] are reused in [31] and attached
to the concept of pWCET distributions obtained with EVT.
However, the authors do simply refer to [30] and assume
that inter and intra-task dependencies are already properly
captured by the pWCET. On the contrary, the concept of
independence under MBPTA has been preliminary addressed
in [7] by introducing a distinction between pWCET derived
with SPTA and those computed with MBPTA. In this work we
build on the same observations but make a step further in the
identification of the sources of probabilistic dependencies in
PTA. Focusing on MBPTA, we provide a deeper analysis of the
relation between ET and pWCET distributions. In contrast to
previous works, we consider different pWCET (in)dependence
scenarios showing how independent pWCET can be obtained
even in the presence of ET dependencies, hence enabling the
use of probabilistic scheduling. In some cases, we show that
independent pWCET distributions cannot be obtained, but we
provide means to resort to deterministic scheduling.

III. UNDERSTANDING DEPENDENCIES ACROSS PWCET
DISTRIBUTIONS

In order to analyze whether dependencies across pWCET
distributions exist, we provide first a formal definition of the
meaning of probabilistic independence for pWCET distribu-
tions. Two pWCET distributions are said to be probabilistically
independent if and only if the realization of one pWCET dis-
tribution does not have any effect of the pWCET distribution

of the other. Formally stated, given two pWCET distributions
X and), they are independent if:

faey(@y) = foy (@) - fony () = fojx=a)(y) = f(y)(lé)z)
Note that probabilistic independence is not the same as
statistical independence. In particular, probabilistic indepen-
dence refers to probability distribution functions, whereas
statistical independence applies to observation samples. Sta-
tistical independence is often assessed by means of statisti-
cal independence tests, such as for instance, the Ljung-Box
test [32]. Those tests may suffer false positives and false
negatives. Instead, probabilistic independence can only be
assessed theoretically. For instance, given two probabilistically
independent pWCET distributions X and)/, any statistical
independence test may reject the independence hypothesis
when applied on random samples of those distributions.

A. Consequences of pWCET Dependencies

Different sources may create dependencies across either the
ET of tasks, their pWCET distributions, or both. In the case of
pWCET distributions, these dependencies relate to the fact that
the particular realization of one of the pWCET distributions
affects the other pWCET distribution.

This can be illustrated with a simple example: let us assume
two tasks, 7, and 75 so that the pWCET distribution of 7
is pWCET,, = {{1,2},{0.5,0.5}}, thus meaning that the
WCET can be either 1 or 2 time units with 50% chances each,
and pW CET,, = {{3,4},{0.5,0.5}}. Further, let us assume
that whether the outcome is one or another depends on the
result of flipping a coin in both cases, where 7 and 75 execute
in 1 and 3 cycles in case of heads, and in 2 and 4 respectively
in case of tails. If we flip a coin for each task, 7; and 79, their
pWCET distributions are independent, since chances are 50%
for both of them regardless of the realization of the other task.
Howeyver, if the outcome of both tasks is determined with the
same coin flip, then both of them have 50% chances, but their
realizations are dependent. In particular, if 7 takes 1 time unit,
then 75 can only take 3. Analogously, if 71 takes 2 time units,
then 75 can only take 4.

In the context of real-time tasks, this can occur when one
of the parameters influencing the pWCET (as modelled during
the analysis phase) of one task, also influences the pWCET of
the other. Remarkably, the fact that dependencies occur across
ETs does not necessarily causes pWCET distributions to be
dependent: different scenarios are evaluated in Section IV,
where dependencies across ETs and pWCET distributions are
analyzed and discussed in the light of practical examples.

Whether pWCET distributions are independent or dependent
has a direct impact on probabilistic scheduling as the latter
may deliver unreliable results in the presence of dependencies.
If they are independent, then pWCET distributions can be re-
liably convolved. This means that the resulting addition of the
pWCET distributions can be computed multiplying each pair
of probabilities and adding their latencies. For instance, recall-
ing the previous example, the joint pWCET distribution of 7

and 7, would be pW CET;, -, = {{4,5,6},{0.25,0.5,0.25} }
since latency would be, for instance, 4 time units if 7; takes
1 time unit (0.5 probability) and 7o takes 3 (0.5 probability).
Hence, the probability of 4 time units is 0.5 - 0.5 = 0.25.

However, if 71 and 79 pWCET distributions are dependent,
as illustrated in the previous example, then pW CET, 4., =
{{4,6},{0.5,0.5}} since either they take 1 and 3 time units
respectively (0.5 probability) or they take 2 and 4 (also 0.5
probability). Clearly the joint pWCET distribution is different
if individual ones are dependent, and hence, it cannot be
obtained by means of convolution. In this case, the default
solution consists in resorting to deterministic WCET estimates,
obtained as the pWCET value such that its exceedance prob-
ability is deemed acceptable in relation to a given functional
safety standard. Note that in the context of PTA, pWCET
distributions upper-bound the actual ET distribution. Hence,
the real exceedance probability will be lower than estimated
(and potentially null). The probability threshold selected is an
upper-bound to the residual risk of exceedance rather than a
failure rate and thus, it can be used even for the most critical
systems [33], [34].

B. Sources of Dependencies

A wide variety of parameters may create dependencies
across pWCET distributions. It is not our purpose enumerating
all of them. We want to provide, instead, some examples to
show that dependencies are a real concern and are not just an
artifact created for the sake of discussion.

Some works obtain pWCET estimates leveraging the prob-
abilities of different input values for tasks, which may lead to
different execution paths [14]. These approaches rely on the
fact that input distributions considered at analysis match those
during operation or, at least, allow upper-bounding ETs during
operation. Whether this is doable in the general case or for
specific systems is beyond the scope of this paper. Instead, the
fact that the actual ET (under worst-case assumptions) depends
on input values, may easily create dependencies across tasks
sharing at least one such input. For instance, if such an input
is provided by a sensor (e.g. current speed of a car) that is
used as input for multiple systems, their pWCET distributions
may easily be dependent. The existence of dependencies across
inputs may cause dependencies across the ET of jobs of a task
(under worst-case conditions for other sources of ET variation)
and may eventually have an impact on the dependencies of the
pWCET distribution of the task with itself. We make specific
considerations on this matter in Section IV.

Dependencies may also exist across random inputs for tasks.
For instance, in the context of time-randomized processors [6],
time-randomized caches build on random placement, where
the placement function is determined based on a random
seed. However, such placement is fully deterministic for a
given random seed value and is re-randomized (and thus made
independent) across random seed changes. In general, seeds
cannot be changed across individual jobs and are only changed
periodically at specific time intervals, as in the case of avionics
systems [34]. In this case, pWCET distributions are indepen-

dent across time intervals (in different time partitions), but
dependent within time partitions since random seeds remain
constant within that scope. Hence, the placement function is
identical for all functions executed within such partition, and
pWCET distributions of tasks in the scope of the time partition
are not independent.

C. Probabilistic Independence under SPTA

In principle, both SPTA and MBPTA can produce pWCET
estimates that carry out dependencies. Both approaches may,
theoretically, obtain pWCET estimates building on the prob-
ability distribution induced by input values or, for example,
random seeds for time-randomized resources (on which SPTA
relies on). Hence, the reasoning above about dependence
across pWCET estimates applies to both SPTA and MBPTA,
yet with some differences.

By default, existing SPTA techniques have been designed
to deliver independent pWCET estimates. SPTA approaches
proposed so far have considered either deterministic upper-
bounding (in fact for most sources of ET variation) or re-
sources with randomized time behavior (usually for a reduced
set of resources such as caches). In this sense, we observe
that independence is not intrinsic to SPTA but is determined
by the way SPTA is designed to operate. To illustrate this
point, we consider an example of SPTA application on time-
randomized caches resulting in dependent pWCET estimates
(i.e. with a limited scope of applicability). Let us assume a
function f.() that can be called either from f,() or f;(), each
one leaving a different initial cache state for f.(), and thus
leading to a different ET for f.(). It could be reasonable, in
this scenario, to consider different call contexts, as a means
to tighten pWCET estimates, by forcing SPTA to compute a
pWCET estimate associated to the case in which f.() is called
from f,() or fp(). As a consequence, SPTA would produce
a pWCET estimate that would be dependent on that context
(initial cache state), e.g. from f,(), and would not be valid
when f.() is called from another context, e.g. from f;().

The natural way to apply SPTA is by considering the worst
case scenario — either deterministically or probabilistically —
so resulting pWCET estimates do not convey any dependence.
One can trade off the lack of dependencies in exchange of
tighter results. This contrasts with MBPTA, where specific
countermeasures are required to increase (as opposed to re-
duce) the scope of applicability of pWCET estimates. For
MBPTA, dependent pWCET estimates have been shown to
be obtainable, for example, when time-randomized caches are
used, as an effect of not changing random seeds for placement
across individual jobs [34], as explained before.

IV. PROBABILISTIC INDEPENDENCE OF PWCET
DISTRIBUTIONS

A key distinction we make in this work is between proba-
bilistically independent ETs and probabilistically independent
pWCET distributions. Such a distinction is fundamental to
understand why dependences are triggered as well as whether
they compromise the probabilistic scheduling assumptions.

In this section we analyze different scenarios where depen-
dencies across ETs and pWCET distributions may occur. For
each scenario we describe the type of existing dependencies,
their impact on scheduling and how they can be managed ef-
ficiently. Finally, we provide specific quantitative assessments
and practical examples for real systems. In this discussion,
we focus on MBPTA as the primary example since, as shown
in previous section, dependencies appear more naturally for
MBPTA than for SPTA. However, the presented discussion
generally holds for any PTA flavor.

A. Scenario 1: Independent ET and pWCET distributions

In this scenario neither the ET nor the pWCET distribu-
tions do exhibit any type of dependence. Hence, Equation 2
applies to both, ET and pWCET distributions for jobs of
any pair of tasks!. In fact, if ETs are independent, then
pWCET distributions are naturally also independent since the
pWCET estimation process may preserve or remove existing
dependencies, but cannot introduce new ones.

In our case, to obtain independent ETs, the tasks involved
must not share any input whose value has an effect on ET.
For instance, two tasks controlling cabin climatization and 3D
path planning in an aircraft may easily operate on independent
data, thus leading to probabilistically independent ETs.

Likely, the most challenging case for independent ETSs
corresponds to that of different jobs of a given task since,
obviously, the task operates always on the same set of inputs.
Hence, independent ETs will only be possible either when
those input values change independently across jobs or when
they do not influence ET. An example of the latter could
be that of a task that applies a mask on all pixels of a car
camera. On the one hand, input images are not independent
since consecutive images will typically be highly similar. On
the other hand, if the camera provides fixed-size images and
the operation on each pixel has constant latency, the ET of the
task will not carry out dependencies across jobs despite the
existing dependence across inputs.

1) A practical example: We illustrate the scenario when
no dependencies occur by using concocted synthetic distri-
butions. Later, in Section V, we provide examples with real
programs. We produce two synthetic benchmarks, which we
refer to as synl and syn2 for short. Both benchmarks consist
of a bimodal distribution, one mode occurring once every
40 observations and the other the remaining 39 times. We
collect 2,000 measurements for each one, so one distribution
is observed 50 times and the other 1,950 times. In particular,
those benchmarks are as follows:

« Synl: Once every 40 observations it follows a Gaussian
distribution (N (u,aQ)) with parameters ;1 = 500 and
o = 20. The other 39 out of 40 observations follow a
Gaussian distribution with ¢ = 200 and o = 20.

e Syn2: Once every 40 observations it follows a Gaussian
distribution (A (p1,0%)) with parameters y = 1000 and

INote that, potentially, those two tasks could be the same task, meaning
that the ET of any job of such task is independent of previous jobs.

o = 20. The other 39 out of 40 observations follow a
Gaussian distribution with g = 700 and o = 20.

While this experiment can be built on single-mode bench-
marks, we use bimodal distributions because we reuse those
benchmarks for the experiments in following scenarios.

We have estimated the pWCET distribution for both bench-
marks building upon MBPTA-CV [24], which is suitable
for analysing distributions that can be upper-bounded with
EVT distributions that use exponential tails, as in our case.
Moreover, MBPTA-CV has been devised explicitly to account
for multi-modal (a.k.a. mixture) distributions. Figure 1a shows
the empirical complementary cumulative distribution function
(empirical CCDF or ECCDF) for the two benchmarks with
dashed lines (black for synl and blue for syn2). The CCDF
is a convenient way to plot distribution tails as exceedance
probabilities are visually evident. In the plot, the x-axis
indicates the value that is exceeded with a probability at most
as high as indicated in the y-axis. Straight lines correspond to
the pWCET distributions computed for each benchmark.

Figure 1b shows the result of convolving the pWCET
estimates of both benchmarks (straight line). The figure also
shows the result of adding one value of each benchmark in a
random order, thus reflecting the lack of dependencies across
synl and syn2. As expected, the pWCET distribution from
the convolution of the individual pWCET distributions upper-
bounds the sample obtained by adding individual measure-
ments. This provides evidence that pWCET distributions can
be operated freely in the absence of dependence across ETs.

B. Scenario 2: Dependent ET and independent pWCET dis-
tributions

Dependencies across ETs of jobs (either of the same or
different tasks) are quite common in embedded real-time
systems. However, the existence of dependencies across ETs
does not imply that those dependencies will persist across
pWCET distributions. In fact, the WCET estimation process
can remove those dependencies, thus leading to independent
pWCET estimates.

To illustrate this scenario, tasks need to share some inputs,
and/or hardware and software states must affect their ETs.
For instance, a pipelined process processing input data from
I/O may have different tasks with ET highly correlated with
the size of the input data to process. Hence, either all tasks
execute slowly or quickly depending on the size of the data to
process, thus reflecting dependencies across tasks. This par-
ticular example corresponds to a real scenario in the avionics
domain [33].

Analogous examples can be drawn for jobs of the same task.
This would be the case, for example, of an engine cooling
system that monitors engine temperature to decide how to
configure the cooling solution. ETs can be presumably low
if temperatures are low since no specific action is required.
Conversely, ETs may increase if temperature is high enough to
require re-configuring the cooling solution so that to dissipate
enough heat and avoid overheating of the engine. While such
a task could be executed, for instance, every 100ms or even

every ls, temperature may likely change little in such a short
time period, thus causing the ET of a job to be in most cases
similar to the ET of previous jobs, with large ET variations oc-
curring only sporadically. This is illustrated with a hypothetical
example in Figure 2, where engine temperature is low during
the first 16 seconds, thus requiring the monitor to execute
for around 10-11ms. Then, temperature increases enough to
require the activation of cooling aids, which increases the ET
of the monitor up to 22-25ms during 14 seconds. Finally,
temperature becomes low enough so that the monitor does not
need to perform any further action during the last 10 seconds.

The WCET estimation process can remove dependencies, at
least, in two different ways: ® and @.

® By imposing the input causing dependencies to take its
worst-case value (or set of values) at analysis time: this will
lead to pWCET distributions that are pessimistic when inputs
are not the worst-case ones during operation, but they will
always be reliable. For instance, in the example in Figure 2,
pWCET estimation should use only high temperatures as input.
While ETs during operation are not independent, pWCET
estimates will be since they already account for worst-case
conditions, thus upper-bounding for all jobs those temperature
conditions that lead to ETs in the range 22-25ms.

@ By specialization: in the case of stationary processes
where ETs vary with specific periods, pWCET estimates may
be specialized for different jobs in each period. For instance,
given a task whose input values (or hardware/software initial
state) vary across the IV jobs in an execution period, we could
compute N pWCET distributions and use each one of them
for the jobs in the i*" position in that period. This case is
common for tasks with multiple (periodic) operation modes
such as, for instance, a task monitoring the crank angle in
a car, which can perform specific actions every d rotation
degrees (e.g. every 45 rotation degrees), thus repeating them
every N =360/d jobs. We could, therefore, either use a single
pWCET distribution upper-bounding the N execution modes,
or use a specific pWCET distribution for each execution mode
accounting for the specific conditions in each mode, thus
leading potentially to lower pWCET distributions for some
jobs in the period.

1) A practical example: For this scenario we use two
synthetic dependent benchmarks (syn3 and syn4) similar to the
previous ones. In particular, those benchmarks are as follows:

o Syn3: Has two operation modes. In one of them, it
follows a Gaussian distribution with p = 1000 and
o = 20. In the other mode, it follows a Gaussian
distribution with © = 700 and o = 20.

« Synd: Analogously, it also has two operation modes. In
one of them, it follows a Gaussian distribution with p =
500 and o = 20. In the other mode, it follows a Gaussian
distribution with y = 200 and o = 20.

Hence, both benchmarks have a “fast” and a “slow” mode.
Those are meant to mimic, for instance, different inputs or pro-
cessor states for tasks, where one is intended to upper-bound
the other. This reflects dependencies inside a single task. We

T\}h syn2

synl+syn2
(RWCET. dep).

A

syn4 (u=500)

>

] ’\V/\ r

\

NN

syn3 (u=700)

synl synl+syn2

4

) AW
4{syn4 (u:ZOCN \ /7

syn3 (u=1000) \

syn1+syn2\

Synthetic 1 and synl& Synthetic joint indep%

Synthetic 3

convolution)
1 Synthetid joint dependent

1e-16 1e-12 1e08 1e-04 1e+00
L
1616 1e-12 1e-08 1e-04 1e+00
116 1e-12 1e-08 1e-04 1e+00
L f f H

3000 4000 5000 1000 2000 3000 4000 5000 800 1000

(a) ETs and pWCET for
synl and syn2.

0 1000 2000

convolution for
synl+syn2.

(b) Joint ET and pWCET (c) ETs and pWCET for
syn3 with ¢ = 700 and
w = 1000.

1616 1e-12 1e-08 1e-04 1e+00
1e-16 fe-12 1e08 1e-04 1e+00
L

Synthetic x \
200 AK‘JO 6(;0 B(‘)O

(d) ETs and pWCET for
syn4 with p = 200 and
© = 500.

1200 1400 2000 4000 6000 8000 10000 12000

(e) ETs for synl+syn2,

their pWCET and
pWCET convolution.

Fig. 1: Examples for the different ETs (dashed lines) and pWCET (straight lines) scenarios. Plots (a) and (b) correspond to
independent ETs and pWCET, (c) and (d) to dependent ETs and independent pWCET, and (e) to dependent ETs and pWCET.

Dependent execution times

EXECUTION TIME (MS)
5 8

TIME (SECONDS)

Fig. 2: Example of time-dependent ETs for a hypothetical
engine cooling solution monitor.

collect samples with 2,000 observations for each benchmark
and each mode, thus resulting in 8,000 measurements in total.

Figure 1c plots the ECCDF for syn3 under each individual
mode, and the pWCET distribution for the “slow” mode (black
straight line). In this particular case, we cannot determine a
priori when each mode will occur during operation, and a
safe assumption would be that the task will always behave in
the worst (“slow””) mode . As shown in the figure, the pWCET
distribution for the “slow” mode upper-bounds both modes. Of
course, this approach is only reasonable when enough evidence
exists that one mode necessarily leads to higher ETs, either
deterministically or probabilistically, than the other.

Figure 1d studies syn4. This example is similar to the
previous one, with the exception that in this case we assume
that we can determine when each mode will be triggered. For
instance, the task could be run twice in a scheduling window,
being the first one in the “slow” mode and the second one in
the “fast” mode. In this case we can resort to the solution
of using the pWCET distribution for the “slow” mode, as
done for syn3, or use specialized pWCET distributions for
each set of jobs of the task. As shown in the figure, the
pWCET distribution for the “fast” mode (blue straight line)
would produce lower resource utilization, but at the same time
it cannot be used to upper-bound the ET of “slow” jobs.

C. Scenario 3: Dependent ETs and pWCET distributions

Whether dependencies across ETs are removed or preserved
depends on the pWCET estimation process. For instance,
recalling the example of the pipelined functions processing
a input data from I/O, we may be able to derive either
independent or dependent pWCET distributions. Independent

pWCET distributions would be obtained by considering those
message (input data) sizes that lead to the highest ETs
(typically the largest messages). Nonetheless, if we know the
message size frequency during operation, we could leverage
such information to tighten pWCET distributions. For instance,
we could derive pWCET distributions capturing a scenario
where there are two types of messages (long and short) and
we know that up to 10% of the messages lead to significantly
higher ETs. In this case, however, pWCET distributions of
the functions would not be independent. In particular, we
know that either all functions execute with short ETs (short
messages) or all of them do it with long ETs (long messages).
The later would occur up to 10% of the times. Notably,
assuming 5 functions, if we convolve pWCET estimates as if
they were independent, we would obtain that long ETs for all
5 functions simultaneously are expected up to 0.001% of the
times (0.1° = 0.00001 = 0.001%), which is clearly wrong
(and optimistic). Moreover, convolution would also lead to
non-null probabilities of having exactly 1, 2, 3 or 4 functions
with long ETs, when the probability of those scenarios is
known to be zero. In this case pWCET distributions are clearly
dependent, and those dependencies cannot be ignored.

With dependent pWCET distributions, we can still select an
exceedance threshold of relevance and resort to deterministic
pWCET estimates individually for each task, to later feed them
to deterministic schedulability tests. By applying this approach
to the example above, we would account for the impact of
long messages for each function in their individual WCET
estimates, and hence, for the scenario of all of them operating
on long messages simultaneously.

In the more general case, in order to avoid resorting to
deterministic pWCET estimates and being able to operate
with pWCET distributions, dependencies across pWCET dis-
tributions must be modeled probabilistically with techniques
alternative to convolutions, as the latter can only be used
with independent distributions. Some authors have suggested
copulas as a means to combine dependent distributions [13],
but precise information about dependencies would be needed,
which we regard as hard to obtain in general.

1) A practical example: To illustrate the case of dependent
ETs and pWCET distributions, we reuse the example of
scenario 1, but we assume syn/ and syn2 to carry dependencies

TABLE I: Amenability of pWCET distributions to probabilistic scheduling.

Scenario Common wisdom

Conclusion of this paper

Independent ETs
ascertained, (iii) Can be used for scheduling

(1) Lead to independent pWCET, (ii) Must be

Confirmed

MBPTA | Dependent ETs | (i) Lead to dependent pWCET, (ii) Cannot be | Independent pWCET estimates can still be obtained for some types of
used for scheduling dependencies, controlled experiments and scope of applicability
SPTA N/A (i) pWCET assumed independent by definition, | SPTA can in principle operate on dependent inputs, possibly resulting in

(i) Always usable for scheduling

dependent pWCET estimates

on each other: whenever p = 500 for syn/, p = 1000 for syn2,
and whenever p =200 for synl, ;1="700 for syn2. Hence, indi-
vidual pWCET distributions for each benchmark are the same
as those shown in Figure la, but pWCET distributions are no
longer independent. For instance, if they were independent, the
probability of both benchmarks experiencing high values of p
would be 1/40-1/40=1/1600, and there would be a non-null
probability of “exactly” (i.e. only) one of them experiencing
a high value of p. However, in our example, the probability
of high u values for both benchmarks simultaneously is 1/40,
and that of “exactly” one high p value is zero.

Figure le shows the cumulative ECCDF of syn/ and
syn2 (black dashed line), and its pWCET distribution, which
accounts for dependencies. For completeness, we show the
pWCET distribution obtained convolving individual pWCET
distributions of each benchmark (blue straight line). As shown,
assuming independence leads to a “lower” pWCET distri-
bution than if accounting for dependencies. Even worse, in
this particular example, such pWCET distribution does not
even upper-bound measured data, which confirms the risk
of obtaining optimistic bounds. As a consequence, either we
derive a pWCET distribution accounting for dependencies,
which may not always be possible, or we must resort to
deterministic scheduling, as explained before. For instance,
at an exceedance probability of 1075 per run, the pWCET
estimate for dependent data is 4,695 time units, whereas that
assuming independent data is 2,566 time units. If we use
instead individual pWCET estimates for each benchmark, they
are 2,026 and 2,502 time units for synl and syn2 respectively,
thus totalling 4,528 time units. While this value is slightly
below the actual pWCET estimate of the distribution obtained
adding the measurements of both benchmarks, it is close
enough to tentatively attribute the discrepancy to statistical
variation in the samples themselves. In fact, arguably indi-
vidual pWCET bounds implicitly account for any potential
dependence, so the discrepancy is likely accountable to some
degree of pessimism.

D. Putting it all together

The analyzed scenarios and examples exhaustively cover all
possible (in)dependence relations between ETs and pWCET
distributions. From our analysis we derive valuable conclu-
sions on whether and under what conditions PTA results, either
from SPTA or MBPTA, can be used in probabilistic scheduling
analysis. Table I summarizes our conclusions and assesses
them against the common perception. Notably, we have shown
(also by example) the following facts:

« MBPTA allows obtaining independent pWCET distributions
from independent ET measurements, and from measure-
ments that exhibit certain types of dependence. Indepen-
dent pWCET distributions can be unconstrainedly used for
scheduling purposes.

o In the presence of other types of dependence, pWCET
distributions will be inevitably dependent and unamenable
to probabilistic scheduling. Still, deterministic pWCET
bounds, at the desired exceedance threshold, can be used
for deterministic scheduling.

« Not only MBPTA, but even SPTA can deliver dependent
pWCET distributions that cannot be used in probabilistic
schedulability analysis.

V. EVALUATION

In this section we collect evidence on common real-time
benchmarks rather than on synthetic examples. Also, ETs
are collected by executing the benchmarks on a specific
simulation-based platform, rather than assuming that they
follow a particular distribution. Next we present the evaluation
framework and specific results for each of the three scenarios
described in the previous section.

A. Experimental framework

We consider several programs from the Milardalen bench-
mark [35] suite. This suite has been regarded as representative
for WCET estimation and includes a wide variety of programs
and kernels. Since our analysis is agnostic of the particular
benchmarks — and in fact the particular benchmark suite —
evaluated (and size thereof), we have performed our analysis
on an arbitrary selection from Mailardalen benchmarks. The
conclusions we have reached are analogous across all those
used. In particular, we present our results on two specific
benchmarks: compress and insertsort.

We run those benchmarks on the SoCLib [36] framework,
implementing a cycle-accurate processor model supporting
PowerPC binaries [37]. In particular, we model a pipelined
processor with in-order execution consisting of 4 stages:
fetch (F), decode (D), execute (E), and write-back (WB)
(see Figure 3). Our reference processor design implements
4KB 8-way set-associative instruction (IL1) and data (DL1)
caches, with 16-bytes cache lines. Hit latency is 1 cycle and
miss latency 100 cycles to serve data from memory. As we
aim at obtaining pWCET distributions for our analysis, we
implement random placement and replacement policies [38],
which remove the dependence of pWCET bounds on the actual
memory placement of objects and enable a smooth application

of EVT. As stated before, we build upon MBPTA-CV [24] for
the estimation of pWCET distributions out of the different data
samples considered.

Measurements for the different benchmarks are collected in
two different ways: on empty caches and preserving cache
state across executions. These two measurement protocols
allow modelling the scenarios presented in Section IV. In each
scenario we provide details of the system being modelled.
For each experiment we collected between 500 and 1,000
execution time measurements, as dictated by MBPTA-CV to
obtain statistically-reliable pWCET estimates.

B. Scenario 1 evaluation: Independent ET and pWCET dis-
tributions

We consider a scenario analogous to that modelled in Sec-
tion IV, where each benchmark exhibits a bimodal behavior.
In particular, 5% of the executions are performed on empty
caches and the remaining 95% on warmed up caches for
both compress and insertsort. Executions with empty
caches or with cache reuse are completely uncorrelated across
benchmarks as they are independent, and follow no particular
order in the individual samples for each benchmark.

IL1 |« >

D | E [5{wel >

Fig. 3: Block diagram of our reference architecture.

Figure 4a shows the ECCDF for each benchmark
(compress in black and insertsort in blue) with dashed
lines, and their individual pWCET distributions with straight
lines. As observed, pWCET distributions upper-bound the set
of measurements of each benchmark. Figure 4b, instead, shows
the result of convolving the pWCET distributions of each
benchmark (straight line) and the ECCDF of a sample gen-
erated by adding one measurement from each benchmark in
no particular order (samples of the benchmarks are randomly
sorted). Since ETs are independent across benchmarks, their
pWCET distributions can be safely convolved for schedulabil-
ity analysis. As expected, the joint pWCET distribution upper-
bounds the addition of the measurements for both programs.

C. Scenario 2 evaluation: Dependent ET and independent
pWCET distributions

In this scenario we study dependencies across jobs of a
given task. For that purpose we assume that benchmarks
are scheduled in a way that caches are flushed every two
executions, as if the boundary of a timing partition was reached
and cache contents were, therefore, flushed, similarly to what
is done for ARINC653 systems in the avionics domain [39].
Hence, benchmarks alternatively execute on an empty cache
or reusing cache contents, with a clear dependence across ET

measurements, since those in odd positions have higher values
(empty caches) than those in even positions (cache reuse).

As explained before, in this case we can get rid of ET
dependencies by shifting the source of dependence to its worst-
case state. Hence, we assume that caches are always empty and
obtain the pWCET distribution under this assumption. Results
are shown in Figure 4c for compress. In particular, the
straight line corresponds to the pWCET distribution assuming
caches are always empty, and the dashed lines correspond to
the ECCDF for measurements with empty cache (black) and
with cache reuse (blue). As shown, the pWCET distribution is
a tight upper-bound to the case with empty caches. The other
operation mode, with cache reuse, falls apart (on the lower
side) indicating that its execution conditions can only lead to
(probabilistically) lower execution times than the case with
empty caches. Hence, resorting to the pWCET distribution
obtained on empty caches removes dependencies on input
cache state and delivers independent pWCET bounds that can
be freely operated by probabilistic scheduling.

However, enforcing worst-case conditions for pWCET es-
timation may result in overly-pessimistic bounds. Hence, we
can estimate separated pWCET distributions for odd and even
jobs, and reach a more efficient use of resources, as illustrated
in Figure 4d for insertsort (blue lines with cache reuse
and black lines on empty caches). As shown, using specialized
pWCET distributions provides around 15-20% tighter bounds.

A similar analysis has been conducted on other Milardalen
benchmarks (see top part of Table II), where the improvement
with specialized pWCET estimates varies with cache reuse. In
general, specialized pWCET estimates may be used for differ-
ent task operation modes providing arbitrarily large gains.

D. Scenario 3 evaluation: Dependent ET and pWCET distri-
butions

Finally, we assess the case where both, ETs and pWCET
distributions, are no longer independent. For that purpose, we
reuse the experiment in Scenario 1, where each benchmark
runs 5% of the times on an empty cache and 95% of the times
on a warmed up cache. However, in this experiment, either
both of them run on an empty cache or both of them run on
a warmed up cache. This allows modelling scenarios where
execution times of jobs belonging to different tasks follow
similar patterns due to dependencies.

TABLE II: Gains with specialized pWCET estimates (top) and
joint pWCET estimates with convolution or accounting for
dependencies (exceedance probability of 10~° per run).

Benchmarks pWCET empty PWCET reuse| Gain
cnt 8,001 7.575] 5.3%
cre 56,981 56,389 | 1.0%
gsort 2,850 2,572 9.8%
select 10,414 9,250 11.2%
Benchmarks | pWCET convolution | pWCET dependent | Diff
cnt+crc 66,963 71,804 | 6.7%
gsort+select 17,107 20,127 [15.0%

\

Cache reuse /-\ ,Z/\ Z)\ \\<— PWCET dep|

/
1 INSERTSORT\ COMPRESS

\

d

| convolution /\
Empty cache

Cache reuse \ Empty

\

1e-16 fe-12 1e08 1e-04 1e+00
L . +

(a) ETs and pWCET.

COMPRXSS and INSEATSORT

6000 8000 10000 12000

1616 le-12 1e08 1e-04 1e+00

COMPRESS+INSERTSORT

(b) Joint ET and pWCET
convolution.

\\
\

COMPRESSHNSER'IgORT

1e-16 fe-12 1e08 1e-04 1e+00
L L .

1e-16 1e-12 1e08 1e-04 1e+00

1e-16 fe-12 1e08 1e-04 1e+00
L .

I
PR

\ cache \
|NSERTSOFX \

4500 5000 5500 6000 6500 7000 7500

COMPRESS

(c) ETs and pWCET with (d) ETs and pWCET with (e) ETs for compress+
cache reuse and empty cache reuse and empty insertsort, and their
caches for compress. caches for insertsort. pWCET.

7000 8000 9000 10000 11000

Fig. 4: Examples for the different ETs (dashed lines) and pWCET (straight lines) scenarios for compress and insertsort
benchmarks. Plots (a) and (b) correspond to independent ETs and pWCET, (c¢) and (d) to dependent ETs and independent

pWCET, and (e) to dependent ETs and pWCET.

Results for this case are shown in Figure 4e. The blue
straight line corresponds to the pWCET distribution obtained
assuming independent measurements across benchmarks. No-
tably, besides being arguably unreliable, such pWCET dis-
tribution does not even upper-bound the joint ET of both
benchmarks. As shown, the ECCDF of the addition of the ETs
of both benchmarks clearly crosses the pWCET distribution
derived under the independence assumption.

Instead, if we account for dependencies and compute the
pWCET estimate of the (informed) addition of the mea-
surements of both tasks, then we obtain a reliable pWCET
distribution, shown with a black straight line in the plot. As
explained before, precise information about dependencies may
not be available, and it may be convenient resorting to deter-
ministic WCET estimates and scheduling practices. For that
purpose, we have analyzed the behavior at a given exceedance
probability (10~% per run), although our conclusions hold
for virtually any exceedance threshold. Individual pWCET
estimates at this exceedance probability are 10,216 and 6,989
cycles for compress and insertsort individually, thus
somewhere in between both pWCET distributions (17,205
cycles in total). Hence, since deterministic pWCET estimates
can be argued to be reliable by construction by removing
any influence of dependencies, we regard the pWCET esti-
mate assuming independence as potentially unreliable. Thus,
scheduling must resort to deterministic WCET estimates and
probabilistic schedulability cannot be applied in this scenario.

A similar analysis has been applied on some other program
pairs from the Milardalen benchmarks (see bottom part of
Table II), showing that, as expected, the discrepancies between
reliable pWCET estimates (accounting for dependencies) and
unreliable ones (obtained with convolutions and ignoring
dependencies) can be significant, up to 15% for the pair
gsort+select.

VI. CONCLUSIONS

Probabilistic scheduling is increasingly considered as a
way to reconcile real-time schedulability requirements with
increasingly pessimistic and rare (extremal) WCET bounds, as
those typically derived on modern, complex systems. In this
scenario, schedulability is assessed on pWCET distributions

rather than on single monolithic WCET values. To combine
the effect of multiple tasks, most approaches rely on the
convolution operator, which in turn requires its operands to
be probabilistically independent. The common perception is
that pWCET distributions are independent when obtained with
SPTA and dependent if obtained with MBPTA, thus suggesting
that only SPTA results can be used for scheduling purposes.

In this paper we provide arguments and quantitative evi-
dence, both on synthetic examples and on concrete bench-
marks, disproving common wisdom in several directions,
concluding that: (i) MBPTA can deliver independent pWCET
distributions compatible with probabilistic scheduling require-
ments; (ii) in some cases ET dependencies can be removed
in the pWCET estimation process; (iii) for some type of
dependence, both MBPTA and SPTA may fail to deliver
independent pWCET distributions. Yet, even in these cases,
the outcomes of probabilistic timing analysis are still usable:
single pWCET bounds selected at specific exceedance thresh-
olds can be used in deterministic scheduling analysis without
further constraints.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773)
and the HIPEAC Network of Excellence. Jaume Abella and
Enrico Mezzetti have been partially supported by MINECO
under Ramon y Cajal and Juan de la Cierva-Incorporacion
postdoctoral fellowships number RYC-2013-14717 and 1JCI-
2016-27396 respectively.

REFERENCES

[1] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on
their trustworthiness,” in SIES, 2015.

[2] J. P. Lehoczky, “Real-time queueing theory,” in RTSS, 1996.

[3] J. Diaz et al., “Stochastic analysis of periodic real-time systems,” in
RTSS, 2002.

[4] H. Zhu et al., “Optimal partitioning for quantized EDF scheduling,” in
RTSS, 2002.

[5] A. Masrur, “A probabilistic scheduling framework for mixed-criticality
systems,” in DAC, 2016.

[6]

[7]

[8]

[10]

(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]

L. Kosmidis et al., “Fitting processor architectures for measurement-
based probabilistic timing analysis,” Microprocessors and Microsystems,
vol. 47, pp. 287 — 302, 2016.

E. Mezzetti et al., “Work-in-progress paper: An analysis of the impact
of dependencies on probabilistic timing analysis and task scheduling,”
in RTSS, 2017.

C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46-61, 1973.
M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390-395, 1986.

N. Audsley et al., “Applying new scheduling theory to static priority
pre-emptive scheduling,” Software Engineering Journal, vol. 8, pp. 284—
292(8), September 1993.

T. S. Tia et al., “Probabilistic performance guarantee for real-time tasks
with varying computation times,” in RTAS, 1995.

D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in RTSS, 2013.
G. Bernat and M. Newby, “Probabilistic WCET analysis, an approach
using copulas,” Journal of Embedded Computing, 2006.

L. Santinelli et al., “On the sustainability of the extreme value theory
for WCET estimation,” in WCET Workshop, 2014.

G. Bernat, A. Colin, and S. Petters, “WCET analysis of probabilistic
hard real-time systems,” in RTSS, 2002.

F. Cazorla et al., “PROARTIS: probabilistically analyzable real-time
systems,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 2s, 2013.
S. Altmeyer and R. I. Davis, “On the correctness, optimality and
precision of static probabilistic timing analysis,” in DATE, 2014.

L. David and I. Puaut, “Static determination of probabilistic execution
times,” in ECRTS, 2004.

S. Kotz and S. Nadarajah, Extreme value distributions: theory and
applications. World Scientific, 2000.

S. Coles, An Introduction to Statistical Modeling of Extreme Values.
Springer, 2001.

R. Fisher and L. Tippett, “Limiting forms of the frequency distribution of
the largest or smallest member of a sample,” Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 24, no. 2, 1928.

J. Pickands, “Statistical inference using extreme order statistics,” The
Annals of Statistics, vol. 3, no. 1, pp. 119-131, 1975.

L. Cucu-Grosjean et al., “Measurement-based probabilistic timing anal-
ysis for multi-path programs,” in ECRTS, 2012.

[24]

[25]
[26]

[27]

[28]

[29]

(30]

[31]

[32]

J. Abella et al., “Measurement-based worst-case execution time
estimation using the coefficient of variation,” ACM Trans. Des. Autom.
Electron. Syst., vol. 22, no. 4, pp. 72:1-72:29, Jun. 2017. [Online].
Available: http://doi.acm.org/10.1145/3065924

L. Santinelli et al., “Revising measurement-based probabilistic timing
analysis,” in RTAS, 2017.

S. Milutinovic et al., “Modelling probabilistic cache representativeness
in the presence of arbitrary access patterns,” in ISORC, 2016.

C. Maxim et al., “Reproducibility and representativity - mandatory prop-
erties for the compositionality of measurement-based WCET estimation
approaches,” in CRTS Workshop, 2016.

R. Davis et al., “On the meaning of pwcet distributions and their use
in schedulability analysis,” in Real-Time Scheduling Open Problems
Seminar, June 2017.

B. Lesage et al., “Static probabilistic timing analysis for multi-path
programs,” in RTSS, 2015.

L. Cucu-Grosjean, “Independence - a misunderstood property of and for
probabilistic real--time systems,” in Alan Burns, in occasion of his 60th
Anniversary, 2013. [Online]. Available: https://hal.inria.fr/hal-00920504
L. Santinelli and L. George, “Probabilities and mixed-criticalities: the
probabilistic C-space,” in Workshop on Mixed Criticality Systems, 2015.
G. Box and D. Pierce, “Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models,” Journal
of the American Statistical Association, vol. 65, no. 332, pp. 1509-1526,
1970.

F. Wartel et al.,, “Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study,” in SIES, 2013.
——, “Timing analysis of an avionics case study on complex hard-
ware/software platforms,” in DATE, 2015.

J. Gustafsson et al., “The Mélardalen WCET benchmarks-past, present
and future,” in WCET Workshop, 2010.

SoCLib, “-” 2003-2012, http://www.soclib.fr/trac/dev.

J. Wetzel, E. Silha, C. May, B. Frey, J. Furukawa, and G. Frazier,
PowerPC User Instruction Set Architecture, IBM Corporation, 2005.
L. Kosmidis et al., “A cache design for probabilistically analysable real-
time systems,” in DATE, 2013.

ARINC, Specification 653: Avionics Application Standard Software
Interface, Aeronautical Radio, Inc, 1996.

