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Abstract— This paper proposes a health-aware model predic-
tive control (MPC) for drinking water networks that includes an
additional goal to extend the components and system reliability.
The components and system reliability are incorporated in the
MPC model as an extra parameter varying equation that con-
siders the control action as a scheduling variable. The main goal
of this work is to exhibit the advantage of taking into account
system and component reliability, computed on-line by means
of an LPV-MPC algorithm through an instance dedicated to
DWNs. The proposed control approach allows the controller
to accommodate to the parameter changes. By computing an
estimation of the state variables during prediction, the MPC
model can be modified considering the estimated state evolution
at each time instant. Moreover, the solution of the optimization
problem associate to the MPC problem is achieved by solving
a series of Quadratic Programs (QP) at each sampling time. A
small part of a real water network is used as a case study for
illustrating the performance of the proposed approach.

I. INTRODUCTION
Drinking Water Networks (DWNs) are large-scale

multisource/multi-node systems which must be reliable and
flexible to deal with continuously varying conditions, as for
example, unexpected changes in the demands or faults in
some of the components [1]. DWN are multivariable dynamic
constrained systems that are characterized by the interrela-
tionship of several subsystems (actuators, tanks, intersection
nodes, sources and consumer sectors). The application of
control strategies by considering the system and components
reliability becomes necessary to assure the quality of service.
In order to increase the system reliability, anticipate the
apparition of faults and reduce the operational costs, actuator
health monitoring should be considered. Recently, system
reliability has been taken into account in the system control
process through a Prognosis and Health Management (PHM)
framework. This is due to the fact that reliability is a standard
procedure for estimating how long the system will perform
its function accurately and can be used to predict future
damages in the system given the state of its components
[2]. According to the literature [3], [4], consumer demand
satisfaction is the main objective of the operational control
of a DWN. Additionally, its optimal management, that can
be formulated as a multi-criteria problem, is a complicated
challenge for water suppliers. To avoid these complications,
Model Predictive Control (MPC) appears to be an efficient
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method [5]. On the other hand, MPC has been recently
proved as an adequate strategy for implementing health-
aware control schemes because the MPC can predict the
appropriate control actions to achieve optimal performance
according to physical constraints and multi-objective cost
functions. Pereira et al. in [6] proposed a MPC approach
that distribute the loads among redundant actuators. Karimi
Pour et al. [7] designed a health-aware MPC controller that
includes a fatigue-based prognosis approach to minimize the
damage of components.

The actuator reliability is usually modelled using exponen-
tial function of the control input [8]. On the other hand, the
system reliability is determined from the combination of each
actuator reliability taking into account the interconnection
topology. Consequently, the system reliability has an expo-
nential relation with the control input that induces a nonlinear
behavior. Some studies on the DWN control are concentrated
on the use of MPC to achieve an optimal management of the
DWN system while maintaining the DWN reliability, e.g. by
tuning the weights of the optimization problem according
to a wear index [1] or by forcing constraints concerning
actuator reliability [9]. One major drawback of the previous
approaches to reliability-based MPC is that they consider the
reliability at the actuator level but not at the system level
taking into account the interconnection topology because
of the non-linearity of the resulting constraints leading to
the use of non-linear MPC. One way to deal with non-
linear MPC is to represent the process behavior by means of
Linear Parameter Varying (LPV) models [10]. LPV models
are a class of linear models whose state-space matrices
depend on a set of time-varying parameters that can be
measured/estimated on-line. The main advantage of LPV
models is that the system nonlinearities are embedded in
the varying parameters, which make the nonlinear system
become a linear-like system with varying parameters [11].

This paper presents a health-aware LPV-MPC controller
on the basis of PHM information provided by the on-line
evaluation of the system reliability. The system reliability
is integrated into the control algorithm using a LPV frame-
work. The augmented model considering both the DWN and
reliability models is represented as an LPV model. Thus,
the control inputs are generated to fulfill the control objec-
tives/constraints but at the same time to extend the reliability
and lifespan of the system components. The first objective
of this paper is to exhibit the advantage of taking into
account system and component reliability, computed on-line
in an LPV-MPC algorithm through an instance dedicated to
DWNs. The second main contribution of this paper consists



in designing an improved health-aware LPV-MPC strategy
in order to formulate an optimization problem that exploits
the functional dependency of scheduling variables and state
vector to develop a prediction strategy with numerically at-
tractive solution. This attractive solution is iteratively forced
to an accurate solution, thereby avoiding the use of non-linear
optimization.

The remainder of the paper is organized as follows. In Sec-
tion II, the DWN control oriented modelling is introduced.
The system reliability modeling is presented in Section
III. The health-aware controller scheme based on an LPV-
MPC algorithm and the reliability model integration into the
control algorithm are presented in Section IV. In Section V,
results of applying the proposed control strategy to the DWN
network as a case study are summarized. Finally, in Section
VI, the conclusion of this work are drawn and some research
lines for future work are proposed.

II. MPC OF DRINKING WATER NETWORK

A. System description and modeling

Several modeling methods dealing with DWNs have been
proposed in the literature (see, e.g., [12]). In this paper,
a control-oriented modeling approach that is based on a
flow model is outlined following the principles introduced
in [13]. Generally, a DWN is a network which comprises a
set of pressurized pipes, water tanks at different elevations,
a number of pumping stations and valves to manage water
flows, pressure, and elevation to supply water to consumers.
Consider a general DWN as represented by a directed graph
G(ν, ε), where a set of elements, i.e., nx storage tanks, ns
sources, nd sinks and nq intersection nodes are represented
by v ∈ ν vertices, which are connected by a ∈ ε links. Due
to the network function, water is transported along the links
by nu flow actuators (i.e., valves and pipes), passing through
reservoirs or tanks, from specific origin locations to specific
destination locations. The control-oriented model of DWN
can be described by the following set of linear discrete-time
difference-algebraic equations for all time instant k ∈ Z+:

x(k + 1) = Ax(k) +Bu(k) +Bddm(k), (1a)
0 = Euu(k) + Eddm(k), (1b)

where the difference equations in (1a) describe the dynamics
of the storage tanks, and the algebraic equations in (1b)
consider the static relations in the network (i.e., mass balance
at junction nodes). Furthermore, x(k) ∈ Rnx is the volume
of the storage tanks, u(k) ∈ Rnu is the manipulated inputs
(i.e. flows in pumps and valves) and dm(k) ∈ Rnm is
the demanded flow considered as measured disturbances.
A,B,Bd, Eu, Ed and C are time-invariant matrices of suit-
ability dimensions dictated by the network topology.

B. MPC formulation

The aim of using MPC techniques for controlling water
distribution networks is to compute, ahead of time, the
input commands to achieve the optimal performance of the
network according to a given set of control goals [13].

The control goal can formulated as the minimization of a
convex multi-objective cost function which includes a term
for minimizing the square difference between the predicted
output and the set-point. The other objective of the controller
for the DWN is to maintain the pumps and tanks under their
bounds and extend the reliability of the system.

Considering the network mathematical model (1), the
MPC controller design is based on minimizing the finite
horizon cost

Jk =

Np∑
l=0

‖x(l+1|k)−xref (l+1)‖p,w1 +

Np−1∑
i=0

‖u(l|k)‖p,w2 , (2)

where Np is the prediction horizon. Furthermore, the
subindex p denotes the norm used (for this paper, the 2-
norm) and the weighting matrices w1 ∈ Rnx×nx and w2 ∈
Rnu×nu are used to establish the priority of the different
control objectives. Considering that the values of x(0|k)
and u(0|k − 1) are known at each time instant, the MPC
optimization problem can be formulated as

min
u(k)

Jk(u(k)), (3a)

subject to:

x(l + 1|k) = Ax(l|k) +Bu(l|k) +Bddm(k), (3b)
0 = Euu(l|k) + Eddm(k), (3c)
u(k), uk+1, ..., uk+Np−1,∈ U (3d)
x(k), uk+1, ..., xk+Np ,∈ X (3e)
x(0|k) = x(k), (3f)

where u(k) = [u(k), u(k + 1), ..., u(k + Np − 1)]T is the
decision sequence of controlled inputs.

III. RELIABILITY ASSESSMENT

A. Failure rate and component reliability

Definition 1: Reliability is the probability that compo-
nents, units, types of equipment and systems will perform
their predesignated function for a certain period of time under
some operating conditions and specific environments [2].

Mathematically, reliability R(t) is the probability that a
system will be successful in the interval from time 0 to time
t:

R(t) = P (T > t), t ≥ 0 (4)

where T is a nonnegative random variable which represents
time-to-failure or failure time.

Definition 2: The unreliability of a component (or system)
R(t) is defined as the probability that the component or
system experiences the first failure or has failed one or more
times during the time interval 0 to time t.
Since the component is always in one of the two possible
states (operational or failed), the following relation is satis-
fied

F (t) +R(t) = 1. (5)

Several different functions have been used to characterize
the reliability functions of time. Some of the more common



reliability functions include the exponential, normal, log-
normal and Weibull distributions [14]. In particular, engi-
neering systems are organized to support varying amounts of
loads characterized in terms of usage rate or occupied period.
Several observational types of research have established that
the function load strongly affects the component failure rate
[15]. Hence, it is important to consider the load versus
failure rate relationship when presenting system reliability
evaluation. In the considered study, failure rates are obtained
from actuators under different levels of load depending on
the applied control input. One of the most used relations is
based on assuming that actuator fault rates changes with the
load through the following exponential law:

λj = λ0
jexp

(
βjuj(k)

)
, j = 1, 2, ...,m (6)

where λ0j represents the baseline failure rate (nominal failure
rate) and uj(k) is the control action a time k for the jth

actuator. βj is a constant parameter that depends on the
actuator characteristics.

In the useful period of life, the component can be char-
acterized at a given time t by a baseline reliability measure
R0(t). In the following, R0,j(t) will be assigned to the reli-
ability of the j-th actuator obtained under nominal operating
conditions in the useful period of life such as:

R0,j(k) = exp
(
− λ0

j t
)
, j = 1, 2, ...,m (7)

Therefore, the component reliability of a system with the
j-th component can be estimated by using the exponential
function and depending on the baseline reliability level R0,j

as

Rj(k) = R0,j exp

(
−

∫ k

0

λj(s) ds

)
, j = 1, 2, ...,m (8)

where λj(s) is the failure rate that is obtained from the j-th
component under different levels of load.

B. System reliability modeling

For the analysis system reliability, it can be introduced a
graphical network model in which it is possible to determine
whether the system is working correctly by determining
whether a successful path exists through the system between
every source and demand. A path for the network is a set of
components, such that if all the components in the set are
successful, the system will be successful. A minimal path, ps,
is a set of components that make up a path, but the dismissal
of any one component will generate the resulting set to not
be a path. Therefore, the overall system reliability RG(k) is
computed as

RG(k) = 1−
s∏

j=1

(
1−

∏
i∈ps,j

Rj(k)

)
, (9)

where j = 1, .., s is number of minimal paths. In order
to integrate the reliability in the linear MPC model as an
additional state variable, a transformation is required that
allows to compute reliability in a linear-like form. The

proposed transformation is based on using the logarithm (9).
As stated in (5), the (9) can be rewritten as

log(QG(k)) = log

( s∏
j=1

(
1−

∏
i∈ps,j

Ri(k)

))
, (10)

by introducing a change of variable

zj(k) = 1−
∏

i∈ps,j

Ri(k), (11)

equation (10) leads to

log(QG(k)) =

s∑
i∈ps,j

log(zj(k)). (12)

According to (11), the log(zj(k)) can be obtained as

log(zj(k)) =
log(zj(k))

log(1− zj(k))

∑
i∈ps,j

logRi(k). (13)

Then, by renaming βj(k) =
log(zj(k))

log(1−zj(k)) in (13), (10) can be
expressed as

log(QG(k)) =

s∑
i∈ps,j

βj(k)
∑

i∈ps,j

logRi(k). (14)

Finally, the system unreliability of system can be estimated
from the baseline of system unreliability as follows:

log(QG(k + 1)) = log(QG(k)) +

s∑
i∈ps,j

βj(k)
∑

i∈ps,j

logRi(k).

(15)

IV. HEALTH-AWARE LPV-MPC

This section addresses the inclusion of reliability informa-
tion in the predictive control law as an additional state of the
linear system. As described in Section III, the reliability of
the DWN can be computed using the control input (pump
commands) information. In order to include a new objective
in the MPC that aims to increase the system reliability, the
reliability model is approximated by means of a linear model
(15). The new MPC model uses the following model

xr(k + 1) = Arxr(k) +Bru(k) +Br,ddm(k), (16)

where the state vector is defined as xr =
[x, log(QG), log(R1), ..., log(Ri)]

T and yr = [y, log(QG)]T .



The matrices of the augmented system are defined as

Ar =



A 0nx×ni+1

01×nx 1
∑s

i∈ps,j βj(k)

0ni×nx Ini×ni


,

Br =



Bnu×nu

0

−λi × Ini×ni


, Bd,r =



Bd,nu×nu

0ni+1×nBd

 .

(17)

Therefore, the new MPC model (16) is a LPV model that
has as scheduling variable the control action ui(k) associated
to each actuator and state. The new MPC model (16) can
not be evaluated before solving the optimization problem
(3), because the future state sequence are not known. Indeed
x(l|k) depend not only on the future control inputs u(k),
but also on the future scheduling parameters, where for a
general LPV model are not assumed to be known a priori
but only to be measurable online at current time k. The idea
is to find a solution to the problem (3) by solving an online
optimization problem as a QP problem. In this paper, the
solution for this problem is to transform the exact LPV-
MPC to an approximated form. This approximation is based
on using an estimation of scheduling variables, θ̂ instead
of using θ. It means that the scheduling variables in the
prediction horizon are estimated and used to update the
matrices of the model used by the MPC controller. Thus,
from the optimal control sequence u(k), it can be obtained
the sequence of states and predicted parameters

x̃(k) =


x(k + 1)
x(k + 2)

...
x(k +Np)

 ∈ RNp,nx , Θ =


θ̂(k)

θ̂(k + 1)
...

θ̂(k +Np − 1)

 ∈ RNp,nθ .

(18)

Therefore, with slight misuse of notation f can be defined
as: Θ(k) = f([xT (k) x̃T (k)],u(k)). The vector Θ(k)
includes parameters from time k to k + Np − 1 whilst the
state prediction is accomplished for time k + 1 to k +Np.

Hence, by using the definitions (18), the predicted states
can be simply formulated as follows

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (19)

where A ∈ Rnx×nx and B ∈ Rnx×nu are given by (20) and
(21). By using (19) and augmented block diagonal weighting
matrices w̃1 = diagNp(w1) and w̃2 = diagNp(w2), the
cost function (2) with new additional objective that aims to
maximize the system reliability can be rewritten in vector

form as

J(k) =

Np−1∑
l=0

‖x(l + 1|k)− xref (l + 1)‖p,w̃1+

‖u(l + 1|k)‖p,w̃2 − ‖ logQG(l + 1|k)‖p,w3 ,

(22a)

subject to:

x̃(k) = A(Θ(k))x(k) +Br,ddm(k),B(Θ(k))u(k) (22b)
0 = Euu(l|k) + Eddm(k), (22c)
logQG(l + 1|k) = x̃4(k) (22d)
u(k), uk+1, ..., uk+Np−1 ∈ U (22e)
x(k), uk+1, ..., xk+Np−1 ∈ X (22f)
x(0|k) = x(k), (22g)

while the reliability-aware objective with the corresponding
weight w3 is appended in the LPV-MPC cost function to
maximize the system reliability. Since the predicted states
Θ(k) in (19) are linear in control inputs u(k), the opti-
mization problem can be solved as a QP problem, that is
significantly easier than solving a nonlinear optimization
problem.

This idea leads to the following iterative approach at each
discrete time instant k:

• In the first iteration, the problem (3) is solved as a linear
problem due to the quasi-LPV model (16) is replaced
by the LTI model that is obtained considering θ(0|l) '
θ(1|l) ' θ(2|l) ' ... ' θ(Np−1|l) along the prediction
horizon Np.

• The sequence of the scheduling variables Θ(k) is
repetitively steered to its optimal amount Θ∗(k) =
f(x̃∗(k),u∗(k)), when x̃∗(k) and u∗(k) refer the input
and state sequences related to the optimal solution.

• The optimal amount Θ∗(k) obtained by solving the
optimization problem in iteration step l when Θ(k)
replaced by Θi(k), and by creating a new premise
sequence from the result of the optimal state sequence
x̃l(k) as Θl+1(k) = f(x̃l(k),ul(k)).

• The premise variable for the next iteration Θ0(k+ 1) is
determined when using x̃l(k) and ul(k), i.e., Θ0(k +
1) = f(x̃l(k),ul(k)).

V. APPLICATION EXAMPLE

A. Case study

For the sake of illustration, a portion of the Barcelona
DWN reported [16] is proposed. Regarding the DWN relia-
bility study, sinks, sources, pipelines and tanks are consid-
ered perfectly reliable whereas this is not the case of active
elements [3]. The case study includes two sources of water
and four demand sector (see Fig. 1). It is expected that the
demand forecast (dm) at each sink is known and that every
single source can provide this required water demand Fig. 2.
Moreover, it is assumed that the volume of the tanks should
track a specified set-point.



A(Θ(k)) =


I

A(θ̂(k))

A(θ̂(k + 1))A(θ̂(k))
...

A(θ̂(k +Np − 1))A(θ̂(k +Np − 2)) . . . A(θ̂(k))

 , (20)

and

B(Θ(k)) =



0 0 0 . . . 0

B(θ̂(k)) 0 0 . . . 0

A(θ̂(k + 1))B(θ̂(k)) B(θ̂(k + 1)) 0 . . . 0
...

...
. . .

. . .
...

A(θ̂k+Np−1) . . . A(θ̂(k + 1))B(θ̂(k)) A(θ̂k+Np−1) . . . A(θ̂(k + 2))B(θ̂(k + 1)) . . . B(θ̂k+Np−1)) 0

 . (21)

Fig. 1. Drinking water network diagram (Three-tanks).

B. Results and analysis

The reliability-aware LPV-MPC formulation proposed in
previous section has been applied to a simulation model
of DWN in Fig. 1. Firstly, system components must be
identified. Then, the minimal path sets should be determined.
By considering all the paths from all the sources to the sinks,
the combination of all flow paths should follow the functional
requirements necessary to satisfy the consumer demands. A
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Fig. 2. Drinking water demand for four sink.

minimal path set is composed by those components which
allow a flow path between sources and sinks, such as pipes,
tanks and pumps. Based on this analysis, the following list
of each minimal paths is presented in Table I. There are five
minimal path sets in the system of Fig. 2. The reliability
of each minimal path set depends on the reliability of its
components. Tanks and pipes are supposed perfectly reliable.
Table II provides the simulation parameters used. Figure 3
shows the evaluation of the valves and pumps commands
results that obtained using the health-aware LPV-MPC in
simulation considering the reliability-aware objective. Figure
4 presents the tracking response of the control algorithm.
The system reliability prediction of the DWN obtained from
the proposed controller with and without the reliability-
aware objective are presented in Fig. 5. According to these
results, it can be observed that with the use of reliability-
aware objective in the MPC, the reliability of the network
is better preserved compared to the case that the reliability
is not considered in the MPC design. Figure 5 show that
the system reliability is improved about 9.06% in the LPV-
MPC controller with the reliability objective while keeping
the set-point tracking performance.
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Fig. 3. Evaluation of the valves and pumps results.

VI. CONCLUSIONS
This paper has proposed a health-aware LPV-MPC strat-

egy based on the maximization the whole reliability of



TABLE I
SUCCESS MINIMAL PATHS OF THE BARCELONA DWN .

Path Component Set

P1 {AportA, V ALMA, V ALMA47, c10COR}
P2 {AportA, V ALMA, CPII, c110PAP}
P3 {AportA, V ALMA, V ALMA45, c70PAL}
P4 {AportA, V ALMA, V ALMA47, CPIV, c125PAL}
P5 {aMS, bMS, c125PAL}

TABLE II
SIMULATION PARAMETERS.

Parameter Value

Np 24
Ts[h] 1
Tm[h] 1000
umin [m3/s] 0 0 0 0 0 0
umax [m3/s] 1.297 0.05 0.12 0.015 0.0317 0.022
λ0[h−1 × h−4] 1.2 3.45 6.3 9.5 1 1
xmin [m3] 0 0 0 0 0 0 0 0 0 0
xmax [m3] 470 960 3100 1 1 1 1 1 1 1
x0 [m3] 0.75 0.62 0.34 0 0 0 0 0 0 0
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Fig. 4. Evaluation of tracking references of tanks.
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Fig. 5. Evaluation of system reliability.

DWN network. The system reliability is obtained as a
function of control action via the reliability assessment of
each component. The model of the system reliability is
obtained as a function of control action with a nonlinear
term that is transformed in a linear-like form via the LPV
framework. Then, the maximization of the system reliability
has achieved by including it in the objective function and
as an additional state in the MPC model. The new health-
aware LPV-MPC approach is efficiently solved iteratively by
a series of QP problems that uses an update MPC model
up dated via the scheduling parameters calculated at each
time instant. The model prediction in the MPC horizon is
obtained using the previous sequence of scheduling variables.
The results obtained show that the system reliability of the
DWN network is maximized with the proposed controller.
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