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Abstract

In the present work, we define a generalized subdivision network ΓS of a given network Γ, by
inserting a new vertex in some selected edges of Γ, so that each of these edges is replaced by two
new edges with conductances that fulfill the Kirchhoff series law on the new network. Then, we
obtain an expression for the Green kernel of Schrödinger operators on generalized subdivision
networks in terms of the Green kernel of a Schrödinger operator of the base network. For
that, we show the relation between Poisson problems on a generalized subdivision network and
Poisson problems on the base network. Moreover, we also obtain the effective resistance and the
Kirchhoff index of a generalized subdivision network in terms of the corresponding parameters
on the base network. Finally, as an example, we carry out the computations in the case of a
star network in which we have subdivided the even edges.
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1 Introduction

In the whole work, a network is the triplet Γ = (V,E, c) where (V,E) stands for a finite and
connected graph, without loops nor multiple edges; and c : V × V −→ [0,+∞) is a symmetric
function called conductance satisfying c(x, y) > 0 iff x ∼ y which means that {x, y} ∈ E. Let n be
the number of nodes and m the number of edges.

On the other hand, C(V ) is the set of real functions on V . For any vertex x ∈ V, εx ∈ C(V ) is
the Dirac function at x and k ∈ C(V ) defined as k(x) =

∑
y∈V

c(x, y), is the degree of x. The standard

inner product in C(V ) is denoted by 〈·, ·〉; that is, if u, v ∈ C(V ) then, 〈u, v〉 =
∑
x∈V

u(x)v(x). A

real–valued function ω ∈ C(V ) is called weight if ω(x) > 0 for any x ∈ V and in addition ||ω|| = 1.

The sets of weights on V is denoted by Ω(V ). Clearly the unique constant weight on V assigns
1√
n
,

to any vertex of V .
The combinatorial Laplacian or simply the Laplacian of the network Γ is the endomorphism
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of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V. (1)

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endomorphism of C(V )
that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu, where qu ∈ C(V ) is defined as
(qu)(x) = q(x)u(x); see for instance [1, 3]. If ω is a weight, then the potential qω = −ωL−1(ω) is
called potential determined by ω. The Doob transform consists in the identity

Lqω(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
, x ∈ V, u ∈ C(V ).

It is well–known that any Schrödinger operator is self–adjoint and moreover it is positive semi–
definite iff there exist ω ∈ Ω(V ) and λ ≥ 0 such that q = qω + λ; see [1]. In addition, Lq is singular
iff λ = 0, in which case 〈Lqω(v), v〉 = 0 iff v = aω, a ∈ R. In any case, λ is the lowest eigenvalue of
Lq and its associated eigenfunctions are multiple of ω.

Throughout this work we will consider only positive semi–definite and singular Schrödinger
operator, Lqω . Then, the operator that assigns to each function f ∈ C(V ) the unique u ∈ C(V ) such
that Lqω(u) = f −〈ω, f〉ω and 〈u, ω〉 = 0 is called Green’s operator. The Green operator is denoted
by Gqω , see [2]. Moreover, the function Gqω : V × V −→ R, defined as Gqω(x, y) = Gqω(εy)(x), for
any x, y ∈ V, is called Green’s function. Observe that Gqω(ω) = 0, and moreover, Gqω is self–adjoint
as a consequence of the Fredholm Alternative and Gqω is a symmetric function.

In [2], the authors introduced a generalization of the concept of effective resistance with respect
to a weight ω ∈ Ω(V ). Specifically, from the functional on C(V ) defined as

Jx,y(u) = 2

[
u(x)

ω(x)
− u(y)

ω(y)

]
− 〈Lqω(u), u〉, (2)

we defined the generalization of the effective resistance.

Definition 1.1. Given x, y ∈ V , the effective resistance between x and y with respect to ω, is the
value

Rω(x, y) = max
u∈C(V )

{Jx,y(u)}.

When ω is constant we omit the subindex ω. Therefore, R is nothing else than a multiple of
the standard effective resistance of the network.

The following result can be found in [2] and allows us to express the effective resistances in
terms of the solution of a Poisson equation. In particular, these expressions will be useful to prove
the main properties of the effective resistances.

Proposition 1.2. If u ∈ C(V ) is a solution of the Poisson equation Lqω(u) = ω−1(εx − εy), then

Rω(x, y) = 〈Lqω(u), u〉 =
u(x)

ω(x)
− u(y)

ω(y)
.

Therefore, Rω is symmetric, non–negative and moreover Rω(x, y) = 0 iff x = y. In addition,

Rω(x, y) =
Gqω(x, x)

ω2(x)
+
Gqω(y, y)

ω2(y)
− 2Gqω(x, y)

ω(x)ω(y)
.
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Notice that, if we label the vertices of Γ, both the Schrödinger operator and the Green operator
can be interpreted as singular matrices and hence, the Green kernel can be identified as the group
inverse of the matrix associated with the Schrödinger operator.

The Kirchhoff Index of a network Γ with respect to a weight is defined as

kω(Γ) =
1

2

∑
x,y∈V

Rω(x, y)ω2(x)ω2(y) =
∑
x∈V

Gqω(x, x) (3)

and gives a measure of the global connectivity of the network. The Kirchhoff index is a descriptor
of the structure of the network and exhibits many interesting interpretations, see [10, 14].

A partial subdivision network ΓS = (V S , ES , cS) of a given network Γ = (V,E, c), is obtained
by inserting a new vertex in some edges of Γ, we denote the set of subdivided edges by E′, so that
each edge {x, y} ∈ E′ is replaced by two new edges, say {x, vxy} and {y, vxy} where vxy is the new
inserted vertex. We denote by V ′ the new vertex set assuming that, vxy = vyx. Thus, V S = V ∪V ′,
the order of the subdivision network is n + |E′|, whereas the size is m + |E′|. When, E′ = E, the
partial subdivision network is nothing else but the so–called subdivision network; see [6]. Given
x ∈ V we denote by S(x) the set of adjacent vertices to x such that {x, y} ∈ E′.

Given ω : V → R+ a weight; that is, ω(x) > 0 and
∑
x∈V

ω2(x) = 1 in the base network, we now

define an extension of this weight function, ωS : V ∪ V ′ → R+ in such a way that ωS(x) = αω(x)
when x ∈ V and ωS(vxy) = αω(vxy), where ω(vxy) is absolutely arbitrary, except for positivity, for
vxy ∈ V ′ and

α2 =
1

1 +
∑

x∈V ′
ω(vxy)2

.

Moreover, according to the well–known rule that express the equivalent resistance of two
resistors connected in series and the expression for the Schrödinger operator, we define the conduc-
tance function cS : V S × V S −→ [0,+∞) by choosing, for every edge in E′, {x, y}, non–null values
cS(x, vxy) and cS(y, vxy) such that

1

ω(x)ω(y)

1

c(x, y)
=

1

ω(x)ω(vxy)

1

cS(x, vxy)
+

1

ω(y)ω(vxy)

1

cS(y, vxy)
, (4)

whereas for every edge in ES \ E′ we define cS(x, y) = c(x, y). The definition of cS cannot be
misunderstood as all the edges in E′ have both kind of vertices, one in V and the other in V ′. Hence,
by the sake of simplicity, it will be denoted as c. Moreover for each edge, there exist infinitely many
different choices of conductances fulfilling (4), so that different choices will lead to different partial
subdivision networks.

In the literature it has been studied the case of subdivision networks for the combinatorial
Laplacian when c(x, y) = c(x, vxy) = c(y, vxy) = 1, that not fulfills the electrical compatibility
condition (4), see ([7, 9, 13, 15]); and the case of arbitrary conductances when all the edges have
been divided, see [6].

Observe that ΓS is also a connected, finite, with no loops, nor multiple edges network.
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2 The Poisson Problem on Partial Subdivision Networks

If LS denotes the combinatorial Laplacian of ΓS , then for any u ∈ C(V S) we have that

LS(u)(x) =
∑

y∈V \S(x)

c(x, y) (u(x)− u(y)) +
∑

y∈S(x)

c(x, vxy) (u(x)− u(vxy)) , for any x ∈ V ;

LS(u)(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) , for any vxy ∈ V ′.

On the other hand, we consider the potential determined by ωS ,

q′ = −(ωS)−1LS(ωS) = −ω−1LS(ω),

and hence

LSq′(u)(vxy) =
c(vxy, x)ω(x) + c(vxy, y)ω(y)

ω(vxy)
u(vxy)− c(vxy, x)u(x)− c(vxy, y)u(y), vxy ∈ V ′

LSq′(u)(x) =
1

ω(x)

∑
y∈S(x)

c(x, vxy)ω(x)ω(vxy)

[
u(x)

ω(x)
− u(vxy)

ω(vxy)

]
+

1

ω(x)

∑
y∈V \S(x)

c(x, y)ω(x)ω(y)

[
u(x)

ω(x)
− u(y)

ω(y)

]
, x ∈ V.

Therefore, for any vxy ∈ V ′ and u ∈ C(V S) we have that

u(vxy)

ω(vxy)
=
LSq′(u)(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
.

Keeping in mind the compatibility equation (4) we can rewritte the expression for LSq′(u)(x) as

LSq′(u)(x) = Lqω(u)(x)−
∑

y∈S(x)

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
LSq′(u)(vxy). (5)

This expression suggests to call contraction of h ∈ C(V S) the function of C(V ), h, defined as

h(x) = h(x) +
∑

y∈S(x)
α(x, y)h(vxy),

where
α(x, y) =

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
.

Observe that,
α(x, y)ω(x) + α(y, x)ω(y) = ω(vxy).

Moreover, we call extension of u ∈ C(V ) with respect to h ∈ C(V S), the function of C(V S), uh,
defined as

uh(vxy) =
h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)u(x) + α(y, x)u(y), vxy ∈ V ′

uh(x) = u(x), x ∈ V
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Using these definitions we obtain from (5) that for any u ∈ C(V ) and x ∈ V ,

Lqω(u)(x) = LSq′(u)(x).

This relation allows us to obtain the following result.

Theorem 2.1. Given h ∈ C(V S) such that 〈h, ωS〉 = 0, then 〈h, ω〉 = 0. Moreover, u ∈ C(V S) is a
solution of the Poisson equation LSq′(u) = h in V S iff u = u|V is a solution of the Poisson equation
Lqω(u) = h in V. In this case, the identity u = uh holds.

Next result shows how to obtain the unique solution of a Poisson problem on the partial
subdivision network ΓS orthogonal to ωS .

Corollary 2.2. Given h ∈ C(V S), such that 〈h, ωS〉 = 0, let h ∈ C(V ) be its contraction to V,
u ∈ C(V ) be the unique solution of Lqω(u) = h that satisfies 〈u, ω〉 = 0 and the constant

λ = −
∑

{x,y}∈E′

c(x, y)ωS(vxy)

c(x, vxy)c(y, vxy)

(
h(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

)
Then, u⊥ = uh + λωS is the unique solution of LSq′(u⊥) = h that satisfies 〈u⊥, ωS〉 = 0.

The preceding results allows us to obtain the expression for the Green kernel of a generalized
subdivision network in terms of the Green kernel of the base network and some other parameters.

If we let

πS(x) =
∑

y∼S(x)

c(x, y)ωS(vxy)

c(y, vxy)
=

∑
y∼S(x)

α(x, y)ωS(vxy)

and

β =
∑
r,s∈V

Gqω(s, r)πS(r)πS(s) +
∑

{r,s}∈E′

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)
,

we get, in the next result, the desired expression.

Proposition 2.3. Let ΓS be a generalized subdivision network of Γ, then for any x, z ∈ V and
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vxy, vzt ∈ V ′, the Green kernel of ΓS is given by

GS
q′(x, z) = Gqω(x, z)−

∑
`∈V

[
ωS(z)Gqω(x, `) + ωS(x)Gqω(z, `)

]
πS(`) + βωS(x)ωS(z),

GS
q′(vxy, z) = α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

−
∑
`∈V

(
ωS(z)α(x, y)Gqω(x, `) + ωS(z)α(y, x)Gqω(y, `) + ωS(vxy)Gqω(z, `)

)
πS(`)

+

(
β − c(x, y)

c(x, vxy)c(y, vxy)

)
ωS(vxy)ωS(z),

GS
q′(vxy, vzt) =

εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ ωS(vzt)ω

S(vxy)

(
β − c(x, y)

c(x, vxy)c(y, vxy)
− c(z, t)

c(z, vzt)c(t, vzt)

)
− ωS(vzt)

∑
`∈V

(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

− ωS(vxy)
∑
`∈V

(
α(z, t)Gqω(z, `) + α(t, z)Gqω(t, `)

)
πS(`)

+ α(x, y)
(
α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t)

)
+ α(y, x)

(
α(z, t)Gqω(y, z) + α(t, z)Gqω(y, t)

)
.

If we consider E′ = E; that is, the case of subdivision networks, the above result coincides
except for a constant with [6, Proposition 3.1]. The scalar is due to the fact that in the mentioned
work, we were considering no weights in the vertex set; i.e., ω(x) = 1 for any x ∈ V and hence the
normalization factor appears.

3 Resistance distances and Kirchhoff index

In this section we aim at obtaining the expression for the effective resistances on a generalized
subdivision network of a given network Γ. The expression will follow by taking into account the
expression for the effective resistances in terms of Green’s function as stated in Proposition 1.2.
Again, the results coincide except for a constant with [6, Proposition 4.1].

Proposition 3.1. Let ΓS be a partial subdivision network of Γ, then for any x, z ∈ V and vxy, vzt ∈
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V ′, the Effective resistances of ΓS are given by

RS
ωS (x, z) =

1

α2
Rω(x, y),

RS
ωS (vzt, x) =

c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
ω(z)ω(t)

α2ω(vzt)

(
α(z, t)Rω(x, z)

ω(t)
+
α(t, z)Rω(x, t)

ω(z)
− α(t, z)α(z, t)Rω(z, t)

ω(vzt)

)
,

RS
ωS (vxy, vzt) =

c(x, y)

α2c(x, vxy)c(y, vxy)ω(vxy)2
+

c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
1

α2ω(vxy)ω(vzt)

[
α(x, y)α(z, t)ω(x)ω(z)Rω(x, z) + α(x, y)α(t, z)ω(x)ω(t)Rω(x, t)

+ α(y, x)α(z, t)ω(y)ω(z)Rω(y, z) + α(y, x)α(t, z)ω(y)ω(t)Rω(y, t)
]

− α(x, y)α(y, x)ω(x)ω(y)

α2ω(vxy)2
Rω(x, y)− α(z, t)α(t, z)ω(z)ω(t)

α2ω(vzt)2
Rω(z, t), for any vxy 6= vzt.

Proposition 3.2. Let ΓS be the partial subdivision network of Γ, then the Kirchhoff index of ΓS is
given by

kS
ωS (ΓS) = kω(Γ) +

∑
x∈V

πS(x)

ωS(x)
Gqω(x, x)−

∑
{x,y}∈E′

α(x, y)α(y, x)ω(x)ω(y)Rω(x, y)

+
∑

{x,y}∈E′

c(x, y)

c(x, vxy)c(y, vxy)
− β.
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