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Abstract—Machine-type-communications have attracted a lot
of interest in the past years. They rely on interactions between
devices with no human supervision. This will help to the advent
of a plethora of applications such as the Internet-of-Things.
Part of the research within this field deals with coordinating
the access of a large number of devices to the network, the
so-called massive machine-type-communications. In this paper,
we focus on the evaluation of the data rate for that scenario,
based on an approximation of the statistics of the aggregated
interference that depends on the sensors activity. We will consider
that the sensors can be in either active or sleep mode, modeled
as a Bernoulli random variable. This results in an aggregated
interference that follows a discrete distribution whose compu-
tation becomes unfeasible with the number of devices. That
is why two alternatives are presented to replace the original
magnitude and work with an analytic closed form expression
approximating the actual statistics. Our approaches are derived
using the Chernoff bound and a Gaussian approximation based
on Lyapunov’s central limit theorem. The average rate is found
in both cases and compared with the actual values in different
setups. Monte-Carlo simulations will be used for this task.

Index Terms—Machine-type-communications, average data
rate, Bernoulli, Chernoff bound, Lyapunov’s condition

I. INTRODUCTION

Machine-type-communications (MTC) will play an impor-
tant role in future generations of mobile networks [1]–[3].
This is the reason why they have received a lot of attention
during the past years. MTC consist of a set of interactions
between devices with barely or even no human supervision
[4]. According to [5], the number of connected terminals is
expected to grow exponentially. MTC will lead the creation
of lots of unprecedented applications and will open the door
for new challenges and investigations. Emerging concepts like
the Internet-of-Things (IoT) will be one out of the many
possibilities this field will allow [6], [7].

In this paper, we will focus on a specific scenario where
a large number of devices, such as sensors that gather in-
formation, try to access the network. Hence, an uplink (UL)
communication is considered. This setup is usually referred to
as massive MTC (mMTC) [8] and, like in common human-to-
human communications, a study of the data rate is appropriate.
In this framework, it would be very useful to obtain closed
form expressions that take into account the particularities of
the system, namely the sensors activity.
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In real scenarios, these kind of devices are in a sleep mode
for most of the time, which makes the situation of all of
them transmitting simultaneously extremely rare. Hence, it
is imperative to include their state in the data rate analysis.
In particular, we focus on the statistics of the aggregated
interference that the signal of each sensor experiences when
it is received at the collector node (CN). Due to the discrete
nature (given the on/off states of the sensors) of the aggregated
interference, in this paper we propose two approximations
of its statistics, namely one based on the Chernoff upper
bound and the other on a Gaussian distribution. This way, the
complexity is significantly reduced and a closed form analytic
expression is provided. These expressions will be finally used
for the evaluation of the UL average data rate with the help of
standard numerical integration methods. For setups with fixed
activity, closed-form expressions can be also obtained [9].

The remaining of this paper is structured as follows. In
Section II, the system model, the average data rate and the
probability distribution are described. Then, the two alternative
expressions for this last magnitude are proposed in Section
III. Simulations are described in Section IV and are used
to compare the experimental and the approximation results.
Finally, Section V is dedicated to conclusions.

II. SYSTEM MODEL

In the following, we will consider a single-cell system with
one data CN and M sensors deployed uniformly around it,
i.e. inside the coverage region defined by a circle of radius R
centered at the CN location. Such setup is depicted in Fig. 1
for M = 9. The UL received signal can be modeled as

y =
M∑
i=1

hixi + n, (1)

where y ∈ C is the received signal, n ∼ NC(0, 1) the
corresponding Gaussian complex and circularly symmetric
noise, xi ∼ NC(0, Pi) the transmit signal1, and hi ∈ C the
individual channels with i ∈ {1,M}. Note that these last
terms, later defined, will be different for each sensor as they
depend on the distance and devices have different locations.

In this context, the date rate of the link for a certain sensor
i can be calculated using Shannon’s well-known formula, i.e.

Ri = log2(1 + ρi), (2)

1Thanks to the Gaussian assumption, the data rate can be defined in terms
of the SINR only and in a closed form expression, as indicated in (2).
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Fig. 1. System setup for M = 9

where ρi is the associated SINR that can be expressed as

ρi =
Pi|hi|2

1 +
∑
j 6=i Γj

. (3)

Note that throughout this work we will assume channels
hi to be fixed and known by the receiver1. Thereby, all
randomness will be given by the sensors activity. Hence, to
model such behavior, we introduce the random variables (RV)
Γj in the previous expression. They are defined as follows

Γj = βjPj |hj |2, j = 1, . . . ,M (4)

where βj ∼ Ber(pj) and pj is the transmission probability of
the j-th device, not to be confused with its transmit power Pj .
Thus, pj corresponds to the percentage of time that the j-th
sensor is transmitting. Nevertheless, and for the sake of clarity
in the presentation, we will consider all sensors to have the
same activity, i.e. pj = p. Thanks to the introduction of this
model, the state of the sensor can be included in the analysis.
Note that since we focus on actual data transmission, in (3)
we have assumed that the reference sensor for which we want
to evaluate the data rate, name sensor i, is active, i.e. βi = 1.

Moreover, when denoting Γ̃i =
∑
j 6=i Γj as the aggregated

interference for sensor i, the data rate from (2) reads as

Ri(Γ̃i) = log2

(
1 +

Pi|hi|2

1 + Γ̃i

)
, (5)

which is also a RV and whose statistics can be computed
by the probability mass function (pmf) of the aggregated
interference, i.e. pΓ̃i

(γ̃i). Note that since Γ̃i is random, also
the instantaneous rate in (5) will be random. Thereby, in this
work we will focus on the evaluation of the average rate,
i.e. E[Ri(Γ̃i)]. To this end, we will first derive an analytic
approximated expression of the statistical distribution of Γ̃i.

The distribution of Γ̃i is the result of a series of discrete
convolutions (since Γ̃i is the sum of a set of independent
RVs, where each one only takes two possible values) and
can be very difficult to calculate. In fact, the number of
operations needed grows exponentially with the number of
interfering devices (here M − 1) and, therefore, it becomes
quickly unfeasible even for a small M . That is why in the
next section we propose two different alternatives to express
the previous statistics through continuous approximations.

1Given the static positions of the sensors, it is feasible to estimate the path
loss component as well as the fading coefficients at the receiver side.

III. PROBABILITY DISTRIBUTION ALTERNATIVES

The main purpose of this work is to find an alternative for
the pmf of the aggregated interference Γ̃i corresponding to
sensor i. We will address this issue in two different ways.
First, by means of the Chernoff upper bound and, later, with
the help of a Gaussian distribution. Both approximations will
lead to a continuous expression of the pmf, i.e. the probability
distribution function (pdf) fΓ̃i

(γ̃i). Accordingly, the average
data rate will then read as

E[Ri(Γ̃i)] =
∑

Ri(Γ̃i)pΓ̃i
(γ̃i) ≈

∫
Ri(Γ̃i)fΓ̃i

(γ̃i)dγ̃i. (6)

Note that the integral in (6) will be computed numerically
as an analytic expression is difficult to be obtained.

A. Approximation Based on the Chernoff Upper Bound

The first proposal relies on the Chernoff bound and follows a
similar derivation to that in [10]. In particular, we will first find
the cumulative distribution function (cdf) with this approach
for later obtaining the pdf from its derivative. We will use the
notation F (γ̃i) for the cdf of Γ̃i, i.e. F (γ̃i) = Pr{Γ̃i ≤ γ̃i}.
Nevertheless, we will use the Chernoff bound on the comple-
mentary cdf (ccdf) with notation F̄ (γ̃i) = 1− F (γ̃i).

Let us start then by applying Markov’s inequality [11] to
the moment generating function et for all t > 0:

F̄ (γ̃i) = Pr{Γ̃i > γ̃i} = Pr{etΓ̃i > etγ̃i} < e−tγ̃iE[etΓ̃i ].
(7)

Since all βj are independent, by defining aj = Pj |hj |2 we
will have that

e−tγ̃iE[etΓ̃i ] = e−tγ̃i
∏
j 6=i

E[etβjaj ]

= e−tγ̃i
∏
j 6=i

[pje
taj + (1− pj)].

(8)

For a general δ > 0, later defined, by choosing t = ln(1+δ),
which ensures t will be positive, the previous expression yields

(1 + δ)−γ̃i
∏
j 6=i

[pj(1 + δ)aj + (1− pj)]

≤ (1 + δ)−γ̃i
∏
j 6=i

epj [(1+δ)aj−1],
(9)

which follows from x + 1 ≤ ex. Finally, for aj ∈ (0, 1] we
have that (1 + δ)aj − 1 ≤ δaj and, thus

F̄ (γ̃i) ≤ (1 + δ)−γ̃ie
∑

j 6=i δajpj = (1 + δ)−γ̃ieδµ̃i , (10)

where µ̃i is the statistical mean of Γ̃i and reads as

µ̃i =
∑
j 6=i

pjaj = p
∑
j 6=i

aj . (11)

Regarding δ, we opted for choosing it equal to the first
moment µ̃i as it is strictly positive in this scenario (aj > 0) and
captures the basic statistics of Γ̃i. Note also that the previous
holds only when normalizing all aj so that the maximum value
is not higher than 1. Finally, the ccdf yields

F̄ (γ̃i) ≤ eµ̃
2
i (1 + µ̃i)

−γ̃i = F̄C(γ̃i) = 1− FC(γ̃i), (12)



where C stands for Chernoff. The approximation that we
propose is to take as the pdf the derivative of the previous
bound of the cdf, i.e. FC(γ̃i), where the derivative is scaled
conveniently with a factor K such that the area of that pdf is
equal to 1. Hence, the pdf can be expressed as

fC,Γ̃i
(γ̃i) = K

dFC(γ̃i)

dγ̃i
= Keµ̃

2
i (1+ µ̃i)

−γ̃i ln(1+ µ̃i). (13)

Consequently, to obtain the average data rate we will replace
the pdf in (6) and evaluate the integral numerically. This will
be done in Section IV, where simulations are shown.

B. Approximation Based on the Gaussian Distribution

The other alternative for the approximation of the pmf of
the aggregated interference is based on a Gaussian distribution,
denoted by the kernel φ(γ̃i) with mean µ̃i and variance σ̃i. The
former moment is already defined in (11) and the latter can
be obtained similarly as follows

σ̃2
i =

∑
j 6=i

pj(1− pj)a2
j = p(1− p)

∑
j 6=i

a2
j . (14)

The validity of this approximation relies on a special version
of the central limit theorem (CLT), which states that Γ̃i
converges to a Gaussian distribution when the number of
addends M − 1 is very high (true for mMTC [8]), and
these addends are independent but not necessarily equally
distributed as long as Lyapunov’s condition is fulfilled [12].
Note that in our scenario, the RVs that are added have different
statistics since they correspond to sensors located at different
distances from the CN, which implies that they are not equally
distributed. Moreover, to emphasize such claim, the accuracy
of this approximation will be later evaluated in Section IV.

Note that the previous approach assumes Γ̃i to have an infi-
nite support, although it is actually lower and upper bounded
by 0 and Ii =

∑
j 6=i aj , respectively. These are the extreme

cases for the aggregated interference. Consequently, we must
use a truncated kernel with unit area. The same applies in the
case of the Chernoff bound, where we also need to normalize
the expression by its area within the limits 0 and Ii.

Therefore, in order to get the average data rate we need
to substitute fΓ̃i

(γ̃i) by φ(γ̃i) in (6) and solve the integral.
However, as already mentioned, a closed form expression
for E[Ri(Γ̃i)] would be difficult to find. That is why its
computation is reserved to numerical methods.

Proof of Lyapunov’s condition: Lyapunov’s CLT is a variant
of the classical CLT where the sum of a sequence of inde-
pendent RVs with different statistics converges in distribution
to a standard Gaussian RV under a certain condition. That
condition is the following: for some ε > 0

lim
n→∞

1

σ̃2+ε
i

∑
j 6=i

E
[∣∣ajβj − ajpj∣∣2+ε

]
= 0, (15)

where n = M − 1 is the number of addends. It can be shown
that the individual terms can be upper bounded by

E
[∣∣ajβj − ajpj∣∣2+ε

]
≤ a2+ε

j pj(1− pj). (16)

Thereby, the condition in (15) will be satisfied as long as
the following ratio tends to zero for n→∞

1

σ̃2+ε
i

∑
j 6=i

a2+ε
j pj(1− pj) =

1(
p(1− p)

)ε/2(‖ãi‖2+ε

‖ãi‖2

)2+ε

,

(17)
where the notation ãi refers to the vector containing the
interfering values. From now on, assuming the term p(1− p)
is not close to 0, we will prove the remaining ratio tends to
zero with the help of the following relations between norms:

‖x‖r ≤ ‖x‖q ≤ n
(

1
q−

1
r

)
‖x‖r, (18)

for any vector x of length n and 0 < q < r. This, translated
to our scenario, leads to the following inequalities

1 ≥
(
‖ãi‖2+ε

‖ãi‖2

)2+ε

≥ n1−(2+ε)/2, (19)

where the right hand side tends to zero with n→∞ and any
positive value of ε. Besides, it is straightforward to see that
this bound is tight for ε → ∞ as ‖ãi‖∞ = maxj aj < ∞,
and the ratio ‖ãi‖∞/‖ãi‖2 will be always smaller than 1 for
any n > 1. In fact, for n → ∞ the speed of convergence is
much faster as ‖ãi‖2 →∞. This concludes the proof.

IV. NUMERICAL RESULTS

In this section, several simulations will be presented to
compare the actual value and the two approximations of the
pmf, as well as the resulting data rate. The former will be
computed using N = 10000 Monte-Carlo simulations in
which the same sensor is sending packets and the rest are
transmitting randomly. Such interfering devices will behave
according to a Bernoulli RV with transmission probability
p. Once the distributions are approximated analytically, the
average data rate in (6) will be obtained numerically.

This simulation model connects directly with the assump-
tion behind the analytic approximating expressions and it is
related to the widely used traffic model where the number of
packets at a given time instant follows a Poisson distribution.
Note that the sum of a large number M of Bernoulli RVs,
with parameter p tending to zero, approaches the Poisson
distribution with λ = Mp, which is true for real scenarios
as lots of sensors are deployed [8]. The same applies for
M − 1, the actual number of interfering devices. Also, it is
worth mentioning all transmission slots have to be aligned
in time (synchronized, like in slotted ALOHA [13]) and no
overlapping among packet transmissions from the same sensor
is permitted for our simulation results to be consistent.

Regarding the simulations, we will represent the actual and
approximated distributions of the interference of a certain
device by means of the cdf. This is illustrated in Fig. 2.
In addition, the resulting average data rate will be shown
with respect to the instantaneous value in Fig. 3. Note that
a standard IoT bandwidth of 180 kHz is considered here
[7]. Then, to compare both strategies, we will focus on the
relative error between the average data rates, measured in
percentage. More specifically, we will compute the difference



between the original and the approximated (Chernoff based
or Gaussian based) average data rates and we will normalize
it with respect to the original magnitude. In that sense, we
will present different results where we sweep the values of
M and p for a fixed p = 0.3 and M = 1000, respectively.
Such results are plotted in Fig. 4 and Fig. 5. Note that we
assume the power of the interfering devices to be fixed, i.e.
Pj = P = 10 W, including that of sensor i, i.e. Pi = P .

Furthermore, we will consider the individuals channels of
the sensors to be defined as hi = d

−α/2
i gi, where di is the

distance between sensor i and the CN, α = 2 is the path
loss exponent, and gi ∼ NC(0, 1) is the Rayleigh distributed
fast fading coefficient that changes in each time realization. In
addition, a cell radius of R = 100 m is assumed.

As we can see in Fig. 2, the Chernoff based approach
provides a poor accuracy in the approximation of the aggre-
gated interference distribution. On the contrary, the Gaussian
approximation adapts suitably to the actual statistics and
reveals a promising performance. This can also be seen in
Fig. 3, where the average value differs considerably in the
case of the Chernoff bound. It does not represent accurately
the average of the instantaneous data rate, which in turn varies
considerably with respect to the actual mean. Differently, the
Gaussian approach reveals a good accuracy as it provides
an almost exact average value. Besides, the same behavior
can be observed when looking at the relative error (%) in
Fig. 4 and Fig. 5. The Gaussian approximation shows a robust
performance when varying M , as illustrated in Fig. 4. Also, it
does not vary significantly when changing p in the Gaussian
case as both magnitudes, the actual and the approximated ones,
behave in a similar way. In these sweeps, maximum relative
error values of 2.19% and 4.88% are attained when computing
the average data rate, which proves that the Gaussian approx-
imation can provide accurate results with far less operations
and a sufficient number of interfering sensors. On the other
hand, the Chernoff approach achieves maximum relative errors
of 153.38% and 122.25% respectively, which shows that it is
not adequate for replacing the actual pmf. In fact, it worsens
when increasing the values of p and M as only a single
statistical parameter is used for modeling the distribution and
the upper bound used for the ccdf results too loose.

V. CONCLUSIONS

In this paper we have addressed the issue of how to represent
the statistics of the interference seen by the sensor information
collector in the UL, taking into account the activity of sensors
in a wireless network. In particular, the discrete statistics of
the aggregated interference have been presented and modeled
through Chernoff based and Gaussian based approximations.
Such approaches provide closed form analytic approximating
expressions to work with and, specifically, the latter has shown
to be adequate for replacing the original magnitude. Based on
that, the average data rate can be computed numerically with
a significant lower complexity and, in the Gaussian approach,
with a promising accuracy. In fact, only the two first order
moments are required for such computation.
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Fig. 2. Actual and approximated cdfs for M = 1000 and p = 0.3
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