

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Proposing a unique altitude/height service for the
Unmanned Traffic Management

TITULACIÓ: Grau en Enginyeria d’Aeronavegació

AUTOR: Eric Rios Naval

DIRECTOR: Cristina Barrado Muxi

DATA: 8 de febrer del 2019

Treball Final de Grau - Eric Rios Naval

	

	

- 2 -

ABSTRACT

On this final degree project, it will be discussed the problems associated with

integrating Unmanned Aircraft Systems (UAS), including Remotely-Piloted

Aircraft Systems (RPAS), into the airspace.

The different problems as aircraft separation or UAS altimetry will be exposed

and commented.

First, it is going to be discussed about a UAS ATM Common altitude system and

also the main reference system to compute the aircraft altitudes. Showing the

advantages and disadvantages of each system, GNSS, QNH, QFE, FL, and in

which situations they are used. Also it is going to be introduced the Visual Flight

Rules, specially for very low altitudes.

It would be seen the differences between Europe and North America, what makes

more difficult to set up a new system.

In order to solve the problem, a server is going to be created so the altitude from

many different UAS or RPAS could be compared although they are not using the

same system. Real data from the scientific department of the US will be used on

the server to compute the changes of systems.

Once it’s explained how the server is working, and which is the way the aircrafts

or drones connects to it, the results will be shown and commented.

When the results are displayed, it would be possible to understand why is difficult

to compare an UAS and a RPAS when both of them are using different altitude

systems and how dangerous it could be.

The results will show real situations simulated over real airports, using the data

from de US department. Then we will comment if the results obtained are the

ones we were waiting and if new problems appear.

Treball Final de Grau - Eric Rios Naval

	

	

- 3 -

INDEX

INTRODUCTION... 4

CHAPTER 1. UAS ATM COMMON ALTITUDE.. 5
1.1. The main problem.. 6

CHAPTER 2. ALTITUDE MEASUREMENTS... 7

CHAPTER 3. VISUAL FLIGHT RULES (VFR) .. 16

CHAPTER 4. NATIONAL CENTERS FOR ENVIRONMENTAL
INFORMATION... 17
4.1. Data from NOAA’s.. 19

CHAPTER 5. PROJECT DEVELOPMENT.. 23
5.1. Solution.. 24

CHAPTER 6. VALIDATION... 26

CONCLUSIONS.. 31

BIBLIOGRAPHY... 32

ANNEXES... 34

Treball Final de Grau - Eric Rios Naval

	

	

- 4 -

INTRODUCTION

The purpose of this project is to solve the problems associated with integrating

Unmanned Aircraft System (UAS), often called “Drones”, including Remotely-

Piloted Aircraft Systems (RPAS), with all other aircrafts flying on the air.

The use of drones, or Unmanned Aircraft Systems, has become increasingly

popular in recent years as technology advances and pricing have made them

more accessible to individuals. It has been used for personal use but also

commercial functions.

One of the main problem is that currently there are three acknowledged methods

of determining the altitude of an aircraft, and drones and VFR flights are not using

the same. The conflict appears when a drone and a VFR could be flying both at

1,000 m but from a different reference. One of them could be flying 1,000 m above

the Mean Sea Level (MSL) and the other could be flying 1,000 m above the

terrain. When this problem appears, it is necessary to convert one of these

altitudes to the other, so it is possible to know the real separation between them

and avoid dangerous situations.

The aim is to build a server that consists on transferring the data that provides

the drone (altitude, latitude and longitude) into a measure system that compares

it with VFR flights, IFR flights and vice versa.

The main part of this project will consists on a Python 3 code. We will create a

server for several costumers, specially for UAS and RPAS.

The function of this server is to be prepared so when the client, VFR or drone,

asks to change its altitude system, the server returns its altitude into QNH, QFE

or GNSS.

So when it’s computed, it can be compared with others VFR in order to avoid

collisions.

Treball Final de Grau - Eric Rios Naval

	

	

- 5 -

CHAPTER 1. UAS ATM COMMON ALTITUDE

This project is based in a topic validated in a Workshop organised at

EUROCONTROL Brussels in April 2017. The purpose of that workshop was to

discuss the problems associated with integrating Unmanned Aircraft System

(UAS), colloquially called “Drones”, and included remotely, Piloted Aircraft

Systems (RPAS), into the airspace that also includes many manned flights.

The many activities for which unmanned aircraft systems (UAS) are used, from

military through commercial to leisure, can lead to their sharing airspace with

conventional aircraft. In order to be maintained a separation between all users of

this airspace, it is essential that the altitudes of all of these aircraft should be

known unambiguously.

The three distinct points are:

- Flights rules

- Airspace, or operating environment, assessment

- A common altitude reference system

This last point is where this project is based, to compute a common altitude

reference system with all UAS, RPAS and manned flights, in order to avoid

conflicts between them.

Treball Final de Grau - Eric Rios Naval

	

	

- 6 -

1.1. The main problem

There are currently four acknowledged methods of determining the altitude of an

aircraft. All of them are calculated using a pressure difference with respect to a

known data point, using standard equipment:

- QFE – height above the local airport

- QNH – altitude above a given reference mean sea level (MSL)

- Flight level (FL) – Indicator of altitude within the International Standard

Atmosphere (ISA), where the atmospheric pressure at MSL is defined

1013.25 hPa : 1FL = 100 ft.

- GNSS altitude

These methods will be discussed later on the chapter 3.

Whereas convectional manned aviation uses pressure altitude obtained from

barometric readings, UAS often use other systems such as satellite-derived

altitudes (GNSS). While each of these different systems can enable safe

separation on its own, with some buildings or with the terrain, they can each have

different altitude values from each other. A common altitude reference system

needs to be established.

Also it is important to know, that there are many advantages and disadvantages,

economic and technical, to all of the altitude measurement systems available.

Treball Final de Grau - Eric Rios Naval

	

	

- 7 -

CHAPTER 2. ALTITUDE MEASUREMENTS

In aviation, altitude can be computed by several systems, on this chapter we will

comment the most important and used measurements. As it has been

commented before, drones and VFR are using different measurements system

to compute its altitude.

First of all, it is necessary to introduce the Q code. Q code is a standardized

collection of three-letter codes all of which start with the letter “Q”. It is an

operating signal initially developed for commercial radiotelegraph communication

and later adopted by other radio services.

• QNH

This measurement mode is a Q code indicating the atmospheric pressure

adjusted to mean sea level. It is used by pilots, ATC (Air Traffic Control), and low

frequency weather beacons to refer to the barometric setting which, when set on

an aircraft’s altimeter, will cause the altimeter to read altitude above mean sea

level. An airport QNH will cause the altimeter to show airport altitude, that is, the

altitude of the centre point of the main runway above sea level on landing,

irrespective of the temperature.

In North America, this altitude is given in hundredths of inches of mercury, but in

most parts of the world, QNH is given in hectopascals.

1	ℎ𝑃𝑎 = 0.001	𝑏𝑎𝑟

1	ℎ𝑃𝑎 = 100	𝑃𝑎

Treball Final de Grau - Eric Rios Naval

	

	

- 8 -

• QFE

This system refers to the altimeter setting that will cause the altimeter to read the

height above a specific aerodrome or ground level, and therefore read zero on

landing.

ATC (Air Traffic Control) will pass the relative pressure changes to pilots on

clearing them to descend below the transition level, as a part of ATC clearance,

on request of the pilot or when the pressure changes.

• FL (Flight Level)

In aviation, a flight level is defined as a surface of constant atmosphere pressure

which is related to a specific datum, nominally expressed in hundreds of feet. The

altitude is computed assuming an International standard sea-level pressure

datum of 1013.25 hPa, what means that is not necessarily the same as the

aircraft’s real altitude. The surfaces are separated from other surfaces by specific

pressure intervals. The Flight Level number is always a multiple of 500ft,

therefore always ending in 0 or 5.

e.g. FL310 = 31,000 feet above mean sea level when the pressure at sea level

is 1,013.2 mbar.

When talking about the Flight Level, it is also necessary to talk about how

changes the temperature while increasing or decreasing the altitude.

The atmosphere can be split into layers depending on whether temperature is

increasing or decreasing with increasing altitude.

Treball Final de Grau - Eric Rios Naval

	

	

- 9 -

This graph shows how temperature changes with altitude, what means how

changes due to the distance above sea level.

Figure [1] – Temperature vs Pressure

In figure [1] it is shown how the temperature increases or decreases depending

on the air layer.

Until the troposphere (< 12,000 m), the temperature decreases 6.5 ºC per

kilometre.

It means 1 ºC per 154 m of altitude. The troposphere contains most of the water

vapour in the atmosphere and is where most of the clouds and weather occurs.

Temperature remains almost constant between 10 and 20 Km and then increases

with increasing altitude between 20 and 50 Km. The stratosphere is a very stable

air layer while the troposphere can be stable or unstable. The term of increasing

Treball Final de Grau - Eric Rios Naval

	

	

- 10 -

temperature with increasing altitude is called an inversion, what makes the

stratosphere so stable.

To explain the increasing temperature with increasing altitude process in the

stratosphere it’s necessary to talk about the ozone layer. The absorption of

ultraviolet light by ozone warms the air in stratosphere and explains why the air

can increase its temperature.

Figure [2] – Different altitude measurements

On figure [2] we can see graphically, the different ways in which the altitude could

be computed. In red colour we can see the aircraft Flight Level.

Only above the transition level, which depends on the local QNH, are flight levels

used to indicate altitude. As commented in other points, below the transition level

feet are used.

The Radiometer Height, expressed in colour green, it is the real altitude above

terrain immediately below the aircraft. Radio altimeters determined altitude by

measuring the time between transmission of a radio signal from the aircraft and

reception of the reflected signal. This equipment is expensive and not generally

used.

Treball Final de Grau - Eric Rios Naval

	

	

- 11 -

• TA (Transition Altitude)

Transition Altitude is the altitude at or below which vertical position of an aircraft

is controlled by reference to altitudes. When the aircraft is operating below the

TA, altimeters are usually set to show the altitude measured above sea level.

Above the TA, the aircraft altimeter pressure setting is normally adjusted to the

standard pressure setting of 1013.25 hPa, so aircraft will be expressed as a FL

(Flight Level).

The Transition Level is the lowest flight level available for use above the transition

altitude. So the airspace between the transition altitude and the Transition Level

is called Transition Layer.

Figure [3] – Table for determining transition level

As it is seen on figure [3], Transition Altitude will vary depending on the QNH

pressure.

In order to understand the figure above, let talk about an example.

e.g. if your QNH from the departure airport is between 996 to 1013 mbar, and the

transition altitude is fixed at 5,000 ft, your first Flight Level would be FL55.

Treball Final de Grau - Eric Rios Naval

	

	

- 12 -

In Europe, the transition altitude varies from airport to airport and in many

situations can be as low as 3,000 ft (910 m).

In the United States and Canada, the TA is fixed at 18,000 ft (5,500 m), and the

airspace above is known as the Standard Pressure Region.

There are discussions to standardize the transition altitude within the Eurocontrol

area [1].

o Europe

In Europe and much of the rest of the world, the transition altitude varies from

airport to airport as commented before. As the US case, it is a fixed value and is

published on the documentation provided by the airport.

The normal barometric pressure setting procedure is a little different to that in

North America.

The procedure that the pilots follow is the next one: climbing and cleared to a FL

and set Standard Pressure Setting (1013 mbar). When descending is the reverse

operation, clear to an altitude and set to the local QNH.

This procedure is done irrespective of how far above or below the TL/TA you are

at the time.

According to ICAO, the Transition Level shall be located at least 300m (1,000ft)

above the Transition Altitude, to let the Transition Altitude and the Transition

Level to be used concurrently in cruising flight, with vertical separation ensured.

Treball Final de Grau - Eric Rios Naval

	

	

- 13 -

o North America

Under conditions of QNH at or above 1013 mbar, FL180 becomes the lowest

useable FL. If the pressure is lower than 1013 mbar, the lowest useable FL

becomes FL190 or even FL200. The restriction ensures that a minimum 1,000ft

of vertical separation is maintained between the aircraft at 17,000ft on QNH.

The barometric pressure setting change shall be made in the standard pressure

region, what means above 18,000ft on general cases. The change must take

place just after entering or just prior to leaving the standard pressure region. What

will take the pilots change to standard pressure (1,013.2 hPa) as they climb

through 18,000ft.

Descending, even when cleared to an altitude at the time cruising level is vacated,

the altimeters will remain on standard pressure until just prior to the transition

level.

It is important to keep in mind that the Transition Level differs based on the

atmospheric pressure at sea level (QNH), the lower the QNH, the higher transition

level.

Figure [4] – Determining Transition Altitude

Treball Final de Grau - Eric Rios Naval

	

	

- 14 -

• GNSS Altitude (GPS)

Due to the Earth does not have a geometrically perfect shape, it is used the geoid

to describe its unique and irregular shape and to approximate the mean sea level.

However, only recently more substantial irregularities appeared in the surface.

These irregularities are and order of magnitude greater than experts had

predicted.

The shape of the geoid was calculated based on the hypothetical equipotential

gravitational surface. There is a significant difference between this mathematical

model and the real object. However, even the most mathematically sophisticated

geoid can only approximate the real shape of the earth.

Mean Sea Level is defined as the zero elevation for a local area. The zero surface

referenced by elevation is called a vertical datum. The MSL surface is in a state

of gravitational equilibrium. It can be regarded as extending under the continents

and is a close approximation of the geoid.

Figure [5] – Model of the Earth

Treball Final de Grau - Eric Rios Naval

	

	

- 15 -

A satellite navigation system uses satellites to provide autonomous geo-spatial

positioning. It allows small electronic receivers to determine their location, with

high precision, using time signals transmitted along a line of sight by radio from

satellites.

Global coverage for each system is generally achieved by a satellite constellation

of 18-30 medium Earth orbit (MEO) satellites spread between several orbital

planes. The actual systems vary, but use orbital inclinations of > 50 º and orbital

periods of roughly twelve hours, at an altitude of about 20,000 Km.

The accuracy of GPS height measurements depends on several factors but the

most crucial one is the “imperfection” of the earth’s shape. The GPS uses height

h, shown on the figure before. This is the height above the reference ellipsoid that

approximates the earth’s surface. GPS also uses an ellipsoid coordinate system

for both its horizontal and vertical datum.

Figure [6] – GNSS system

Treball Final de Grau - Eric Rios Naval

	

	

- 16 -

CHAPTER 3. VISUAL FLIGHT RULES (VFR)

Visual flight rules are a set of regulations under which a pilot operates an aircraft

in weather conditions (VMC) generally clear enough to allow the pilot to see

where aircraft is going. VFR require a pilot to be able to see outside the cockpit,

to control the aircraft’s altitude, navigate and avoid obstacles and other aircraft or

drones.

Because of the limited communication and navigation equipment required for

VFR flight, a VFR aircraft may be subject to limitations if and when it is permitted

in controlled airspace.

• Low flying rules in the EU

In all EU Members states, the Standardises European Rules of the Air (SERA)

[2] apply; these set out a minimum altitude of 500ft above any obstacle within a

radius of 500ft. Even thought, many countries apply their own rules, for instance

in the UK, the “500ft Rule” allows pilots to fly below 500ft as long as they are no

closer to any person, vessel, vehicle, building or structure.

• Low flying rules in the US

In the United States, Part 91 of the Federal Aviation Regulations controls the

minimum safe altitudes by which aircraft can be operated in the National Airspace

System. There is an over reaching general requirement to maintain sufficient

altitude that in the fateful case a power unit fails, and emergency landing without

undue hazard to persons or property on the surface can be made.

Treball Final de Grau - Eric Rios Naval

	

	

- 17 -

CHAPTER 4. NATIONAL CENTERS FOR
ENVIRONMENTAL INFORMATION

Several categories of model data are available through NOAA’s (National

Operation Model Archive). These broad categories of date are Numerical

Weather Prediction, Climate Prediction, Reanalysis and Derived/Other Model

Data.

For our project, we will be using IGRA data (Integrated Global Radiosonde

Archive), the second version.

The IGRA consists of quality-controlled radiosonde and over 2,700 pilot balloon

observations of temperature, humidity, pressure and wind at stations across all

continents. There is data recorded since 1905, and the data are updated on a

daily basis.

In its final form, IGRA is the largest and most comprehensive dataset of quality-

assured radiosonde observations freely available. Its temporal and spatial

coverage is most complete over the United States, western Europe, Russia and

Australia.

Figure [7] – IGRA stations

Treball Final de Grau - Eric Rios Naval

	

	

- 18 -

IGRA consists of three components:

§ Individual soundings

§ Monthly means

§ Sounding-derived parameters

The one that we need is the individual soundings, that is organized into one file

per station, this will provide us important information: temperature and pressure

in a specific altitude. That is what we need to compute the real QNH pressure of

the drone at a certain altitude.

First, we need to compare the latitude, longitude and altitude of the drone, and

see which stations fit better with its position. Then we will search into the file of

these stations and find the latest data recorded at this point.

Treball Final de Grau - Eric Rios Naval

	

	

- 19 -

4.1. Data from NOAA’s

On the Python code, we will be using data from

https://www1.ncdc.noaa.gov/pub/data/igra/ to compute de real altitude that the

drone is flying. First of all, we will need to select from the station list, the ones that

are interesting for our study.

• Station List

This document is a “.txt” file with the information of all the stations that have

recorded data in the last years.

This would be the style of the station list:

Figure [8] – Extract of Station List .txt

where the first column is the station ID, then the latitude, longitude and elevation,

station code (only for US, Puerto Rico and Virgin Islands), name of the station,

first and last year of record in the sounding data, and the last column is the

number of soundings in the sounding data record.

The data that most matters us are ID of the station, latitude, longitude, elevation

above the geoid and the last year of record in the sounding data.

Now is when we need to choose the stations that will take part of our database,

that will be these ones that have data reordered on the last year. Once the

stations are selected, we can begin to study the necessary data.

Treball Final de Grau - Eric Rios Naval

	

	

- 20 -

• Data List

This data will be also stored in a “.txt” file document that are updated once a day

in the early morning Eastern Time (US). The latest observations usually become

available within two calendar days of when they were taken. That’s the reason

why in the code we will compare the necessary data with the data recorded 2 or

3 days before. Also it is possible to have real-time data, but that’s a payment

option available on the website.

Data files are available for two different time spans:

- In subdirectory data-por, that contain the full period of record

- In subdirectory data-y2d, files only contain soundings from the current and

previous year. This would be the files that we will be using, because for

our simulation, as it is commented before, we will be using data from the

previous 2-3 days, what means we do not care about the recorded data of

the years before.

Each file in the data-por and data-y2d subdirectories contains the sounding data

for one station. The name of the file corresponds to a station’s IGRA 2 identifier.

So, in the code, we will find the nearest station to our drone, search the code,

and then download the document from the website.

For example, if the drone is 26º latitude, 78º altitude and an elevation of 200m,

the nearest station is at Gwalior and the code is INM00042361. So the file to

search in the website is INM00042361-data-beg2019.txt.zip.

Treball Final de Grau - Eric Rios Naval

	

	

- 21 -

Each sounding consists of one header record and n data records, where n, that

is given in the header record, is the number of levels in the sounding. It’s the last

number before the ncdc code.

Figure [9] – Extract of data recorded document

The figure above is an example of one of the documents commented before. The

first line is the header that consists on the identification code, the date of the data,

the observation hour of the sounding (in UTC on the date indicated in the

YEAR/MONTH/DAY fields) and the real release time of the sounding in UTC. The

next column is an important value, the number of levels in the sounding, what

means the number of data records that follow (i.e., 35 means 35 lines of recorded

data).

The following codes are the data source code for non-pressure levels in the

sounding, which are the levels that have not recorded the data clearly. The last

two columns are the latitude and longitude, which also appears on the station list.

When a “-9999” value appears, means that the data recorded was not a quality

data and these lines of data are not useful. So it is necessary to compute an

approximation if we need the data from this altitude.

The code “ncdc” refers to the data that is recorded from National Climatic Data

Center, that is form the U.S. Department of Commerce, in Washington DC.

Treball Final de Grau - Eric Rios Naval

	

	

- 22 -

Once the header is clear, it’s time to understand how is displayed the recorded

data.

We will put interest in bytes from 10-15 that is the reported pressure in Pa, the

17-21 bytes that is the reported geoid height, and the 23-27 bytes that is the

reported temperature on ºC to tenths (e.g., 11 = 1.1 ªC).

The python code will consist on many functions, that will compute from the

altitude displayed on the drone the real pressure on this point to compute the

QNH or QFE, vice versa.

Treball Final de Grau - Eric Rios Naval

	

	

- 23 -

CHAPTER 5. PROJECT DEVELOPMENT

Now it’s time to talk about how we would need to solve all the problems

commented before between the Unmanned Aircraft System and the Piloted

Aircraft Systems. On the first part, it would be explained how the code is working

and which information is used for it. Later, on the next chapter, the results would

be shown with real situation cases.

Figure [10] – Project architecture

On figure [10], it is shown the basic architecture of the project. Always is the client,

drone or VFR flight, who starts the communication with the server. Then, when

the server has all the information needed, connects to NOAA’s database and

downloads the necessary data. Once the calculation is computed, the server

sends the information asked to the client and show the results.

Treball Final de Grau - Eric Rios Naval

	

	

- 24 -

5.1. Solution

This part of the report, consists on the explanation about the code we have

performed. As it is talked before, the Python code consists on a server prepared

to compute altitudes from different systems to the systems available, that would

be QNH, GNSS and QFE.

We will have two separated codes, but running together. One part would be the

client, that is the simulation of the drone or the VFR flight, and the other one will

be the server.

First of all, when the client wants to interact with the server, it would be asked to

its ID, and the type of aircraft (drone or VFR flight). Then the server would ask

about the kind of information that the client needs, if want to compute its altitude

into QNH, QFE or GNSS.

• Drone

The drone, could transfer its altitude from GNSS to QNH or QFE, depending on

what its needed. On both cases, the drone would be asked about its latitude,

longitude and its altitude above the geoid. Then, the drone would need to respond

to the system about in which system wants its altitude transferred, in case that it

wants the QFE, would be also necessary to ask the altitude of the reference

airport. Once it sends the position, it would be compare with all the IGRA stations.

When we have the ID code of the station, it would be necessary to download from

https://www1.ncdc.noaa.gov/pub/data/igra/ the latest data recorded for these

points.

Once the server looks for the pressure for its altitude on the NOAA’s data, it will

use the barometric formula and compute the result asked.

Treball Final de Grau - Eric Rios Naval

	

	

- 25 -

• VFR flight

On this second case, these aircrafts can also convert its altitude into the other

ones. As well as the drone, it would be asked first about the actual altitude

system, and then to which altitude system wants to be transferred. In all of the

cases, would be asked to its altitude, never the pressure, because in a real case,

the pilot would only see the altitude represented on its altimeter. Also, if the pilot

wants to convert its altitude from QFE, or wants to be transferred into QFE, it

would be asked about the reference airport elevation.

Once, the server has all this information, would start computing the final result.

First

If the VFR flight only wants to compute its altitude between QFE and QNH, it

won’t be necessary to connect with IGRA stations, its only one calculation.

If the client wants the GPS altitude, the server will compare the aircraft’s position

with (latitude and longitude) with all the IGRA stations, and find which is the

nearest one. Then the altitude will be changed to pressure, using the barometric

formula, so it can be compared with the NOAA’s data.

As the case before, when we have the ID code of the station, it would be

necessary to download data from NOAA, and search the latest data recorded for

these points.

Then, the server would compare the data from all the altitudes recorded on this

station and select the altitude that fits with its pressure.

Treball Final de Grau - Eric Rios Naval

	

	

- 26 -

CHAPTER 6. VALIDATION

On this part, is where we will put all the possible situations under test in our server

and explain the results obtained. All the figures shown on this chapter are results

from the Python code server created, that can be found on the annexes.

The average time of the request, since the client asks to the server until the server

shows the results is less than 15 seconds.

• Test 1

A drone (UAS) flying at 3,150 m (GPS), over the Denver International Airport

(KDEN).

The airport is located in (39.8617, -104.673) and its AMSL (metres above sea

level) is 1,655 m.

QFE altitude

QNH altitude

Treball Final de Grau - Eric Rios Naval

	

	

- 27 -

This figure shows graphically the position of the drone, on the situation tested

before with all the results obtained.

Figure [11] – Test 1

Treball Final de Grau - Eric Rios Naval

	

	

- 28 -

• Test 2

A drone (UAS) flying at 2,000 m (GPS), over Zaragoza, Spain. Its position is

(41.6561, -0.8777) and wants to compare its altitude with a VFR flight, flying at

1,700 m (QNH).

QNH altitude

The calculation proves that the real separation between the drone and the VFR

flight is more than 200 m.

Figure [12] – Test 2

Treball Final de Grau - Eric Rios Naval

	

	

- 29 -

• Test 3

An aircraft (VFR) flying at 1,300 m (QNE), over the Charlotte Douglas

International Airport (KCLT). The aircraft wants to compare its altitude with a

drone, flying at 2,300 m (GNSS).

The airport is located in (35.2139, -80.9431) and its AMSL (metres above sea

level) is 228 m.

GPS altitude

The server shows that the aircraft is flying more than 500 m down the drone.

Figure [13] – Test 3

Treball Final de Grau - Eric Rios Naval

	

	

- 30 -

• Test 4

An aircraft (VFR) flying at 2,600 m (QNH), over Prague, Czech Republic. Its

position is (50.0880, 14.4208) and wants to compare its altitude with a drone,

flying at 2,100 m (GNSS).

As it’s shown in the figure, the results prove that the VFR flight is more than 400

m over the drone.

Figure [14] – Test 4

Treball Final de Grau - Eric Rios Naval

	

	

- 31 -

CONCLUSIONS

To sum up this project, I wanted to show that is possible, with all the test done

before, to compute one altitude reference system for UAS and RPAS, but it is

difficult to implement it.

Nowadays, there are lots of drones and aircrafts, and it is not easy to change its

altitude system from all of them.

In a near future, it could be possible to implement a server connection to all the

new drones and aircrafts delivered so they can change its altitude and compare

to another one.

One solution could be, set a year in a near future, for example 10 years, and fix

to all the UAS and RPAS to have all the necessary equipment to connect to a

server that changes its altitude system.

The results show that depending on your position and altitude, the computation

of the altitude between the difference systems may differ higher or lower.

As it is seen before, it could dangerous to be flying in a same region with different

references, because in several situations the changes of measure are

considerable. It is possible to create many different servers, with different

accuracy’s, the more money you could invest, the better accuracy you obtain. It

may be possible to use real data-time and not to use data from 1 or 2 days before.

With the drones being part of our lives, its also important to refresh many rules

from the VFR, in order to adapt them to new possible situations.

Treball Final de Grau - Eric Rios Naval

	

	

- 32 -

BIBLIOGRAPHY

[1]: Public data of the Integrated Global Radiosonde Archive at

https://www1.ncdc.noaa.gov (last access on 6-Feb-2019)

[2]: Altitude aeronautical measurements at https://www.skybrary.aero (last

access on 6-Feb-2019)

[3]: Mean Sea Level, GPS, and the Geoid at https://www.esri.com (last access

on 6-Feb-2019)

[4]: UAS ATM Common Altitude Reference System at https://www.eurocontrol.int

(last access on 6-Feb-2019)

[5]: Overview oh the Integrated Global Radiosonde Archive at

https://journals.ametsoc.org/ (last access on 6-Feb-2019)

Articles:
[1]: “A Common European Transition Altitude; An ATC perspective”, Eurocontrol

on 26 Septmeber 2013

[2]: Commission Implementing Regulation (EU) 2016/1885 of July 2016 at

https://www.easa.europa.eu/document-library/regulations/commission-

implementing-regulation-eu-20161185 (last access on 6-Feb-2019)

[3]: UAS ATM Common Altitude Reference System Guidelines by Peter Hullah at

EASA

[4]: UAS ATM CARS Discussion Document by EUROCONTROL, DECMA and

ACS

Figures:
[1]: Layers of the atmosphere based on temperature at

http://www.atmo.arizona.edu (last access on 6-Feb-2019)

[2]: The three types of aircraft elevation at https://www.aviationcv.com/aviation-

blog (last access on 6-Feb-2019)

[3]: Flight level at https://en.wikipedia.org (last access on 6-Feb-2019)

[4]: Transition Altitude / Layer / Level at http://code7700.com (last access on 6-

Feb-2019)

[5]: Shape of the earth at https://www.esri.com (last access on 6-Feb-2019)

Treball Final de Grau - Eric Rios Naval

	

	

- 33 -

[6]: Precise Point Positioning (PPP) at https://www.novatel.com (last access on

6-Feb-2019)

[7]: An Algorithm for Atmospheric Temperature and Water Vapor Profile

Estimation from ATMS Measurements Using a Random Forests Technique at

https://www.mdpi.com/ (last access on 6-Feb-2019)

[8] and [9]: Altitude, pressure and temperature data at https://www.ncdc.noaa.gov

(last access on 6-Feb-2019)

[10]: Figure created showing the project architecture

[11], [12], [13] and [14]: Figures created with the results from the server

Treball Final de Grau - Eric Rios Naval

	

	

- 34 -

ANNEXES

Python code:
• Client

• import asyncio
import websockets

type = input("Are you a drone (1) or a VFR (2)? ")

if int(type) != 1 and int(type) != 2:

 print("ERROR 404, SYSTEM NOT FOUND")

async def sendmessage(uri):
 async with websockets.connect(uri) as websocket:

 #### DRONES

 if int(type) == 1:

 ID = input("What's your ID? ")
 sys = input("Which measurement do you want? (1=QNH, 2=QFE) ")

 if(int(sys) == 2):
 airport = input("Which is the altitude of the reference airport? (In meters) ")

 altitude = input("What's your altitude (m)? ")
 latitude = input("What's your latitude? (-90 to 90) ")
 longitude = input("What's your longitude? (-180 to 180) ")

 await websocket.send(type)
 await websocket.send(ID)
 print(f"Client> {ID}")
 await websocket.send(sys)
 print(f"Client> {sys}")
 await websocket.send(altitude)
 print(f"Client> {altitude}")
 await websocket.send(latitude)
 print(f"Client> {latitude}")
 await websocket.send(longitude)
 print(f"Client> {longitude}")
 if (int(sys) == 2):
 await websocket.send(airport)
 print(f"Client> {airport}")

 respuesta = await websocket.recv()

 print(f"Server< {respuesta}")

 #### VFR

 if int(type) == 2:

 ID = input("What's your ID? ")
 sys = input("Which measurement do you have? (1=QNH, 2=QFE) ")

 if (int(sys)==2):
 airport = input("Which is the altitude of reference the airport? (In meters) ")

Treball Final de Grau - Eric Rios Naval

	

	

- 35 -

 altitude = input("What's your altitude (m)? ")
 latitude = input("What's your latitude? (-90 to 90) ")
 longitude = input("What's your longitude? (-180 to 180) ")

 await websocket.send(type)
 await websocket.send(ID)
 print(f"Client> {ID}")
 await websocket.send(sys)
 print(f"Client> {sys}")
 await websocket.send(altitude)
 print(f"Client> {altitude}")
 await websocket.send(latitude)
 print(f"Client> {latitude}")
 await websocket.send(longitude)
 print(f"Client> {longitude}")

 if (int(sys) == 2):
 await websocket.send(airport)
 print(f"Client> {airport}")

 respuesta = await websocket.recv()

 print(f"Server< {respuesta}")

asyncio.get_event_loop().run_until_complete(
 sendmessage('ws://localhost:8766'))

• Server

import asyncio
import websockets
import math
import os
from read_stations import *
from read_info import *
from download_file import *
from read_METAR import *
from geographiclib.geodesic import Geodesic

R = 8.3144598
M = 0.0289644
g = 9.80665
Po = 1.013 * 10**5

stations = reading_stations()

a=1

async def echo(websocket, path):

 type = await websocket.recv()
 ID = await websocket.recv() # recibe informacion de cliente
 sys = await websocket.recv()

 if int(type) == 1:
 altitude_drone = float(await websocket.recv())
 ap = altitude_drone

 if int(type) == 2:
 altitude_VFR = float(await websocket.recv())
 ap = altitude_VFR

 latitude = float(await websocket.recv())

Treball Final de Grau - Eric Rios Naval

	

	

- 36 -

 longitude = float(await websocket.recv())

 if int(sys) == 2:
 altitude_Airport = float(await (websocket.recv()))

 print(f"Client< {ID}") # escribe la informacion
 print(f"Client< {sys}")
 print(f"Client< {ap}")
 print(f"Client< {latitude}")
 print(f"Client< {longitude}")

 encontrado = 0
 i = 0

 arc = Geodesic.WGS84.Inverse(stations[0].lat, stations[0].lon, latitude, longitude)
 mindist = arc['s12']
 i_min = 0

 while(i < len(stations)):

 arc = Geodesic.WGS84.Inverse(stations[i].lat, stations[i].lon, latitude, longitude)
 dist_sta = arc['s12']

 print(dist_sta)

 if dist_sta < mindist:
 mindist = dist_sta
 i_min = i

 i = i + 1

 ID_station = str(stations[i_min].ID)

 print(ID_station)

 downloading_file(ID_station)
 [temp, press, h] = reading_P_T(ID_station)

 os.remove('' + ID_station + '.txt')

###ESTA PARTE SOLO PARA VFR !!!!!!

 if int(type) == 2:

 if int(sys) == 1:

 sys_1 = 'QNH'

 pressure = math.exp(altitude_VFR/(-8005))*100000

 print(pressure)
 print(press)

 i = 0
 encontrado = 0

 while (i < len(press) and encontrado == 0):

 if pressure < press[i] and pressure > press[i+1]:

 altitude = ((pressure - press[i]) / (press[i+1] - press[i])) * (h[i+1] - h[i]) + h[i]
 encontrado = 1

Treball Final de Grau - Eric Rios Naval

	

	

- 37 -

 i = i + 1

 print(i)

 print(press)
 print(h)

 respuesta = f"Hello {ID}, your QNH altitude is: {altitude_VFR} m over the sea level || Your GPS
altitude is: {round(altitude, 2)} m over the sea level."

 if int(sys) == 2:

 sys_2 = 'QFE'

 ## NO USADO

 ## Calcular QNH local

 #
 # print(airport[0])
 #
 # P_ref = reading_METAR(airport)
 #
 # pressure_total = P_ref - pressure # qne = aeropuerto - real
 #
 # while (i < len(press) and encontrado == 0): #Calculo altitud del mar, tomando presion respecto
aeropuerto
 #
 # if pressure_total > press[i] and pressure_total < press[i - 1]:
 # altitude = ((pressure_total - press[i]) / (press[i + 1] - press[i])) * (h[i + 1] - h[i]) + h[i]
 # encontrado = 1
 #
 # i = i + 1
 #
 # i = 0
 # encontrado = 0
 # print(press)
 # print(P_ref)

 altitude_total = altitude_Airport + altitude_VFR

 pressure = math.exp(altitude_total / (-8005)) * 100000

 i = 0
 encontrado = 0

 while (i < len(press) and encontrado == 0):

 if pressure < press[i] and pressure > press[i + 1]:
 altitude = ((pressure - press[i]) / (press[i + 1] - press[i])) * (h[i + 1] - h[i]) + h[i]
 encontrado = 1

 i = i + 1

 respuesta = f"Hello {ID}, your QFE altitude is: {altitude_VFR} m over the reference airport || Your
QNH altitude is: {altitude_total} over the sea level || Your GPS altitude is: {round(altitude, 2)} m over the
sea level"

 print(f"Server> {respuesta}")

 await websocket.send(respuesta)

Treball Final de Grau - Eric Rios Naval

	

	

- 38 -

###ESTA PARTE SOLO PARA DRONES !!!!!!

 if int(type) == 1:

 # GPS a QNH

 # Buscamos el valor de temperatura REAL que corresponde a esta altitud

 i = 0
 encontrado = 0

 #ecuacion de la recta : T = (altitude - h[i])/(h[i+1] - h[i]) * (T[i+1] - T[i]) + T[i]
 while encontrado == 0:

 if altitude_drone < h[0]:

 T = (altitude_drone - h[0]) / (h[1] - (h[0])) * (temp[1]-temp[0]) + temp[0]
 P = (altitude_drone - h[0]) / (h[1] - (h[0])) * (press[1] - press[0]) + press[0]

 encontrado = 1

 if altitude_drone > h[len(h) - 1]:

 last = len(h) - 1

 T = (altitude_drone - h[last-1]) / (h[last] - h[last-1]) * (T[last + 1] - T[last]) + T[last]
 P = (altitude_drone - h[last - 1]) / (h[last] - h[last - 1]) * (press[last + 1] - press[last]) + press[last]

 encontrado = 1

 if altitude_drone > (h[i]) and altitude_drone < (h[i+1]) and altitude_drone < h[len(h) - 1]:

 T = ((altitude_drone - h[i]) / (h[i+1] - h[i])) * (temp[i+1]-temp[i]) + temp[i]
 P = ((altitude_drone - h[i]) / (h[i + 1] - h[i])) * (press[i + 1] - press[i]) + press[i]

 encontrado = 1

 i = i + 1

 if int(sys) == 1:

 sys_1 = 'QNH'

 print(P)
 print(press)
 print(h)

 altitude_QNH = (-8005) * math.log(P/100000)
 #altitude_QNH = ((-1)*(R*T)/(M*g)) * math.log(P/Po)

 respuesta = f"Hello {ID}, your GPS altitude is: {altitude_drone} m over the sea level || Your QNH
altitude is: {round(altitude_QNH, 2)} m over the sea level."

 # GPS A QNE

 if int(sys) == 2:

 sys_2 = 'QFE'

 print(P)

 altitude_QNH = (-8005) * math.log(P / 100000)
 altitude_QFE = altitude_QNH - altitude_Airport

Treball Final de Grau - Eric Rios Naval

	

	

- 39 -

 respuesta = f"Hello {ID}, your GPS altitude is: {altitude_drone} m over the sea level || Your QFE
altitude is: {round(altitude_QFE, 2)} m over the reference airport."

 print(f"Server> {respuesta}")

 await websocket.send(respuesta)

asyncio.get_event_loop().run_until_complete(
 websockets.serve(echo, 'localhost', 8766))
asyncio.get_event_loop().run_forever()

• Functions
- downloading_file

import urllib3
import certifi
import zipfile
import io

def downloading_file(param):

 http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where())
 url = 'https://www1.ncdc.noaa.gov/pub/data/igra/data/data-y2d/'+param+'-data-beg2018.txt.zip'
 resp =http.request('GET',
 url,
 preload_content=False)

 zf = resp.data

 file_stream = io.BytesIO(zf)
 zipfile2 = zipfile.ZipFile(file_stream)

 name = zipfile2.infolist()
 info = zipfile2.open(name[0])
 a = info.read()

 f = open(param+".txt", "w")
 f.writelines(a.decode("utf-8"))
 f.close()

Treball Final de Grau - Eric Rios Naval

	

	

- 40 -

- read_info
- import datetime

def reading_P_T(param):

 f = open(param+".txt")
 temp=[]
 press=[]
 h=[]
 i=1
 a=0
 encontrado = 0

 ahora = datetime.datetime.now()
 year_today = int(ahora.year)
 month_today = int(ahora.month)

 if ahora.day > 2:
 day_today = int(ahora.day) - 2
 if ahora.day < 3:
 day_today = 30
 month_today = month_today - 1

 print(ahora.year, ahora.month, ahora.day)

 # Buscamos la ultima captura del sensor, la que mas se acerque al dia de hoy
 while(encontrado == 0):

 if f.readline(1) == '#':
 borrar = f.readline(12)
 year = f.readline(4)
 borrar = f.readline(1)
 month = f.readline(2)
 borrar = f.readline(1)
 day = f.readline(2)
 borrar = f.readline(9)
 levels =f.readline(4)

 #print(day, month)
 #print(levels)

 if int(year) == year_today and int(month) == month_today and int(day) <= day_today + 2:
 encontrado = 1

 if encontrado == 0:
 z=1
 while(z <= int(levels) + 1): #Recorremos toda la info de un dia que no nos interesa
 a=f.readline()
 z = z + 1

 # Nos quedamos con las muestras de presion y temperatura

 borrar = f.readline()
 i = 1

 while(i <= int(levels)):

 borrar=f.readline(9)
 press.append(f.readline(6)) #En Pa

Treball Final de Grau - Eric Rios Naval

	

	

- 41 -

 borrar=f.readline(1)
 h.append(f.readline(5)) #En m
 borrar = f.readline(1)
 temp.append(f.readline(5)) #Se divide entre 10 porqué esta en deci centigrados y pasamos
a Kelvin

 borrar = f.readline()

 i = i + 1

 a = len(temp)
 temp.pop(a-1)
 press.pop(a-1)
 a = len(temp)

 # Borramos los datos erroneos
 i = 0
 while(i < a):

 if temp[i] == '-9999' or press[i] == '-9999' or h[i] == '-9999':
 temp.pop(i)
 press.pop(i)
 h.pop(i)

 a = len(temp)
 i = i - 1

 i = i + 1

 i = 0
 while (i < len(temp)):

 temp[i] = int(temp[i]) / 10 + 273
 press[i] = int(press[i])
 h[i] = int(h[i])
 i = i + 1

 h.pop(i)
 return temp, press, h

- read_stations

class stru:
 def __init__(self, id='', lat='',lon='',ele=''):
 self.ID = id
 self.lat = lat
 self.lon = lon
 self.ele = ele

def reading_stations():
 stations = []

 f = open("station-list.txt")
 data = [line.split() for line in f.readlines()]

 a = len(data)
 i=0
 f = open("station-list.txt")
 while i < a :

Treball Final de Grau - Eric Rios Naval

	

	

- 42 -

 estacio=stru(data[i][0],float(data[i][1]),float(data[i][2]),float(data[i][3]))

 borrar = f.readline(77)
 lastyear = f.readline(4)
 borrar = f.readline()

 if int(lastyear)== 2018:
 stations.append(estacio)

 i = i + 1

 stations_1 = stations

 return stations_1

- read_METAR (not used)

import requests

def reading_METAR(airport):

 link = 'http://www.universalweather.com/regusers/publictools/corp_comp/metar_taf_notam.html?icao=' +
airport + ''

 response = requests.get(link)
 data = response.text

 i = 0
 encontrado = 0
 while encontrado == 0:

 if data[i : i+12] == 'OBSERVATIONS':

 encontrado = 1

 i = i + 1

 encontrado = 0

 print(data)

 i = i+13

 if airport[0] == 'K':

 while encontrado == 0:

 if data[i] == 'A':
 pressure_airport = data[i+1 : i+5]

 encontrado = 1
 i = i + 1
 print(i)

 pressure_airport = int(pressure_airport) * 33.8639

 else:

Treball Final de Grau - Eric Rios Naval

	

	

- 43 -

 while encontrado == 0:

 if data[i] == 'Q':

 pressure_airport = data[i+1 : i+5]

 encontrado = 1
 i = i + 1

 pressure_airport = int(pressure_airport) * 100

 return pressure_airport

