

Design and evaluation of virtual environments for testing

Advanced Driver Assistance Systems

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Miguel Ángel Bueno Sánchez

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATIONS TECHNOLOGIES AND

SERVICES ENGINEERING

 Advisors: Isaac Agustí Ventura

 Ferran Silva Martinez

Barcelona, January 2019

 2

Abstract

The ADAS (Advanced Driver Assistance Systems) industry and development are growing

very fast and new tools are needed in order to design and evaluate newly created

systems. Before the tendency of the industry to rely on virtual simulations to design such

technology, an evaluation of Unreal Engine 4, and CARLA (Car Learning to Act) more

specifically, are proposed as software that can bring real value when developing ADAS.

The work here presented focuses on ADAS that rely on cameras, such as rear view or

side view camera systems, and seeks a way of integrating virtual cameras into synthetic

vehicles in the CARLA simulator despite its limitations.

Open source software is explored for future development of other systems. Also, new

ways of designing ADAS systems arise. Engineers will now have material to work with at

predevelopment stages, even with no tangible cameras or cars are available. Working in

virtual environments allows to model ADAS systems accurately with a unique resource: a

computer.

 3

Resum

La indústria d’ADAS (Sistemes Avançats d’Ajuda al Conductor) i el seu

desenvolupament han experimentat un creixement exponencial, de manera que noves

eines són necessàries per a poder dissenyar i evaluar sistemes d’aquesta mena. Davant

la tendència de la indústria a fer servir cada cop més simulacions de carácter virtual per

a dissenyar la tecnologia anteriorment esmentada, es proposa l’evaluació d’Unreal

Engine 4 i, més concretament, de l’entorn de simulació CARLA (Vehicle aprenent a

actuar), com a programari que pot resultar de gran utilitat de cara a desenvolupar ADAS.

La tesis se centra principalment en ADAS que usen càmeres, com càmeres de visió

posterior o sistemes digitals com a retrovisors, i es focalitzen tots els esforços en integrar

càmeres virtuals en vehicles sintètics dins l’entorn CARLA fent front a totes les

limitacions que pugui haver-hi.

S’explora programari lliure per al desenvolupament futur d’altres sistemes. S’obren

també noves vies de dissenyar ADAS, ja que els enginyers podran començar a treballar

amb material virtual en etapes molt inicials dels projectes, quan ni tan sols es disposa de

càmeres o vehicles reals disponibles. A més, per a dur a terme tot això tan sols es

necessita un ordinador.

 4

Resumen

La industria ADAS (Sistemas Avanzados de Ayuda al Conductor) y su desarrollo han

experimentado un crecimiento exponencial, de manera que nuevas herramientas son

necesarias para poder diseñar y evaluar sistemas de dicha índole. Ante la tendencia de

la industria a usar cada vez más simulaciones virtuales para diseñar la tecnología

anteriormente comentada, se propone la evaluación de Unreal Engine 4 y, más

concretamente, del entorno de simulación CARLA (Vehículo aprendiendo a actuar),

como programas que podrían resultar de gran utilidad de cara a desarrollar ADAS.

La tesis se centra principalmente en ADAS que usan cámaras, como sistemas de visión

trasera o sistemas digitales a modo de retrovisores, y se focalizan todos los esfuerzos en

integrar cámaras virtuales en vehículos sintéticos dentro del entorno CARLA pese a las

limitaciones que se puedan encontrar.

Se exploran programas libres para el desarrollo futuro de otros sistemas. A la vez, se

abren nuevas vías de diseño ADAS, pues los ingenieros tendrán la capacidad de

empezar a trabajar con material virtual en etapas muy iniciales de los proyectos, cuando

no se disponen de muestras de cámaras o vehículos reales. Además, todo ello se puede

llevar a cabo con muy poco material: un ordenador.

 5

Dedicated to my family and friends.

Special mention to Isaac Agustí and Ferran Silva, who helped me a lot to carry out this

work.

 6

Acknowledgements

The thesis was proposed by Isaac Agustí, who has been supervising day after day the

work done. Most of the technical aspects on this thesis are thanks to him.

There has also been great advice and support from Ferran Silva, who concisely

explained everything one need to know to accomplish this work.

This work has been financed and conducted at FICOSA ADAS SL.

 7

Revision history and approval record

Revision Date Purpose

0 22/12/2018 Document creation

1 25/12/2018 Added draft introduction, abstract and acknowledgements

2 04/01/2019 Added budget, environment impact, state of the art and draft methodology

3 08/01/2019 Added list of figures, list of tables and glossary

4 10/01/2019 Added bibliography and appendices A, B, C and D

5 16/01/2019 Restructured document and added results and next steps

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Miguel Ángel Bueno Sánchez miguelangelbuenos@gmail.com

 Isaac Agustí Ventura isaac.agusti@ficosa.com

 Ferran Silva Martínez ferran.silva@etsetb.upc.edu

Written by: Miguel Ángel Bueno Sánchez Reviewed and approved by: Isaac Agustí

Ventura and Ferran Silva Martínez

Date 02/01/2019 Date 24/01/2019

Name Miguel Ángel Bueno Sánchez Name Isaac Agustí Ventura and Ferran

Silva Martínez

Position Project Author Position Project Supervisors

 8

Table of contents

Abstract .. 2

Resum .. 3

Resumen .. 4

Acknowledgements .. 6

Revision history and approval record .. 7

Table of contents .. 8

List of Figures ... 10

List of Tables .. 12

1. Introduction .. 13

1.1. Image Engineering simulations tasks.. 14

1.2. Unreal Engine 4 .. 15

1.3. CARLA ... 16

1.4. Requirements ... 19

1.5. Work plan ... 20

2. State of the art of the technology used or applied in this thesis: 22

2.1. CarMaker ... 22

2.2. AirSim ... 23

2.3. MATLAB ... 24

2.4. CARLA ... 25

3. Methodology / project development: .. 27

3.1. Environment set-up .. 27

3.1.2 Build Unreal Engine 4 from source .. 27

3.1.3 Build CARLA from source ... 27

3.1.4 Opening up the project and the simulator .. 28

3.2. Camera modelling .. 29

3.2.1 Mirror ball .. 30

3.2.2 Cube map ... 37

3.2.2.1 Cube map to equirectangular script ... 39

3.2.2.2 Cube map to fisheye script .. 41

3.3. Vehicle integration .. 46

4. Results .. 47

5. Budget ... 49

6. Conclusions and future development: .. 50

 9

Bibliography: ... 51

Glossary ... 52

 10

List of Figures

Figure 1. Blender simulation environment from a perspective view. 15

Figure 2. Blender simulation environment top view. .. 15

Figure 3. Result of a RVS simulation in Blender. .. 15

Figure 4. RVS mounted on a real vehicle. ... 15

Figure 5. Unreal Engine 4 Main User Interface. .. 16

Figure 6. Blueprint. ... 16

Figure 7. Spectator images of CARLA environment. ... 17

Figure 8. CARLA’s structure. .. 18

Figure 9. Example of how Unreal Engine 4 and CARLA interact. 18

Figure 10. Planned Gantt diagram work plan. ... 20

Figure 11. Planned Gantt diagram timeline. .. 20

Figure 12. Real Gantt diagram work plan. ... 20

Figure 13. Real Gantt diagram timeline... 21

Figure 14. Car Maker simulation images. .. 22

Figure 15. AirSim's different scenarios. ... 23

Figure 16. AirSim picture of a running simulation. ... 23

Figure 17. MATLAB tool for simulating automotive environments. 24

Figure 18. MATLAB autonomous tagging and detection toolbox. 24

Figure 19. Weather configuration parameters available to customize CARLA simulation

environment. ... 25

Figure 20. Image with a field of view of 170 degrees in CARLA. 26

Figure 21. Command that opens CARLA project in Unreal Engine 4 suite. 28

Figure 22. Unreal Engine 4 main interface. ... 28

Figure 23. Blender example of a camera in front of a perfect mirror ball. 30

Figure 24. Illustrative scheme of the orthographic camera and mirror ball system. 30

Figure 25. Blender's orthographic camera parameters ... 32

Figure 26. Size of the camera projected on the mirror ball. Orthographic scale. 32

Figure 27. Image captured by orthographic camera looking at mirror ball with

orthographic scale matching 196 degrees FOV. ... 32

Figure 28. Blender environment to find the right scale for the orthographic camera and

validating the model. ... 33

Figure 29. Image obtained with the mirror-ball system. ... 34

Figure 30. Image obtained with a fisheye equisolid camera. ... 34

Figure 31. Graphic representation of Table 6. ... 35

file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115671
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115678
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115680
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115681
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115687
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115688

 11

Figure 32. Picture that illustrates the low resolution UE4 applies to mirrors. 36

Figure 33. Perspective camera in UE4.. 36

Figure 34. Orthographic camera in UE4. Note that it shows nothing. 36

Figure 35. Cube map example made with CARLA generated images. 37

Figure 36. Illustrative example of a cube map. .. 37

Figure 37. Fisheye form when converting from a cube map. ... 37

Figure 38. Cube map faces configuration. .. 38

Figure 39. Python code to set virtual cameras in CARLA. ... 38

Figure 40. Cube map to equirectangular panorama with desired field of view process. .. 39

Figure 41. Equirectangular image with images from CARLA. Information inside the yellow

rectangle is the one of interest. ... 40

Figure 42. Blender generated image with AT102A distortion. ... 40

Figure 43. Equirectangular image cropped and distorted to match AT02A. 40

Figure 44. 3D representation of the ray casting process that the script carries out. 41

Figure 45. Original image coordinates (left) and normalized ones (right). 42

Figure 46. Representation of spherical coordinates on a fisheye output image plane. 42

Figure 47. 3D scheme that illustrates what theta and phi represent. 43

Figure 48. Cube map coordinates and tiles composition. .. 43

Figure 49. Tiles' uv coordinates of a cube map. .. 44

Figure 50. Blender generated image with AT102A distortion for fisheye validation. 45

Figure 51. Output of the script for a grid image. .. 45

Figure 52. FICOSA's vehicle in CARLA .. 46

Figure 53. Cube map to fisheye equisolid conversion results. ... 47

Figure 54. Fisheye image with AT102A distortion. .. 47

Figure 55. FICOSA's demo vehicle in CARLA environment. ... 47

file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115700
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115701
file:///C:/Users/F36MBS0/Desktop/Degree_thesis_model.V0.8.docx%23_Toc536115702

 12

List of Tables

Table 1. Comparison between designed mirror ball models and theoretical lens projection.

 ... 34

Table 2. List of software and components used during the project development. 49

Table 3. Manpower costs. ... 49

 13

1. Introduction

Advanced Driver Assistance Systems –ADAS for short- are increasingly being

incorporated into modern vehicles in order to evolve to the next automobiles generation.

They basically help the driver to be more effective thanks to technology.

FICOSA1 is currently working to improve such systems. This task requires new design

tools and technology. This project is part of the development process of the company and

is focused on finding and exploring a virtual simulation environment that allows the study

and design of ADAS based on cameras.

Specifically, this work is based on CARLA2, which is a project/layer built on Unreal Engine

43, a powerful graphic engine very used in the industry as a tool to develop autonomous

cars.

FICOSA is developing three main camera based products: Rear View Systems (RVS)

that help drivers to park a car or avoid obstacles at the rear of the vehicle thanks to the

vision it grants; first generation of Camera Monitor Systems4 (CMS), which are mounted

on cars replacing traditional external side mirrors by cameras and Surround View

Systems (SVS), which allow the driver to have a bird view of the vehicle thanks to the

vision four cameras strategically placed on the bodywork of the vehicle grant.

The main purpose of the thesis is to integrate virtual cameras in a virtual environment that

resembles as much to reality as possible so that further study and tuning can be

performed in order to have material to start designing ADAS even before real cameras

samples are available. This work focuses on the design of a fisheye camera in CARLA

environment, which are not available by default due to limitations on the simulator.

Static simulations involving cars and cameras are already being performed with a

software combination of Blender 5 and MATLAB 6 . This thesis goes to the next level

applying dynamism to the environment. This allows a more precise study of the qualities

of the cameras and results closer to the final product.

In the next sections it is explained what makes a camera different than others (even if

they are equal on the paper) and how do we simulate such cameras to get captured

images very close to the images a real camera would take.

To sum up, this thesis focuses on integrating virtual cameras in a dynamic environment

held in CARLA –and therefore in Unreal Engine 4- in order to obtain captures of the

synthetic world with the same characteristics of a real camera. The captured frames are

meant to serve FICOSA engineers as a starting point to design ADAS systems based on

cameras. Such frames provide information of mechanical interference provoked by the

vehicle integration, field of view, regulation compliance, etc.

Next chapters go deeper into all the above explained.

1 FICOSA International S.A., https://www.ficosa.com/
2 Official website: http://carla.org/
3 More information at its website: https://www.unrealengine.com
4 Further information on CMS: http://www.imatest.com/solutions/camera-monitor-systems/
5 Official website: https://www.blender.org/
6 Proprietary software of The Mathworks Inc., https://es.mathworks.com/products/matlab.html

https://www.ficosa.com/
http://carla.org/
https://www.unrealengine.com/
http://www.imatest.com/solutions/camera-monitor-systems/
https://www.blender.org/
https://es.mathworks.com/products/matlab.html

 14

1.1. Image Engineering simulations tasks

There is a sub division in the Image Engineering team with the mission of performing

different kind of simulations to check whether the integration of cameras into vehicles is

valid taking into account field of view regulation and customers’ specifications.

Workflow is the following:

1. Customer sends vehicle information as CAD to FICOSA.

2. Image Engineering team runs simulations with Blender. Such simulations consist

in placing virtual cameras on the vehicle as specified by the client. Output images

are taken from the cameras’ perspective. Usually, each camera sees part of the

vehicle’s bodywork and part of a synthetic world that helps when analysing the

results.

3. Depending on the camera type, the output images can have narrow angle

(pinhole model) or wide angle (fisheye) lens projection. In case of fisheye, the

equisolid lens projection is simulated in Blender because it allows to increase the

field of view up to 360 degrees and has a known lens distortion.

As the output synthetic images have a known distortion, they are distorted again

according to the custom lens that is used for the project. That can be done with a

specific MATLAB that the company owns.

Lens distortion, field of view, interferences caused by vehicle, blind spots and other

parameters are evaluated with the outcome of the mentioned static simulations. Also,

everything must fulfil regulation such as FMVSS111, ISO 16505, ECE R46, etc.

All this work is carried out with static simulation environments. This thesis brings onto the

table a new simulation environment (CARLA) that introduces dynamism thanks to Unreal

Engine 4. Such dynamism can be very helpful when designing ADAS.

For instance, it allow to see in a somewhat realistic way how a camera performs in a

crossroad. Also, outputted video can be used to replace videos recorded by real cameras

when they are not available yet at early stages of the project.

To sum up, the aim of this work is to gather all points above presented in a unique tool

that introduces new features to help designing and evaluating ADAS.

 15

Figure 1. Blender simulation environment from a

perspective view.

Figure 2. Blender simulation environment top view.

Figure 3. Result of a RVS simulation in Blender.

Figure 4. RVS mounted on a real vehicle.

1.2. Unreal Engine 4

Unreal Engine 4 –UE4 from now on- is a graphic engine developed by Epic Games7 very
used in the videogames world. It is also increasingly being used in the autonomous
driving industry as a tool to design and test ADAS and AI algorithms. The main reason is
its real-time technology, which allows to perform high fidelity synthetic simulations.

It is written entirely in C++ and is served as a way of applying realistic physics and
dynamism to static meshes and virtual worlds.

In UE4 everything are C++ objects, meaning everything belongs to a class. That means
that in order to import something into the virtual world a static mesh must be imported
and then a C++ class generated. The class is what gives functionality to the object. This
gives a lot of personalization possibilities and even allows to modify the core elements of
the engine itself, although some code has restricted access due to security and stability
reasons.

The natural workflow for someone to create a videogame or to create simulation
environments starts by creating the elements of the world as static meshes in modelling

7 Further information of the company can be found at https://www.epicgames.com/

https://www.epicgames.com/

 16

software such as Blender or Maya. Then, the models are imported into the UE4 platform
(see Figure 5). After that, it allows to apply different materials and physics to the meshes
to bring them into life with a realistic look. Models can also be programmed by generating
C++ classes or using and internal visual scripting language called Blueprints (see
example on Figure 6).

UE4 allows the designer to give basic functionality to agents, but very complex models
can be programmed. A whole AI system, for instance. Control over agents can be passed
to the user as if it was a videogame. Even vehicles can be imported with realistic physics.

There are also other elements available, like cameras, which are very helpful for the
purpose of this work. It may seem trivial to integrate cameras into the environment
mounted on a moving vehicle to record the surrounding virtual world. However, there is a
big limitation in UE4 regarding cameras: they can be configured in a unique lens
projection (rectilinear or pin-hole camera) with a limited field of view up to 170 degrees.
ADAS applications that FICOSA is currently developing demand wide angle fisheye
lenses with fields of view way higher than 170. Besides that, each lens is unique in the
distortion it introduces in the generated image. It is proposed a way to increase the field
of view of cameras and to generate a correct distortion according to the models used in
the company for every recorded image.

Figure 5. Unreal Engine 4 Main User Interface.

Figure 6. Blueprint.

1.3. CARLA

Car Learning to Act (CARLA) is an open-source urban simulator developed at the

Computer Vision Center8 (CVC) that allows the design, study, evaluation and validation of

trained autonomous agents. It is being developed as a free alternative for the

autonomous driving research.

It allows to test AI algorithms and ADAS with no cost nor manpower. When designing and

tuning ADAS based on cameras, the systems must be integrated on real cars when

available in order to perform road tests. Such tests consist in acquiring images with the

8 Established by Universitat Autònoma de Barcelona. More information: http://www.cvc.uab.cat/

http://www.cvc.uab.cat/

 17

cameras under different conditions to see if they perform as expected in each one of the

case scenarios. They must be tested under poor light conditions, different weathers, etc.

Many of these cases are easy to cover, but some other are harder. Consider for instance

a test case where it needs to be rainy under low light conditions. Besides, there is a large

investment in getting the car and set it up, as well as in manpower.

Obviously, all these tests must be done even if CARLA is used, because a simulation

environment will never be a validation tool. However, it eases the task of designing the

whole system in the first place avoiding possible future loops in the project regarding

cameras design, which includes intrinsic camera parameters, integration position on

vehicle and others.

CARLA is built as a project in Unreal Engine 4 and it includes a Python API that allows

scripting to manage the behaviour of the different agents present in the environment. It

consists on two virtual villages with pedestrians and cars moving around randomly. One

can integrate and deploy its own vehicle and attach sensors to it. That way, that vehicle

or controlled agent will retrieve data of the world at each time step of the simulation.

There are various available sensors: LIDAR, depth cameras and RGB cameras. For this

particular project we are interested on the third one and specifically on the RGB images it

captures.

What makes CARLA special is that it provides an already created environment to directly
start working with and a Python API and file system that allows the user to change the
settings of the simulation and tweaking UE4 parameters without even touching UE4. The
Python API is directly connected to UE4 and scripting in Python translates into
modifications in the engine configuration as well as generation of new C++ code to give
functionality to agents. It makes the whole process of configuring and running a
simulation much easy and direct.

CARLA simulator acts as a server when running and the user has the possibility of
connecting a client running on Python via TCP/IP protocol9. If the simulator is launched it
freezes until a Python script derived from the CARLA Python API tries to connect as a
client. Then, the simulator follows the guidelines proposed by the script and adapts its
settings according to it. Such settings include weather settings, agents spawn location,
agents’ behaviour, etc.

9 More information: https://en.wikipedia.org/wiki/Internet_protocol_suite

Figure 7. Spectator images of CARLA environment.

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiq-qWj59HfAhULxIUKHWt1CIAQjRx6BAgBEAU&url=http://vladlen.info/publications/carla-open-urban-driving-simulator/&psig=AOvVaw2qjQFkOpZRmI8L7vX6djbW&ust=1546611568476662

 18

There is also the possibility to launch a simulation in standalone mode. That way, CARLA
does not freeze when initializing and the user can control the agents with the keyboard,
as in a videogame.

Figure 8. CARLA’s structure.

Figure 9. Example of how Unreal Engine 4 and CARLA interact.

 19

1.4. Requirements

For the sake of clarity of next sections and to be able to do some maths in the future,
some characteristics of lens and sensor already being used in a FICOSA system out in
the market are listed.

Note that lens and sensor must always be specified. It makes no sense to just give
information of one of them because the final processed image of a camera depends of its
combination. Same lens with different sensors can produce different outputs.

Virtual cameras can and must be modelled with specifications listed below. Also, the
simulation environment must be capable of retrieving data such as videos and images
according to requirements, which are the ones real FICOSA systems have.

Lens data:

 Name: Sunny AT102A

 Effective focal length (EFL): 0.948 mm

 Entrance pupil (EP): 0.948 mm

 Horizontal field of view (HFOV): 196 degrees

 Vertical field of view (VFOV): 150 degrees

Sensor data:

 Name: On Semi AR0143

 Resolution: 1344 x 968 pixels

 Pixel size: 0.003 mm

 Array size: 4.032 x 2.904 mm

Video quality:

 Frame rate: 60 frames per second

 Colour depth: 8 bits (3 colour channels RGB)

Camera data:

 Extrinsic parameters10

It is also interesting to obtain CAN data from the simulations:

 Speed

 Individual wheel speed

 Gear information

10 Position of cameras from an origin reference point on vehicle.

 20

1.5. Work plan

Proposed Gantt diagram

Figure 10. Planned Gantt diagram work plan.

Figure 11. Planned Gantt diagram timeline.

Real Gantt diagram

 Figure 12. Real Gantt diagram work plan.

 21

 Figure 13. Real Gantt diagram timeline.

Some tasks such as camera modelling and vehicle integration have spanned more than

was initially expected due to limitations encountered in Unreal Engine 4 and CARLA. For

instance, different approaches had to be tested in order to obtain a fisheye virtual camera

model to obtain the desired result. Before such situation, importing vehicles into the

environment tasks were started so that they could be finished once the camera issue was

resolved.

Initial idea consisted in modifying Unreal Engine 4 so that camera’s maximum field of

view could be increased programmatically at low level by modifying the code of the

engine itself. After a lot of research and navigating through the engine’s source code, I

found out that there was actually plenty of people working on the issue and that it is not

trivial to find an optimal solution.

Therefore, I designed a new way of modelling the camera: using an orthographic camera

and a mirror ball right in front of it so that the camera captures the reflections of the

environment on the ball. Although I did the entire math in order to set up the system,

Unreal was a limitation on this approach. Reflections are captured at a very low resolution

in order to not compromise performance and the orthographic camera is somehow

bugged and does not work properly.

Eventually, I decided to implement another solution consisting in generating a cube map

on the simulator using six perspective cameras properly placed and rotated. Then, do

pixel transformations on the resulting images to obtain the desired lens distortion.

 22

2. State of the art of the technology used or applied in this

thesis:

The fast growth of ADAS in the last few years has caused the creation of some other

simulators with common features that allow autonomous driving testing, cameras car

integration, simulating of light conditions, etc.

Each simulator is different though and has strengths and weaknesses. The reason why

CARLA has been chosen over its competitors is its realism and high quality textures,

which allows to have a final result very close to reality. Also, the fact that it is open-source

and is in constant development make this option the better choice.

2.1. CarMaker11

Simulator by IPG that excels in its low computational load so that real time simulations

can be carried out on almost any decent device. This characteristic sacrifices graphics

quality though. It is actually pretty poor: flat terrains and buildings built with very basic

geometry with applied textures.

Although the graphics limitations, the environment is very customisable and a lot of real

life situations can be reproduced. It is very simple to generate new road patterns and all

aspects and characteristics of vehicles can be changed as desired.

There are plenty of sensors to use with several parameters to customize and fisheye

lenses are supported.

Another good aspect of the simulator is its ability create visualizations of the data

gathered by the sensors attached to the vehicle as well as basic information of the car’s

performance such as speed, acceleration, etc. These visualizations can be generated on

the web or connecting the simulator to MATLAB Simulink12.

Overall is a very good simulator, but it lacks the graphics quality that other simulators

offer.

11 By IPG Automotive, https://ipg-automotive.com/products-services/simulation-software/carmaker/
12 Plug-in that eases the task of simulating complicated systems using MATLAB. More information
on its website: https://es.mathworks.com/products/simulink.html

Figure 14. Car Maker simulation images.

https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://es.mathworks.com/products/simulink.html

 23

2.2. AirSim

A simulator developed by Microsoft13. It is also based on Unreal Engine 4 and has a

Python API, so it is very similar to CARLA in its structure. Graphics quality is very similar

because they are both built on the same platform.

It presents some drawbacks though. There does not exist a fixed time step simulation

option, which basically means that simulations must run at real time and may not be

perfectly accurate. If the machine running the simulation has not enough computational

power to move the simulation at real time, some frames and information are lost because

the system gets overloaded.

Also, AI for AirSim 14 is a little weaker and no red traffic lights are present in the

environment, making que simulation less realistic and reducing the number of possible

test case scenarios. CARLA has a most robust AI system and more realistic weather

settings, as well as interfaces to tweak them as desired.

On the other hand, AirSim has a better map quality with more variate situations.

 Figure 15. AirSim's different scenarios.

13 https://www.microsoft.com/es-es/
14 Official repository of the project: https://github.com/Microsoft/AirSim

Figure 16. AirSim picture of a running simulation.

https://www.microsoft.com/es-es/
https://github.com/Microsoft/AirSim
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjW2_6Y_4XgAhUr1eAKHW8cC44QjRx6BAgBEAU&url=https://www.microsoft.com/en-us/research/blog/autonomous-car-research/&psig=AOvVaw0dn8GHerhZPXgzYviXKSU6&ust=1548404685085477

 24

2.3. MATLAB

Mathworks is working hard to build applications that satisfy the necessities of ADAS and

AI research. They have on the market some software packages that allow testing

systems based on sensor attached to cars.

Main problems are that such software is at very initial stages. Although a good variety of

different sensors can be implemented, like LIDAR, radar and RGB cameras they are not

configurable, so they can only be used for general purpose work. No specific lenses or

radars can be tested, so fisheye lenses are not supported. Also, maps are too simple.

They are mostly a single road with boxes that model cars.

The company is currently starting to use Unreal Engine 4 as a base layer for its software,

connecting MATLAB to it. However, they are way behind CARLA or AirSim, which have

already been developed in Unreal Engine 4 for years.

Advantages are that MATLAB allows an easy creation of neural networks and AI systems

that work on the cloud and can convert MATLAB code to CUDA code for better

performance on GPUs. This is not useful for camera based ADAS though.

Also, the price must be considered. Standard MATLAB version costs 2000€ and a lot of

toolboxes such as Simulink must be added in order to properly use all the features above

explained.

Figure 18. MATLAB autonomous tagging and detection toolbox.

Figure 17. MATLAB tool for simulating automotive environments.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjj09bC_4XgAhULExQKHT-fAkYQjRx6BAgBEAU&url=https://www.mathworks.com/products/automated-driving/features.html&psig=AOvVaw16pZ8fb9k9p1IgZlTGvvvr&ust=1548404796304489
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjJtInN5dHfAhUCUhoKHXXdDccQjRx6BAgBEAU&url=https://www.mathworks.com/solutions/automotive/advanced-driver-assistance-systems.html&psig=AOvVaw2hgaHTYufF45ySXxC5e8TC&ust=1546611047174569

 25

2.4. CARLA

CARLA, just like AirSim, has high quality graphics thanks to Unreal Engine 4. Also, the

big community behind it and a strong development team allow for periodic updates that

bring many new important features. Also, it has the advantage of being open source and

free to use, which were the downsides of CarMaker and MATLAB.

Remarkable things CARLA has are the variety of scenarios, pedestrians, car models and

environment conditions that are available. For instance, the following are some weather

pre-sets that can be selected for a simulation: clear noon, cloudy noon, soft rain sunset,

hard rain noon, clear sunset, etc.

The above mentioned are all the available weather configurations for CARLA v0.8.4, the
version this thesis is based on. However, more can be generated manually by
personalizing the CarlaWeather.ini, a file included in the CARLA project that allows
tweaking all parameters that make a weather configuration.

Figure 19. Weather configuration parameters available to customize CARLA simulation environment.

CARLA outputs some CAN (Controller Area Network) data from the simulations along
with recorded images. For each frame, parameters such as vehicle speed, acceleration
and steering are stored. Although limited, it is a possibility all other simulators in this
section do not offer.

There exists also the possibility of running simulations in variable time step (default) or
fixed time step. The first option makes the simulator try to keep up to real time. At each
frame, CARLA outputs CAN data, images and information stored by attached sensors.
That means that CARLA has a finite amount of time to perform all this calculations.
Consequences are that some information is lost if that time is not enough. On the other
site, fixed time steps simulations allow CARLA to take all the needed time to compute all
information for each frame. That way, the simulation does not run on runtime but outputs
data with more accuracy. Fixed time steps simulations are ideal for physics and accuracy
simulations. This feature is a great advantage of CARLA because AirSim does not
support it.

As mentioned before, CARLA is an Unreal Engine 4 project, which means that has all the
limitations the former has. After all, agents and scenarios that appear in the simulator
have been created with modelling software such as Blender separately and then imported

 26

into Unreal Engine 4. What the graphic engine does is providing a base on which to join
all models and give functionality to agents.

One of the most severe limitations of CARLA is that it only supports pinhole cameras up
to 170 degrees of field of view. When a perspective/rectilinear image is generated (as in
CARLA), field of view cannot have a too high value. Otherwise, resulting image will be
distorted in a way that it will look like objects are moved towards the center of the image
and inwards along the plane’s normal. That causes a lot of information of the image to be
concentred at the center of the image with low pixel density. If one tries to resize or
undistort the picture will find out that poor resolution is seen at those zones. See Figure
20 for a graphic description of the effect on a CARLA generated image.

Figure 20. Image with a field of view of 170 degrees in CARLA.

Other drawbacks are the no capability of changing weather and other settings of the
simulation on the run. CARLA generates simulations organized in episodes. Each
episode has a determined and finite number of frames or time steps and a unique
behaviour of the environment and other non-controlled agents governed by a seed. The
configuration of each episode can be scripted thanks to the Python API, which connects
to Unreal Engine 4.

 27

3. Methodology / project development:

3.1. Environment set-up

The first step to evaluate Unreal Engine 4 and CARLA as simulation tools is actually

installing and setting them up. Although this could look like a trivial task, the truth is a lot

of problems raised when performing it.

Linux, and more concretely Ubuntu 16.04 LTS, is the operating system of the computer

where Unreal Engine 4 and CARLA are installed. That is, because CARLA performs

better on Linux and is less likely to crash than in Windows.

CARLA is used under the 0.8.4 version. Although there exist newer ones under

development this is the stable one. Such version runs on Unreal Engine 4.18. Each

version of the project runs on different UE4 versions and there is generally no cross

compatibility. This happens because UE4 evolves very quickly and some things are

deprecated from one version to another. That is why the correct version of Unreal Engine

4 must be used with each CARLA version in order to everything work properly and avoid

crashes.

3.1.2 Build Unreal Engine 4 from source

First of all, Unreal Engine 4 must be installed on the machine. In order to do that, a

GitHub (a very used cloud repository) account and an Epic Games (the developing team

behind UE4) account must be created. Once done this, the GitHub account must be

connected to the Epic Games account through the Epic Games profile. Unreal Engine 4

repositories at GitHub are private. That is the reason why this connection must be done.

Otherwise, it will be impossible to the user to download UE4 source code.

Building Unreal Engine 4 from source is frankly easy. Just a couple of commands must

be submitted on a terminal session:

git clone -b 4.18 https://github.com/EpicGames/UnrealEngine.git

cd UnrealEngine

./Setup.sh

./GenerateProjectFiles.sh

make

It can take quite some time though to complete the whole process depending on the
computer it is being installed.

3.1.3 Build CARLA from source

Once Unreal Engine 4 is installed, CARLA can be downloaded. Before that, some
dependencies must be installed on the computer so that the process completes
successfully:

sudo apt-get install build-essential clang-3.9 git cmake ninja-build

python3-requests python-dev tzdata sed curl wget unzip autoconf

https://github.com/EpicGames/UnrealEngine.git

 28

The command above installs necessary tools such as clang-3.9 (a compiler), git (control

version software), Python 3, etc.

Dependencies and all required project files can be downloaded from GitHub with the

following command:

git clone https://github.com/carla-simulator/carla

A script must be run inside the new CARLA folder:

 ./Setup.sh

It will download all necessary assets for the virtual world from the cloud and will set

everything up so that they can be integrated into Unreal Engine 4. Take into account that

the package used is of size 3GB. In order to accelerate the whole process, the –jobs=8

flag can be appended to the Setup.sh command to take advantage of multi-threading.

As a last step, indicating where UE4 is installed and running a building script is required:

UE4_ROOT=~/UnrealEngine_4.18 ./Rebuild.sh

Although the whole process of setting CARLA takes time to complete, it is only needed to
execute a bunch of commands. However, just one tiny connection error with the web
server when downloading or a non-compatibility between the dependencies installed
required to compile can lead to a lot of different errors that state the non-triviality of the
task.
In my case, many connection problems raised due to proxy settings at FICOSA. Also, I
had to install external compilers in order to carry out the compiling process because of
incompatibilities on the computer.

3.1.4 Opening up the project and the simulator

Once Unreal Engine 4 and CARLA are properly built one can load the second into the
graphics engine. To do so, one must navigate to
UnrealEngine_4.18/Engine/Binaries/Linux and enter the following command:

 Figure 21. Command that opens CARLA project in Unreal Engine 4 suite.

./UE4Editor opens up UE4’s suite. The link that follows is the absolute path to
CarlaUE4.uproject, CARLA’s Unreal Engine 4 project itself.

After some seconds, the interface of the graphics engine will pop up:

 Figure 22. Unreal Engine 4 main interface.

 29

3.2. Camera modelling

One of the biggest constraints of Unreal Engine 4 for our purposes is the lack of tools to

simulate virtual cameras that incorporate ultra-wide-angle lenses or fisheye lenses. Many

applications on the automotive world use such lenses in order to have a wider field of

view, which translates into more information of the scene being recorded. This is

extremely useful because, for instance, allows top view systems to gather all information

surrounding a vehicle with only four cameras placed on the front, rear and side-mirrors of

the cars.

Unreal Engine 4 only allows simulating cameras with a perspective projection so the main

purpose of this project is to bring fisheye lenses into the engine’s scene. To do such thing,

some possibilities were evaluated:

 Modifying the inner renderer of the engine in order to change the projection

distortion applied to the rendered image. In other words, make UE4 natively

render images with a fisheye distortion at real time.

This is the ideal solution, because it is straightforward and accelerates the

process of rendering. However, there are some constraints to be considered: the

engine only allows setting field of view up to 170 degrees, which is not enough to

cover the 196 degrees field of view of our camera. Also, pixel density is highly

decreased due to the pin-hole distortion camera model. The higher the field of

view, the tinier the information on the center of the final image. When undistorting

such image, that region with low pixel density but with a lot of data must be

expanded by interpolation. In such process, resolution of the final undistorted

image suffers a steep fall.

Another problem to consider is that some code of the engine has restricted

access and cannot be accessed. Moreover, as it is a closed API everything is

connected so even doing little changes to the code results in massive amount of

errors.

 Creating some kind of geometrical structure that allows increasing field of view

and applying some sort of distortion to the final rendered image. If an orthographic

camera is placed in front of a mirror-ball, it would capture the world reflected on

the ball. Such reflections would form a fisheye image with field of view up to 360

degrees.

 A cube map could be generated. That structure consists of 6 perspective cameras

placed in a way that each one covers a part of the ultra-wide-angle lens field of

view. All the parts combined programmatically leads to a final image with the

desired field of view and distortion. This approach has a big drawback, which is

that it is computationally heavy because for each virtual camera to be simulated

there will be six extra cameras to generate the cube map.

 30

3.2.1 Mirror ball

After analysing all the options available, the mirror-ball and orthographic camera system

seemed the easier and more effective to implement. It only requires Unreal Engine 4 to

place a single orthographic camera and render the reflection of the world on the mirror-

ball’s surface, so it is considerably more computationally affordable than the cube map

approach. In addition, its implementation is much simpler than modifying the renderer of

the engine.

The method detailed:

The mirror-ball is simply a perfect sphere with a mirror material applied to it. The idea is

to place an orthographic camera right in front of it so that the reflected light rays can

reach a wider zone increasing that way the field of view of the camera artificially. Thanks

to the form of the ball, everything projected on its surface produces an image with fisheye

equisolid distortion.

Figure 23. Blender example of a camera in front of a perfect mirror ball.

Figure 24. Illustrative scheme of the orthographic camera and mirror ball system.

 31

The camera is modelled as a plane that casts rays uniformly distributed over its surface

onto the sphere. The ball is a perfect mirror, so rays get reflected off at the very same

angle they hit the surface of the sphere. Such angle depends on the normal of the area

differential of the ball where the ray hits. That way, the further the ray collides from the

center of the sphere the more deviated. A very high field of view can then be achieved.

However, the more rays get deviated the more distortion is introduced to the resulting

image.

It is also important that the mirror ball is very small (ideally infinitely small). This is

because the plane that casts rays or orthographic camera must be as tiny as possible so

that it can be seen as a spot. By doing this other kind of undesired distortions due to

different initial starting points of the rays casted are avoided. If this condition is fulfilled,

the model is able to capture almost the 360 degrees surrounding environment (ideally

360 degrees if the ball was infinitely small).

To build the whole simulation model (orthographic camera and mirror ball) some calculus

must be made. Taking the specifications of the sensor and lens stated at the introduction:

There is interest in finding the focal length that a pure equisolid lens would have in order

to present the same 196 degrees field of view of our custom lens given the same sensor.

To do such thing, the equisolid formula is used:

𝑟 = 𝑅 · sin (
𝜃

2
)

Where r is the distance of each pixel to the center of the image or image height, R the

double of the focal length to find and 𝜃 half of the field of view of the lens. See appendix

A for more details on lens projections and their characterization.

Focal length is constant, so taking half the maximum horizontal field of view and half the

horizontal size of the sensor should suffice for the purpose of finding it.

𝑑 =
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑖𝑧𝑒

2
=
4.032 𝑚𝑚

2
= 2.016 𝑚𝑚

ℎ𝑎𝑙𝑓𝐹𝑂𝑉 =
𝐻𝐹𝑂𝑉

2
=
196 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

2
= 98 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

Then,

𝑅 =
𝑟

sin (
𝜃
2)
=

𝑑

sin (
ℎ𝑎𝑙𝑓𝐹𝑂𝑉

2)
= 2.671 𝑚𝑚

𝑓𝑒𝑞𝑢𝑖𝑠𝑜𝑙𝑖𝑑 =
𝑅

2
=
2.671 𝑚𝑚

2
= 1.335 𝑚𝑚

It can be appreciated that a scale has been applied to the focal length in order to adapt it

to the new equisolid lens model:

 32

𝑠𝑐𝑎𝑙𝑒 =
𝑓

𝑓𝑒𝑞𝑢𝑖𝑠𝑜𝑙𝑖𝑑
=
0.948 𝑚𝑚

1.335 𝑚𝑚
= 0.710

If we consider the mirror ball to be infinitely small, the only thing to calculate is the

orthographic scale of the camera. It controls the size of objects projected on the image. In

other words, it sets the size of the plane that models the orthographic camera.

Figure 25. Blender's orthographic camera parameters15

The appropriate orthographic scale of the camera to get correct sized objects on the final

projected image can be found performing some tests on Unreal Engine 4 and Blender.

The way both software handle the scale is a bit opaque and there is no analytical way to

perform the task. To do so, some markers are placed angularly equally spaced around a

virtual orthographic camera placed in the middle of the scene. Right in front of the camera

there is a mirror ball of diameter 0.5 mm. The camera is facing the mirror ball in a way

that its optical axis goes through the center of the ball. All that the camera captures is the

reflected environment on the surface of the mirror. The last marker (yellow) is placed at

the desired half horizontal field of view, in our case 98 degrees from the camera’s optical

axis. Then, one must play with the orthographic scale parameter in order to see the last

marker on the horizontal central line of pixels on the output image.

Figure 26. Size of the camera projected on the mirror
ball. Orthographic scale.

Figure 27. Image captured by orthographic camera
looking at mirror ball with orthographic scale

matching 196 degrees FOV.

15 https://docs.blender.org/manual/en/latest/render/cycles/camera.html

https://docs.blender.org/manual/en/latest/render/cycles/camera.html

 33

For the AT102A lens, the correct orthographic scale is 0.758 with a mirror ball diameter of

1 mm.

Earlier it is said that the mirror ball must be infinitely small. That is somehow an ideal

statement. However, in order to implement it, the only thing to consider is that it is very

small compared to the other objects in the scene. For instance, if the virtual world

consists in cars, buildings, roads, etc. and arbitrary good choice would be half a

millimetre. It is up to the designer though to choose such value. The bigger the ball is the

more undesired distortion is introduced into the final image. Take into account though that

changing the mirror ball size changes requires a change on the orthographic scale of the

camera because they are dependent on each other.

In order to determine the accuracy of the presented model some test have been run in a

simulation software that called Blender. This tool incorporates simulations with fisheye

equisolid lenses.

One way of validating the model is to generate an equisolid virtual camera with the

sensor and lens parameters to be tested and take a picture of a certain environment.

After that, we replace the camera with our solution and take another picture of the same

environment. The proposed environment:

Figure 28. Blender environment to find the right scale for the orthographic camera and validating the model.

Note that the environment is a half-sphere with latitude lines only. The center of the

scene are the camera models, so lines are 5 degrees separated. The yellow cylinder at

the left is located at 188 degrees and allows us to see if the model reaches the 196

degrees of horizontal field of view.

Be careful though, because the set of images generated correspond to an equisolid

projection. However, we are interested in having a custom distortion according to the

specific lens manufacturer. In order to distort the image in the right way a MATLAB script

is used. It performs the operation of converting the image from equisolid projection to

 34

custom projection according to some input lens parameters such as horizontal field of

view, focal length, pixel and sensor size and distortion curve among others.

Now, by comparing both pictures it can be evaluated how far is the model from the ideal

one.

Figure 29. Image obtained with the mirror-ball
system.

Figure 30. Image obtained with a fisheye equisolid
camera.

We have seen the amount of pixels that are from the center of the image to the middle to

each of the reference lines separated 5 degrees. These pixels can be translated into

millimetres thanks to the pixel size information of the sensor. Then, we can check if the

position of each line is correct on the sensor by looking at the lens distortion table. All the

measures and the deviation from the theoretical model of the lens are listed below on

Table 1.

Table 1. Comparison between designed mirror ball models and theoretical lens projection.

angle
theta
[deg]

real height
Y [mm]

[Model 1]
r = 1

scale = 0.758

[Model 1]
Error

[Model 2]
r = 0.454
scale =
0.3399

[Model 2]
Error

0 0.0000 0.0000 0.000% 0.0000 0.000%

5 0.0827 0.0840 1.562% 0.0840 1.562%

10 0.1658 0.1650 -0.512% 0.1650 -0.512%

15 0.2499 0.2490 -0.342% 0.2490 -0.342%

20 0.3351 0.3330 -0.639% 0.3330 -0.639%

25 0.4221 0.4200 -0.502% 0.4200 -0.502%

30 0.5112 0.5070 -0.817% 0.5070 -0.817%

35 0.6027 0.6000 -0.443% 0.6000 -0.443%

40 0.6969 0.6930 -0.564% 0.6930 -0.564%

45 0.7942 0.7890 -0.661% 0.7890 -0.661%

 35

50 0.8949 0.8910 -0.432% 0.8910 -0.432%

55 0.9990 0.9930 -0.598% 0.9960 -0.298%

60 1.1067 1.1010 -0.514% 1.1040 -0.243%

65 1.2181 1.2150 -0.252% 1.2150 -0.252%

70 1.3331 1.3290 -0.305% 1.3290 -0.305%

75 1.4515 1.4460 -0.380% 1.4520 0.033%

80 1.5731 1.5690 -0.261% 1.5750 0.120%

85 1.6972 1.6950 -0.129% 1.7010 0.224%

90 1.8225 1.8210 -0.083% 1.8270 0.246%

98 2.0198 2.0160 -0.188% 2.0160 -0.188%

Figure 31. Graphic representation of Table 6.

As it can be seen, both models are very accurate and allow for a great resulting fisheye

image. However, there is a big constraint imposed by Unreal Engine 4: reflections are

rendered at a very poor 132x132 resolution in order to save computational power. This

fact makes the above explained approach useless to generate a fisheye image, because

the final image would have a very poor quality. Figure 32 reflects all this. As can be seen,

the quality of the reflections is too poor to generate high quality images. The following

image is an imported mirror ball in the Unreal Engine 4 environment:

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Lens models distortion error

Design Model 1 Model 2

 36

Figure 32. Picture that illustrates the low resolution UE4 applies to mirrors.

There is another big limitation for this model to be used in UE4: the orthographic camera

is somehow bugged and does not work properly. Sometimes it retrieves completely blank

images with no justification.

Figure 33. Perspective camera in UE4.

Figure 34. Orthographic camera in UE4. Note that it
shows nothing.

 37

3.2.2 Cube map

An alternative approach to solve the field of view and distortion problem of the virtual

camera is to generate a cube map. It consists in a composition of six perspective images

that form a 360 degrees panorama. Such projection is then transformed using image

processing to a fisheye panorama, so after all it is just a transition step. An example of a

cube map:

Figure 35. Cube map example made with CARLA generated images.

8

Images can be structured in different ways, but the chosen form is the one seen in Figure

36. However, one can arrange images so that they form a vertical cross, for instance.

Figure 36. Illustrative example of a cube map. Figure 37. Fisheye form when converting

from a cube map.

 38

Note that the final fisheye image is flipped horizontally. This is intentional because rear

view cameras used in ADAS generate images that must be flipped to help the

visualization to the driver in a similar way as conventional rear view mirrors.

The method to generate a cube map consists in placing six perspective cameras in the

simulator with the very same location but rotated 90 degrees from each other. That way,

if we place cameras facing front, left, right, back, top and bottom a 360 degrees

panorama is recorded each frame. The reason why it is possible to place six cameras at

the same point is because they are modelled as spots that cast rays in the simulator.

Note that all six cameras must have a field of view both horizontal and vertical of 90

degrees. This constraints the resolution of the image to be squared. A good resolution

choice would be 1024x1024, because it is good enough to generate output 1344x1344

images. It is easily seen on Figure 37 because the front tile roughly occupies half of the

final fisheye image. That means that 1024 pixels are used to build just half of a 1344 pixel

image.

See Figure 38 for a better understanding of the positioning of cameras in the scene:

The Python API makes it very simple to place a camera in the environment by scripting:

Figure 39. Python code to set virtual cameras in CARLA.

That way, when launching a simulation and connecting the client with the code of Figure

39 CARLA saves the generated images in well-organized folders.

Those pictures must then be processed by an external tool consisting in a Python script

that creates a cube map out of the six images for every frame or time step. Also, it

directly transforms all cube maps recently generated into a fisheye image.

Figure 38. Cube map faces configuration.

 39

Python is the coding language chosen because it is multiplatform, easy to use and has

some powerful libraries such as OpenCV16 and numpy17 that are written in C at very low

level, resulting in good performance.

3.2.2.1 Cube map to equirectangular script

The first idea was to transform the cube map into and equirectangular panorama image.

Such image would be a 360 degrees representation of the virtual world captured by

cameras, with a peculiar distortion similar to the one found on maps. Then, the image

would be cropped appropriately in order to get the desired output field of view. With such

actions an equidistance fisheye image was meant to be outputted. There is just one step

more: using the MATLAB script to adapt the image to the custom distortion to get the

desired lens distortion.

Figure 40. Cube map to equirectangular panorama with desired field of view process.

16 https://opencv.org/
17 http://www.numpy.org/

https://opencv.org/
http://www.numpy.org/

 40

Figure 41. Equirectangular image with images from CARLA. Information inside the yellow rectangle is the one

of interest.

However, after performing some tests and validating the results, it can be seen that they

are not the expected ones. Although pretty close, there is different distortion at all points

of the image, especially at the top and bottom parts of it. Moreover, some lines are

blended on the opposite expected direction.

The validation process consists in generating an equirectangular image with the Python

script using a cube map made of a grid and comparing it to an equisolid image from

Blender. To create the last mentioned picture a cube with a grid applied to each face as

texture is constructed and a fisheye camera is placed right at the middle, inside it. The

camera outputs and image with an equisolid projection. Both the images from Blender

and from the Python script are transformed by the MATLAB script to get the custom lens

projection of the AT102A.

Figure 42 and Figure 43 show the final result of the whole process. Images do not

perfectly match, which means that this approach to acquire fisheye images with a specific

lens distortion from CARLA is not valid.

Figure 42. Blender generated image with AT102A
distortion.

Figure 43. Equirectangular image cropped and
distorted to match AT02A.

See more details on appendix D for more details on how the script works and why it does

not produce the desired result for this application.

 41

3.2.2.2 Cube map to fisheye script

This time, instead of converting the cube map into an equirectangular panorama as an

intermediate step to then compute the fisheye distortion, the script takes as input the

images generated by the six cameras and outputs fisheye equisolid images.

When CARLA records the world with its cameras and saves the images on disk it creates

six folders, one for each camera, and stores in there all the frames of every camera.

The program starts by loading all this images and generating cube maps out of them for

each frame. That way, a 360 degrees panorama is generated for each simulation instant.

The whole code can be found in appendix C.

Mathematically, the process consists in placing an imaginary virtual camera at the center

of a cube. Such figure is a folded cube map wrapped with the images taken by the virtual

cameras of CARLA as textures. Rays are casted from that spot onto the inside cube

surface. Pixels hit by the ray are then placed appropriately onto a plane that will

eventually become the final fisheye image. Note that, although this is a 3 dimensional

view of the whole process of transforming a cube map into a fisheye image, cube maps

are actually stored unfolded as 2 dimensional images.

Figure 44. 3D representation of the ray casting process that the script carries out.

Programmatically, spherical coordinates are calculated on the output image plane in the

first place. Such coordinates must have its origin at the center of the canvas, which is

why polar coordinates are appropriate for this task. Therefore, it is needed to compute

two parameters: r and 𝜑. The calculus are easily made thanks to the numpy library for

Python. It has a very similar syntax to MATLAB and allows making operations on

matrices without looping over them.

Using matrix subtraction and function meshgrid18, the script moves the origin of the

coordinate system to the center (it is placed at top left corner in Python as default) and

normalizes the coordinates.

18 https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.meshgrid.html

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.meshgrid.html

 42

Figure 45. Original image coordinates (left) and normalized ones (right).

Polar coordinates r and 𝜑 are calculated according to the following scheme:

Figure 46. Representation of spherical coordinates on a fisheye output image plane.

𝑟 = √𝑖2 + 𝑗2

𝜑 (𝑝ℎ𝑖) =

{

 0 𝑟 = 0

𝜋 − asin (
𝑗

𝑟
) 𝑖 < 0

asin (
𝑗

𝑟
) 𝑖 ≥ 0

The dashed circle represents the boundary where 𝑟 = 1. Everything outwards that line is

of no interest for the purpose of creating a fisheye image. That is because the cube map

is projected onto a half sphere represented on a plane. Therefore, the resulting shape

must be circular with radius not greater than one for a cube map of dimensions 1x1x1.

The dashed circle represents the lens and the image plane the sensor. Depending on the

 43

size of the lens-sensor system, the circle and black corners will be drawn in one way or

another19.

Get_spherical_coordinates returns the spherical coordinates for the image plane. Such

coordinates must be mapped to the 3-dimensional cube map in order to get the

corresponding pixel.

This function gets the spherical coordinates previously calculated and computes a 3

dimensional ray that hits the surface of the cube map at point x, y, z. That way, for each

pixel at the output image plane with a certain spherical coordinate a pixel on the cube

map is assigned.

Parameter 𝜃 only depends on the desired output field of view. Figure 47 shows what

each variable represent:

Figure 47. 3D scheme that illustrates what theta and phi represent.

The coordinate system used in this work for the cube map is the following:

Figure 48. Cube map coordinates and tiles composition.

19 See appendices A and C for more information on black corners.

 44

For such system, the equations that transform 𝑟, 𝜑, 𝜃 to 𝑥, 𝑦, 𝑧 are:

𝑥 = sin(𝜃) cos (𝜑)

𝑦 = sin(𝜃) sin (𝜑)

𝑧 = cos(𝜃)

However, this is just a point in the 3 dimensional space. It must be converted to the 2

dimensional space where each cube map resides. The first thing to do is seeing at which

tile that vector is pointing at. Function get_face does that work. It is easy to determine

such thing depending on the magnitude of x, y and z. Each tile of the cube map has an

axis normal to it. The one with higher absolute value is the side where the vector points to.

Defining the coordinates systems as in Figure 48 makes it easy to map 3 dimensional

points to the 2 dimensional cube map image. Depending on the face the vector is pointing

to, the program assigns different values for the uv coordinates. For instance, if vector is

(x,y,z) = (0.99, 0.54, 0.31), it points to positive x direction, which corresponds to Left face

according to the coordinate system convention. The reason is that the greater absolute

value of the vector is x. According to the schemes, if the selected face is Left, u = z and v

= -y. Therefore, final coordinates u = 0.31 and v = 0.54 are obtained. Obviously, those

coordinates are normalized and must adapted to the size of the image:

𝑢 = 𝑢𝑛𝑜𝑟𝑚 · 𝑤𝑖𝑑𝑡ℎ𝑖𝑚𝑎𝑔𝑒 = 0.31 · 1024𝑝𝑥 ≈ 317

𝑣 = 𝑣𝑛𝑜𝑟𝑚 · ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑚𝑎𝑔𝑒 = 0.54 · 1024𝑝𝑥 ≈ 552

If the origin coordinates on the 2D cube map image of the Left tile are added, the final

coordinates where to find the pixels are found:

𝑐𝑜𝑙 = 𝑢 + 𝑥𝑜𝑟𝑖𝑔𝑖𝑛 = 317 + 0 = 317

𝑟𝑜𝑤 = 𝑣 + 𝑦𝑜𝑟𝑖𝑔𝑖𝑛 = 552 + 1024 = 1576

Colour information of pixel (1576, 317) of the 2D cube map image is then placed on the

location of the pixel on the output canvas fisheye image that was used to compute the

spherical coordinates on the first place.

That way, a pixel is extracted from the cube map and placed on the output fisheye image

where it corresponds, according to the calculated coordinates. This whole process must

be repeated for each pixel of the output image until the whole picture is built.

Figure 49. Tiles' uv coordinates of a cube map.

 45

One last thing to keep in mind is that the input images for the script must have at least

half the resolution of the output in order to obtain decent quality. That is because a single

tile occupies half the output image approximately.

Note that, this time, the conversion from cube map to fisheye gives as result an equisolid

image like the one obtained with Blender:

Figure 50. Blender generated image with AT102A
distortion for fisheye validation.

Figure 51. Output of the script for a grid image.

Figure 50 and Figure 51 validate the results obtained by the Python cube map to fisheye

tool.

 46

3.3. Vehicle integration

Once the environment is set up and there is a way of generating fisheye images even

though the known limitations of Unreal Engine 4, there is only one thing left: integrating

custom vehicles.

Vehicle CAD files provided by FICOSA customers are converted from CATIA proprietary

formats (i.e. CATPart or CATProduct) to standard 3D formats like STL. Therefore, this

files can be used in other simulation environments like CARLA to run simulations. In this

case, customers send CADs of vehicles that are imported into CARLA. Integrating virtual

cameras into these virtual cars allows to study mechanical interferences derived from the

integration. Visual obstruction caused by bodywork of different vehicles is unique,

meaning that an exact same ADAS mounted on different vehicles retrieve different results.

Importing vehicles into the simulation environment must be done through Unreal Engine 4.

First of all, the vehicle object must be correctly modelled in Blender. Bodywork and

wheels have to be different meshes joined by an armature that will allow Unreal Engine 4

to apply physics to the asset.

Once the model is finished, it is exported as an FBX format so that it can be properly

imported into Unreal Engine 4.

 Figure 52. FICOSA's vehicle in CARLA

Some blueprints and configuration have to be performed so that the vehicle is fully

operative and simulations can be run. Otherwise, the vehicle will be susceptible of being

placed on the CARLA environment but there will not be the possibility of running

simulations with that asset in the world.

In order to have further detail and insight on the whole process of creating and importing

vehicles into CARLA, refer to appendix E.

 47

4. Results

Some important achievements can be highlighted from this work. A simulation tool in
constant development such as CARLA has been evaluated finding as a big limitation the
not possibility of setting higher fields of view than 170 degrees to cameras. Also, the
availability of only pin-hole (perspective) camera models was critical taking into account
that ADAS based on cameras usually rely on fisheye lens.

A solution for the camera issue is considered: rendering a 360 degrees cube map and
transforming it into a fisheye equisolid image. Such picture is then transformed to custom
lens distortion according to requirements of every project. The result of converting a cube
map into a fisheye image is the following:

 Figure 53. Cube map to fisheye equisolid conversion results.

Fisheye equisolid image on Figure 53 processed with the MATLAB script to obtain
AT102A lens distortion:

Figure 54. Fisheye image with AT102A distortion.

Figure 55. FICOSA's demo vehicle in
CARLA environment.

Generated synthetic images with CARLA are very valuable because –among other
things- are based on cameras mounted on a self-imported custom vehicle, which is
another achievement of this work.

All the above together will allow FICOSA to design RVS and CMS.

 48

Although the solutions found satisfy FICOSA’s needs, there exist certain limitations. One
must be very careful when choosing a weather for the simulation because some effects
like vignette, blooming and lens flares can cause artefacts on the final image. After all, a
cube map is a combination of six pin-hole cameras. Each one of them will record the
environment with different light conditions and perspectives. Because of that, some faces
of the cube map can have slightly different light conditions. Furthermore, if a vignette
effect is introduced, there will appear a darkened line on the border of each perspective
image that will result in a highlighting of the stitching borders of the final fisheye image.

In order to minimize the above explained limitations, some actions such as eliminating
blooming, lens flares and vignette effects can be performed in Unreal Engine 4. Also,
choosing low light weathers with the sun remaining invisible can improve quality of
images providing a more homogenous light to all tiles of the cube map.

It is far from ideal the fact that an external tool to Unreal Engine 4 must exist. A better
solution would be to modify the inner renderer system of the graphics engine. However,
this is a drawback that only Epic Games can deal with.

 49

5. Budget

Table of software and material costs is the following:

Table 2. List of software and components used during the project development.

Description Quantity Unitary Cost (€) Total Cost (€)

MATLAB license 1 2000 2000

MATLAB Image
Processing Toolbox

1 1000 1000

Laptop 1 500 500

PC for simulations 1 2500 2500

Microsoft EXCEL 1 100 100

TOTAL 6100

Other software such as Blender has been used but it is open source under the GNU
license.

Unreal Engine 4 is also free to use for the purpose of this work. Its entire source code can
be found on the web.

CARLA is an open source project for Unreal Engine 4 under an MIT license.

Cost of the working ours dedicated to the thesis:

Table 3. Manpower costs.

Project hours Hourly wage (€) Total price (€)

150 40 6000

 50

6. Conclusions and future development:

This work shows how to perform simulations in order to evaluate ADAS. With the tool up

and running, a lot of possibilities arise.

Top view systems, rear view systems and CMS can already be evaluated with CARLA

thanks to the creation of an external tool that allows to simulate fisheye cameras in

Unreal Engine 4.

With such a complex simulation tool, style departments of FICOSA will be able to build a

virtual reality environment that will allow the user to see from the inside of the vehicle how

a CMS looks like, for instance. An immersive experience like that could be priceless at

early stages of the project, because it would be real material to work with, not only

guesses or ideas of how the final product will feel. Such application could be also

interesting for commercial purposes.

One of the most important things in ADAS is that new technology gets homologated. In

order to check whether a system is legal -and therefore fulfils requirements- is to evaluate

them in virtual environments. Some test can be performed on static environments but

others require dynamism. For instance, it is required an environment like CARLA to

artificially place pedestrians on the middle of the road and observe how the vehicle stops

before hitting it and its behaviour in front of a difficulty or obstacle like that.

Vision systems FICOSA’s department can be greatly benefitted of CARLA. It would allow

to work with high fidelity video material to develop algorithms to be used later both on

synthetic images and real cars. Such programs typically perform extrinsic and intrinsic

calibration of cameras, ground truths, temperature studies of the system, etc. Also,

dynamic simulation environments open the door to new lines of investigation such as

object detection and tagging. Robustness of algorithms can also be tested by adding

noise, lens flares and other non-desirable effects that occur in real life and affect ADAS.

CARLA only has two maps available –Town01 and Town02-. An important future

improvement should involve importing other environments into the simulator. The Unreal

Marketplace is full of different maps that could be very useful to test ADAS in different

conditions of light, road distribution, etc. It is possible to do that through Unreal Engine 4,

in a very similar way to how to import vehicles.

Videos recorded in CARLA and CAN information could be injected on HIL systems in

order to evaluate a camera’s behaviour without performing road test or having real

samples of the final system. Other sensors that can be studied are LIDAR (also included

in the environment) and depth cameras. These sensors in ADAS are increasingly being

used for applications like alerting the driver if there is something on the side mirrors’ blind

spots

To sum up, this thesis will help to the developing of smart systems that will make the
automotive industry evolve towards intelligent vehicles. A new set of simulation tools are
presented in order to evaluate and design such advanced systems. As presented in this
section, many actions can be made to improve the tools performance and possibilities
that they offer. All this actions define the future development and are evaluated internally
at FICOSA.

 51

Bibliography:

[1] P. Bourke. "Computer generated angular fisheye projections". [Online] Available:
http://paulbourke.net/dome/fisheye/. [Accessed: 10 October 2018].

[2] P. Bourke. "Image warping for off axis fisheye lens/projections". [Online] Available:
http://paulbourke.net/dome/fisheyewarp/ [Accessed: 15 October 2018].

[3] P. Bourke. "Converting to/from cube maps". [Online] Available:
http://paulbourke.net/miscellaneous/cubemaps/. [Accessed: 5 October 2018].

[4] Dagon. "Using Blender to make cube maps". [Online] Available:
https://github.com/Senscape/Dagon/wiki/Using-Blender-to-make-cube-maps. [Accessed: 25 October
2018].

[5] PanoTools. "Projections". [Online] Available: https://wiki.panotools.org/Projections. [Accessed: 30
September 2018].

[6] StackOverflow. "Converting a cube map into equirectangular panorama". [Online] Available:
https://stackoverflow.com/questions/34250742/converting-a-cubemap-into-equirectangular-panorama.
[Accessed: 10 November 2018].

[7] OpenCV foundation. "Converting a cube map into equirectangular panorama". [Online] Available:
http://answers.opencv.org/question/180430/convert-cubemap-pixel-coordinates-to-equivalents-in-
equirectangular/. [Accessed: 10 November 2018].

[8] Wikipedia Foundation Inc., "Cube mapping". [Online] Available:
https://en.wikipedia.org/wiki/Cube_mapping. [Accessed: 10 November 2018].

[9] Epic Games. "Unreal Engine 4 Documentation". [Online] Available: https://docs.unrealengine.com/en-us/.
[Accessed: 10 December 2018].

[10] CARLA Team, CVC. "CARLA Documentation". [Online] Available: https://carla.readthedocs.io/en/latest/.
[Accessed: 20 September 2018].

[11] Deep Drive. "Rebuilding Deepdrive on Unreal Engine 4". [Online] Available:
https://deepdrive.io/blog/building-on-unreal.html. [Accessed: 20 September 2018].

[12] Shaun Lebron. "Visualizing projections". [Online] Available: http://shaunlebron.github.io/visualizing-
projections/. [Accessed: 20 September 2018].

[13] Stanford University. "Python numpy tutorial". [Online] Available: http://cs231n.github.io/python-numpy-
tutorial/. [Accessed: 10 November 2018].

[14] The Mathworks Inc., "Automated driving system toolbox". [Online] Available:
https://es.mathworks.com/products/automated-driving.html. [Accessed: 1 October 2018].

[15] Microsoft Corporation. "AirSim". [Online] Available: https://github.com/Microsoft/AirSim. [Accessed: 1
October 2018].

[16] IPG Automotive GmbH. "CarMaker: Virtual testing of automobiles and light-duty vehicles". [Online]
Available: https://ipg-automotive.com/products-services/simulation-software/carmaker/. [Accessed: 1
October 2018].

[17] United Nations, Regulation No 46 Revision 5. ECE R46, August 2013.

[18] U.S. Department of Transportation, National Highway Traffic Safety Administration (NHTSA), Vehicle
Rear view Image Field of View and Quality Measurement (FMVSS 111), DOT HS 811 512, September
2011.

[19] Aleksandar M. Dimitrijevic, M. Lambers, Dejan D. Rancic. "Comparison of spherical cube map
projections used in planet-sized terrain rendering". Vol. 45, no. 2, pp. 259-297. 2016

[20] S. Kriglstein, G. Wallner. "Environment mapping".

[21] John P. Snyder, U.S. Bureau of Mines. "Map projections – a working manual". 1987, Washington, USA.

[22] P. Zimmons, U.S. Bureau of Mines. "Spherical, cubic, and parabolic environment mappings". December
1999.

http://paulbourke.net/dome/fisheye/
http://paulbourke.net/dome/fisheyewarp/
http://paulbourke.net/miscellaneous/cubemaps/
https://github.com/Senscape/Dagon/wiki/Using-Blender-to-make-cube-maps
https://wiki.panotools.org/Projections
https://stackoverflow.com/questions/34250742/converting-a-cubemap-into-equirectangular-panorama
http://answers.opencv.org/question/180430/convert-cubemap-pixel-coordinates-to-equivalents-in-equirectangular/
http://answers.opencv.org/question/180430/convert-cubemap-pixel-coordinates-to-equivalents-in-equirectangular/
https://en.wikipedia.org/wiki/Cube_mapping
https://docs.unrealengine.com/en-us/
https://carla.readthedocs.io/en/latest/
https://deepdrive.io/blog/building-on-unreal.html
http://shaunlebron.github.io/visualizing-projections/
http://shaunlebron.github.io/visualizing-projections/
http://cs231n.github.io/python-numpy-tutorial/
http://cs231n.github.io/python-numpy-tutorial/

 52

Glossary

ADAS Advanced Driver Assistance Systems

PC Personal Computer

UE4 Unreal Engine 4

CARLA Car Learning to Act

CMS Camera Monitor Systems

CAD Computer-Aided Design

STL Standard Template Library

FBX Filmbox

3D 3 Dimensions

CATIA
Computer-Aided Three Dimensional

Interactive Application

MATLAB Matrix Laboratory

OpenCV Open Computer Vision Library

API Application Programming Interface

LTS Long Term Support

CVC Computer Vision Center

TCP/IP
Transmission Control Protocol / Internet

Protocol

AI Artificial Intelligence

RGB Red Green Blue

LIDAR Light Detection and Ranging

FOV Field of View

EFL Effective Focal Length

EP Entrance Pupil

UV (Coordinates) Horizontal Vertical

RVS Rear View System

 53

HIL Hardware in the Loop

CAN Controller Area Network

