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a b s t r a c t

We aim here at determining the Green function for general Schrödinger operators on
product networks. The first step consists in expressing Schrödinger operators on a product
network as sum of appropriate Schrödinger operators on each factor network. Hence, we
apply the philosophy of the separation of variables method in PDE, to express the Green
function for the Schrödinger operator on a product network using Green functions on
one of the factors and the eigenvalues and eigenfunctions of some Schrödinger operator
on the other factor network. We emphasize that our method only needs the knowledge
of eigenvalues and eigenfunctions of one of the factors, whereas other previous works
need the spectral information of both factors. We apply our results to compute the Green
function of Pm × Sh, where Pm is a Path withm vertices and Sh is a Star network with h + 1
vertices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Green’s functions on a network are closely related with self-adjoint boundary value problems for Schrödinger operators.
Although there exists a very interesting variety of such a boundary value problems, see for instance [3], we restrict ourselves
here to analyze either the Dirichlet Problem or the Poisson equation. As mentioned in a recent paper by A. Gilbert et alt.: ‘‘The
idea of discrete Green’s functions has, implicitly or explicitly, a long history arising in many important problems and fields
such as the study of inverses of tri-diagonal matrices, potential theory, the study of Schrödinger operators on graphs, and
the graph-theoretic analog of Poisson’s equation. Additionally, Green’s function methods have yielded interesting results in
many areas including the properties of random walks, chip-firing games, analysis of online communities, machine learning
algorithms and load balancing in networks.’’, see [15] and references therein.

In spite of its importance, only few explicit expressions for Green’s functions associated with Schrödinger operators
on very structured networks, are known. The most common technique to get these expressions consists in using the
spectral decomposition property. So, in general, determining Green’s functions is a very difficult task. Another strategy to
compute these elements is to split the network into small and structured pieces and then to express the eigenvalues and
eigenfunctions in terms of those corresponding to each piece. Since composite networks as join, corona or cluster have been
studied in a very general setting, see [1,5] and also [16] for graphs, we analyze here the case of cartesian product of networks.
As we show, our treatment is the discrete version of the Fourier Method, also called, Separation of Variables Method. We first
prove that when we consider weights that are tensor product of weights, then the corresponding Schrödinger operators are
expressed in separated variables and hence the Fourier Method fits accurately.
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Fig. 1. A vertex set F (•) and its boundary δ(F ) (•).

This class of problems have been also studied by F. Chung, R. Ellis and S.T. Yau, see [11,13,14], considering the normalized
Laplacian. However, since in general the normalized Laplacian of a product network cannot be described in separated
variables involving the normalized Laplacian of the factor networks, in the above referred works the authors must consider
only cartesian product of regular networks, that is also a regular network. We remark that in this case, the problem is
reduced to the analysis of the combinatorial Laplacian, since for regular networks the normalized Laplacian is a multiple
of the combinatorial one. We treat here with Schrödinger operators on the product network without any assumption on
the regularity of each factor network, but under the hypothesis that the potential is related with tensor product of weights.
We emphasize that the application of the separation of variable method only requires the knowledge of eigenvalues and
eigenfunctions of one of the factors. So, applying our results we can get explicit expressions for Green’s functions in a wide
range of product networks.

A finite network Γ = (V , c), consists of a finite set V , called vertex set and a symmetric function c: V × V −→ [0, +∞),
called conductance, satisfying that c(x, x) = 0 for any x ∈ V . Two vertices x, y ∈ V are adjacent iff c(x, y) > 0.

We always assume that Γ is connected; that is, that for any pair of different vertices x, y ∈ V , there exist m ∈ N∗ and
x0, . . . , xm ∈ V such that x = x0, y = xm and

∏m−1
j=0 c(xj, xj+1) > 0.

In what follows C(V ) = C(V ;R) and C(V ;C) stand respectively for the spaces of real and complex functions defined on
the vertex set V . Given v ∈ C(V ;C), v̄ denotes its conjugate and then, ⟨u, v⟩ =

∑
x∈V u(x)v̄(x) determines an inner product

on C(V ;C), whose associated norm is denoted by ∥ · ∥. Therefore, ∥u∥ =
(∑

x∈V |u(x)|2
) 1

2 for any u ∈ C(V ;C). Clearly, this
inner product induces the standard one on C(V ). Given u ∈ C(V ,C), u⊥ denotes the subspace of C(V ,C) orthogonal to u.

A real-valued function ω ∈ C(V ) is called weight if ω(x) > 0 for any x ∈ V and in addition ∥ω∥ = 1. The sets of weights
on V is denoted by Ω(V ) or simply by Ω when it does not lead to confusion. Clearly the weight ν defined as ν(x) = |V |

−
1
2 ,

x ∈ V , is the unique constant weight on V .
For any x ∈ V , εx is the Dirac function at x. Clearly εx ∈ C(V ) for any x ∈ V . Moreover, κ denotes the (generalized) degree

of Γ ; that is, the function defined as κ(x) =
∑

y∈V c(x, y), for any x ∈ V . The network is called regular when its degree is
a constant function. The volume of the network Γ is v =

∑
x∈V κ(x). Since Γ is connected v−

1
2
√

κ is a weight, called the
volume weight.

Given F ⊂ V a nonempty subset, F c denotes its complementary and C(F ) and C(F ;C) are the subspaces of real and complex
functions vanishing on F c . It is clear that C(F ) and C(F ;C) can be identified respectively with the space of real or complex
functions defined on F . Moreover, the set

δ(F ) =
{
z ∈ F c

: c(z, y) > 0 for some y ∈ F
}

is called the boundary of F and then, F̄ = F ∪ δ(F ) is the closure F , see Fig. 1. Clearly, δ(F ) = ∅, or equivalently F = F̄ , iff
F = V .

Analogously, given F ⊂ V , each function K : F × F −→ R can be identified as a function on V × V vanishing outside of
F × F . The above function is called symmetric if it satisfies that K (x, y) = K (y, x) for any x, y ∈ F . Clearly if we consider K
extended by 0 on (F × F )c , then K is symmetric on V × V iff it is symmetric on F × F .

The combinatorial Laplacian of Γ , or simply the Laplacian of Γ , is the linear operator L: C(V ;C) −→ C(V ;C) that assigns
to any u ∈ C(V ;C) the function L(u) defined as

L(u)(x) =

∑
y∈V

c(x, y)
(
u(x) − u(y)

)
, x ∈ V .

More generally, given q ∈ C(V ;C), the Schrödinger operator with potential q, see [7], is Lq: C(V ;C) −→ C(V ;C) defined as
Lq(u) = L(u) + qu for any u ∈ C(V ;C). The Schrödinger operator whose potential is the conjugate of q; that is, Lq̄, is called
the adjoint of Lq since it satisfies that ⟨Lq(u), v⟩ = ⟨u,Lq̄(v)⟩ for any u, v ∈ C(V ;C).

For a given nonempty subset F ⊂ V and a given potential q ∈ C(V ;C) we consider the following Boundary Value Problem:
Given f ∈ C(F ;C) and g ∈ C(δ(F );C), find u ∈ C(F̄ ;C) such that

Lq(u) = f on F , u = g on δ(F ). (1)

When F ̸= V , this problem is known as Dirichlet Problem on F , whereas when F = V it is called Poisson equation on V . In this
last case the data g has no sense, since then δ(F ) = ∅.
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When F ̸= V , eachDirichlet problemon F is equivalent to a semihomogeneousDirichlet problem. Specifically, u ∈ C(F̄ ;C)
is a solution of Problem (1) iff v = u − g is a solution of the Dirichlet problem

Lq(u) = f − L(g) on F , u = 0 on δ(F ). (2)

Therefore, to analyze the existence and uniqueness of solution of the boundary value problem for any f ∈ C(F ;C) is
equivalent to analyze the same topics for the following problem:

Given f ∈ C(F ;C), find u ∈ C(F ;C) such that Lq(u) = f on F . (3)

This formulation encompasses both, Dirichlet problems and Poisson equations; the last ones appear when F = V .
Notice that Schrödinger operators with real-valued potential; that is, Lq with q ∈ C(V ) are also endomorphisms on C(V )

and moreover, they are self-adjoint; since ⟨Lq(u), v⟩ = ⟨u,Lq(v)⟩ for any u, v ∈ C(V ;C). In particular,
∑

x∈F Lq(u)(x)v(x) =∑
x∈F Lq(v)(x)u(x) for any u, v ∈ C(F ;C); that means that Problem (3) is self-adjoint on C(F ;C) when the potential is real-

valued.
This work is mainly concerned with Schrödinger operators with real-valued potentials and for this reason we usually

consider only real-valued functions; that is, the space C(V ). Moreover, in this casewe also consider the Energy for the potential
q that is the quadratic form Eq: C(V ) −→ R that assigns to any u ∈ C(V ) the value

Eq(u) = ⟨Lq(u), u⟩ =
1
2

∑
x,y∈V

c(x, y)
(
u(x) − u(y)

)2
+

∑
x∈V

q(x)u(x)2.

2. Real-valued potentials and Doob transforms

For any weight ω ∈ Ω , we call the function qω = −ω−1L(ω) Doob potential associated with ω. Therefore,

qω(x) = −κ(x) + ω(x)−1
∑
y∈V

c(x, y)ω(y) > −κ(x), for any x ∈ V .

Given two weights σ , ω ∈ Ω , then qσ ≥ qω iff qσ = qω and this happens iff σ = ω, see [4, Lemma 2.1]. In particular,
qσ = 0 iff σ is constant and hence, qσ takes positive and negative values when σ ∈ Ω is not constant. Notice that
⟨σ , qσ ⟩ = −⟨1,L(σ )⟩ = 0.

Although at first glance Doob transforms could seem a bit strange and Doob potentials a very specific kind of potentials,
they play a main role among real-valued potentials. In fact, as a consequence of the Perron–Frobenius Theory, given a real-
valued potential q ∈ C(V ) there exist a unique unitary weight ω ∈ Ω and a unique real value λ ∈ R such that q = qω + λ,
see [2]. The following result involving Doob potentials has been strongly used by the authors, see for instance [2,4].

Proposition 2.1 (Doob Transform). Let a real-valued potential q and consider ω ∈ Ω and λ ∈ R such that q = qω + λ. Then, if
F ⊂ V is a non-empty subset, for any u ∈ C(F ) we have that

Lq(u)(x) =
1

ω(x)
∑

y∈F̄ c(x, y)ω(x)ω(y)
(

u(x)
ω(x)

−
u(y)
ω(y)

)
+ λ u(x), x ∈ F

Eq(u) =
1
2

∑
x,y∈F̄ c(x, y)ω(x)ω(y)

(
u(x)
ω(x)

−
u(y)
ω(y)

)2

+ λ∥u∥2.

As we will show, these expressions have interesting consequences in the treatment of the boundary value problems we
have raised.

We first remark that the well-known normalized Laplacian introduced in 1996 by F. Chung and R. Langlands, see [9–11],
is nothing else but a Schrödinger operator on an appropriate network. The normalized Laplacian for the network Γ = (V , c)
is the operator L : C(V ) −→ C(V ) that assigns to any u ∈ C(V ) the function

L (u)(x) =
1

√
κ(x)

∑
x,y∈V

c(x, y)
(

u(x)
√

κ(x)
−

u(y)
√

κ(y)

)
, x ∈ V .

Therefore, if L is the combinatorial Laplacian of Γ and T : C(V ) −→ C(V ) is given by T (u) =
√

κ u, we get that L =

T −1
◦ L ◦ T −1.

Moreover, we consider now the network Γ̂ = (V , ĉ), where ĉ(x, y) =
c(x, y)

√
κ(x)κ(y)

for any x, y ∈ V and L̂ its combinatorial

Laplacian. Notice that any pair of vertices x, y ∈ V are adjacent in Γ iff they are adjacent in Γ̂ , so the graphs subjacent to Γ

and to Γ̂ are the same. Choosing the volume weight of Γ , ω = v−
1
2
√

κ , from the expression for L̂qω obtained after the Doob
Transform associated with ω, for any u ∈ C(V ) and any x ∈ V , we have

L̂qω (u)(x)=
√
v

√
κ(x)

∑
y∈V

1
v
ĉ(x, y)

√
κ(x)

√
κ(y)

(√
vu(x)

√
κ(x)

−

√
vu(y)

√
κ(y)

)
= L (u)(x),

and hence, the normalized Laplacian L on Γ is equivalent to the Schrödinger operator L̂qω on Γ̂ .
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On the other hand, from the expression for the energy obtained after the Doob Transform, we have that

min
u∈C(F )
∥u∥=1

{
Eq(u)

}
≥ λ (4)

and the equality holds iff F = V . In this case, Eq attains its minimum at u = ±ω. Therefore, the Schrödinger operator Lq is
positive semidefinite on C(V ); that is, its energy is non-negative, iff λ ≥ 0 and positive definite on C(V ) iff λ > 0. In addition,
when λ ≥ 0, the Schrödinger operator Lq is positive definite on C(F ) for any proper subset F .

The variational characterization of the solutions for the boundary value problems (3) is described in the following result,
see [4, Proposition 3.5] for its proof.

Proposition 2.2 (Dirichlet Principle). Let F ⊂ V be a non empty subset, ω ∈ Ω , λ ≥ 0 and the potential q = qω + λ. Given
f ∈ C(F ) consider the quadratic functional J : C(V ) −→ R given by

J (u) = Eq(u) − 2⟨f , u⟩.

Then u ∈ C(F ) satisfies that Lq(u) = f on F iff it minimizes J on C(F ). Moreover J has a unique minimum except when F = V
and λ = 0 simultaneously. In this case J has a minimum iff f ∈ ω⊥ and moreover, there exists a unique minimum belonging to
ω⊥.

3. Green functions, eigenvalues and eigenfunctions

In this section we consider fixed the finite and connected network Γ = (V , c), a weight ω ∈ Ω , a non-negative value
λ ≥ 0, the real-valued potential q = qω +λ and its corresponding Schrödinger operator Lq. Under these hypotheses, for any
proper subset F ⊂ V and any f ∈ C(F ), Dirichlet Problem (3) has a unique solution; that is, there exists a unique u ∈ C(F )
such that Lq(u) = f on F . Moreover, when λ > 0 for any f ∈ C(V ), Poisson equation (3) has a unique solution; that is, there
exists a unique u ∈ C(V ) such that Lq(u) = f on V .

When either F ⊂ V is a proper subset or λ > 0, the Green function of F for the potential q is GF
q : F × F −→ R such that for

any y ∈ F , GF
q(·, y) is the unique solution of the Dirichlet Problem Lq(u) = εy on F , u = 0 en δ(F ), when F is proper, or the

Poisson equation Lq(u) = εy on V when F = V but λ > 0.
The Green operator of F for the potential q is GF

q : C(F ) −→ C(F ) defined for any f ∈ C(F ) as GF
q (f )(x) =

∑
y∈F G

F
q(x, y)f (y),

x ∈ F . Then GF
q is self-adjoint and for any f ∈ C(F ), the function u = GF

q (f ) ∈ C(F ) satisfies that Lq(u) = f on F . Since GF
q

is a self-adjoint operator, then GF
q is a symmetric function and the Minimum Principle also implies that 0 < ω(y)GF

q(x, y) <

ω(x)GF
q(y, y) for any x, y ∈ F , see for instance [4].

When λ = 0, then q = qω and the Poisson equation Lq(u) = f on V is solvable only if f ∈ ω⊥ and in this case, there exists
a unique solution belonging to ω⊥. The Green function of V for the potential q is GV

q : V × V −→ R such that for any y ∈ V ,
GV
q (·, y) is the unique solution of the Poisson equation Lq(u) = εy − ω(y)ω belonging to ω⊥.
The Green operator of V for the potential q is GV

q : C(V ) −→ C(V ) defined for any f ∈ C(V ) as GV
q (f )(x) =

∑
y∈V GV

q (x, y)f (y),
x ∈ V . Then for any f ∈ C(V ), GV

q (f ) = GV
q (f − ⟨ω, f ⟩ ω), GV

q is self-adjoint and the function u = GV
q (f ) ∈ C(V ) is the unique

function inω⊥ satisfying that Lq(u) = f −⟨ω, f ⟩ ω. Newly, the self-adjointness of GV
q implies that GV

q is a symmetric function
and the Minimum Principle also implies that ω(y)GV

q (x, y) < ω(x)GV
q (y, y) for any x, y ∈ V , see newly [4].

We remark that the existence and uniqueness of solution for the boundary value problem (3) means that Lq is an
automorphism of C(F ) and hence, GF

q is its inverse. Moreover, when λ = 0, then Lq is an automorphism of ω⊥ whose inverse
can be extended to C(V ) by considering for any f ∈ C(V ) its orthogonal component with respect to ω. This extension is
precisely GV

q and clearly is singular, since GV
q (ω) = 0.

On the other hand, if we label the vertices of Γ , say V = {x1, . . . , xn} where n = |V |, then each endomorphism of C(F )
can be interpreted as a matrix of order |F |. So Lq is identified with the matrix LVq whose diagonal entries are κ(xj) + q(xj)
and whose off-diagonal entries are −c(xi, xj), i, j = 1, . . . , n. Moreover if for a proper subset F ⊂ V , we interpret Lq as an
endomorphism of C(F ), then it can be identified with the matrix LFq obtained from LVq by deleting the rows and the columns
corresponding to the vertices in F c . Notice that, as the potential is real-valued, all the above matrices are real-valued and
symmetric.

We also denote by GF
q the matrix identified with the Green operator GF

q defined above. With these identifications,
GF

q =
(
LFq

)−1 when either F is a proper subset of V or λ > 0. Moreover, when λ = 0, then GV
q =

(
LVq

)#, the Group Inverse
of LVq . Since the group inverse coincides with the inverse when the matrix is invertible, we have that GF

q =
(
LFq

)# for any
non-empty subset F ⊂ V and any λ ≥ 0.

Given a non-empty subset F ⊂ V , an eigenvalue of the boundary problem (3) is z ∈ C such that the Schrödinder operator
Lq−z is singular on C(F ;C). Equivalently, z ∈ C is an eigenvalue of the boundary problem (3) if there exists u ∈ C(F ;C)
non-null and such that Lq(u) = z u on F . Each u ∈ C(F ;C) satisfying the above identity is called eigenfunction of the boundary
problem (3) associated with z.

Since q is a real-valued potential, any eigenvaluemust be real. This claim follows by taking into account that if u ∈ C(F ;C)
is non null and satisfies that Lq(u) = z u on F , then

z∥u∥2
= ⟨Lq(u), u⟩ = ⟨u,Lq̄(u)⟩ = ⟨u,Lq(u)⟩ = z̄∥u∥2
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which implies z = z̄; that is z ∈ R. On the other hand, if u, v ∈ C(F ,C) are eigenfunctions corresponding to z and ẑ
respectively, then

z⟨u, v⟩ = ⟨Lq(u), v⟩ = ⟨u,Lq(v)⟩ = ẑ⟨, u, v⟩

which implies that if z ̸= ẑ, then ⟨u, v⟩ = 0. In particular, if u ∈ C(F ,C) is an eigenfunction corresponding to z ∈ R, then u
is a real-valued function; that is, u ∈ C(F ).

If z ∈ C is not an eigenvalue of the boundary value problem (3), then Lq−z is an automorphism of C(F ;C) and then we
denote by GF

q−z its inverse. Moreover, if GF
q−z : F × F −→ R is given for any y ∈ V as GF

q−z(·, y), the unique solution of the
equation Lq(u) = εy on F , then GF

q−z(f )(x) =
∑

y∈F G
F
q−z(x, y)f (y), for any f ∈ C(F ,C) and any x ∈ F .

The following result is the discrete version of the well-known Spectral Theorem. Its proof follows the standard reasoning
involving the minimization of the energy, so we have Inequality (4) into account.

Theorem 3.1 (Spectral Theorem). For any non-empty subset F ⊂ V , there exist real values µF
1 ≤ · · · ≤ µF

|F |
and an orthonormal

basis {vF
j }

|F |

j=1 ⊂ C(F ) satisfying the following properties:

(i) Lq(vF
j ) = µF

j v
F
j on F , j = 1, . . . , |F |. Moreover, if z ∈ R is an eigenvalue of the boundary value problem (3), then z = µF

j
for some j = 1, . . . , |F |.

(ii) λ ≤ µF
1 < µF

2 and vF
1 (x) > 0 for any x ∈ F . Moreover, µF

1 = λ iff F = V and then vF
1 = ω. In particular, µF

1 > 0, except
when F = V and λ = 0, simultaneously.

(iii) For any u ∈ C(F ;C) then Lq(u)(x) =
∑

|F |

j=1 µF
j ⟨u, v

F
j ⟩v

F
j (x) for any x ∈ F .

As a very nice consequence of the Spectral Theorem, we can obtain the expression of GF
q(x, y), the Green function of F

for the potential q, in terms of eigenvalues and eigenfunctions of Lq. Prior to do this, for any a ∈ C we define a# ={
a−1, if a ̸= 0,
0, if a = 0. .

Using the same notation as in Theorem 3.1, we get the following result.

Theorem 3.2 (Mercer Theorem). Given a non-empty subset F ⊂ V , then

GF
q(x, y) =

|F |∑
j=1

(µF
j )

#vF
j (x)v

F
j (y), x, y ∈ V .

Moreover, if z ∈ C \
{
µF

1 ≤ · · · ≤ µF
|F |

}
, then

GF
q−z(x, y) =

|F |∑
j=1

(µF
j − z)−1vF

j (x)v
F
j (y), x, y ∈ V .

4. Schrödinger operators on product networks

In this section we prove that Schrödinger operators on product network can be expressed in separated variables and
hence we can obtain a discrete version of the separation of variables method.

Let us consider two different connected networks (Γ1, c1) and (Γ2, c2) with vertex sets V1 and V2.
We define the product network as the network Γ = Γ1 × Γ2 = (V , c) where V = V1 × V2 and the conductance is given

by

c
(
(x1, y1), (x2, y2)

)
=

{ c1(x1, x2), if y1 = y2,
c2(y1, y2), if x1 = x2,

0, otherwise
(5)

Clearly Γ1 × Γ2 is also connected.
Given u ∈ C(V1 × V2) for any (x, y) ∈ V1 × V2, uy ∈ C(V1), ux

∈ C(V2) denote the functions defined as uy(z) = u(z, y) for
any z ∈ V1 and by ux(z) = u(x, z) for any z ∈ V2.

Given u ∈ C(V1) and v ∈ C(V2) the tensor product of u and v is u ⊗ v ∈ C(V1 × V2) defined as (u ⊗ v)(x, y) = u(x)v(y) for
any (x, y) ∈ V1 × V2. Notice that given two weights ωi ∈ Ω(Vi), i = 1, 2, then ω1 ⊗ ω2 ∈ Ω(V1 × V2). Moreover, given x ∈ V1
and y ∈ V2 we have ε(x,y) = εx ⊗ εy.

We denote by Li the combinatorial Laplacian of the network Γi, i = 1, 2 and by L the combinatorial Laplacian of the
product network Γ1 × Γ2. The following result establishes that the combinatorial Laplacian of a product network can be
expressed in separable variableswhen it operates on a tensor product function. This property justifies the name of separation
of variables for the technique to solve boundary value problems on product networks.
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Proposition 4.1. Given ui ∈ C(Vi), i = 1, 2 then

L(u1 ⊗ u2) = L1(u1) ⊗ u2 + u1 ⊗ L2(u2).

In particular, if ωi ∈ Ω(Vi), i = 1, 2, then qω1⊗ω2 = qω1 + qω2 and hence, for any u ∈ C(V1 × V2) we have

Lqω1⊗ω2
(u)(x, y) = L1

qω1
(uy)(x) + L2

qω2
(ux)(y), (x, y) ∈ V1 × V2.

Proof. Given u ∈ C(V1 × V2) for any (x, y) ∈ V1 × V2 we have that

L(u)(x, y) =

∑
z∈V1
w∈V2

c
(
(x, y), (z, w)

)(
u(x, y) − u(z, w)

)
=

∑
z∈V1

c1(x, z)
(
u(x, y) − u(z, y)

)
+

∑
w∈V2

c2(y, w)
(
u(x, y) − u(x, w)

)
= L1(uy)(x) + L2(ux)(y).

On the other hand, since (u1 ⊗ u2)y = u1u2(y) and (u1 ⊗ u2)x = u1(x)u2 we obtain that

L(u1 ⊗ u2)(x, y) = u2(y)L1(u1)(x) + u1(x)L2(u2)(y).

In particular L(ω1 ⊗ ω2) = L1(ω1) ⊗ ω2 + ω1 ⊗ L2(ω2) and hence,

qω1⊗ω2 = −(ω1 ⊗ ω2)−1L(ω1 ⊗ ω2) = −ω−1
1 L1(ω1) − ω−1

2 L2(ω2) = qω1 + qω2 .

From all above identities we finally obtain that

Lqω1⊗ω2
(u)(x, y) = L(u)(x, y) + qω1⊗ω2 (x, y)u(x, y)

= L1(uy)(x) + L2(ux)(y) +
(
qω1 (x) + qω2 (y)

)
u(x, y)

= L1(uy)(x) + L2(ux)(y) + qω1 (x)uy(x) + qω2 (y)u
x(y)

= L1
qω1

(uy)(x) + L2
qω2 (y)

(ux)(y). □

5. Boundary value problems on product networks

As in the preceding section, we consider connected networks (Γi, ci) with vertex set Vi and combinatorial Laplacian Li,
i = 1, 2. Then, we also consider the product network Γ1 × Γ2 and its combinatorial Laplacian L.

The boundary value problems we analyze in Γ1 × Γ2, refer to subsets that are also expressed as cartesian products. So,
given non empty subsets Fi ⊂ Vi, i = 1, 2 we consider F = F1 × F2 ⊂ V1 × V2. Then, it is satisfied that

δ(F1 × F2) =
(
F1 × δ(F2)

)
∪

(
δ(F1) × F2

)
, (6)

where we allow Fi = Vi in which case δ(Fi) = ∅, i = 1, 2.
Givenωi ∈ Ω(Vi), i = 1, 2 and λ ≥ 0, we consider the real-valued potential q = qω1⊗ω2 +λ. We are interested in studying

the boundary value problem (3) on F = F1 × F2 and also in computing the corresponding Green function GF
q . To do this, we

first split λ as λ1+λ2 where λ1, λ2 ≥ 0 and then apply the Spectral Theorem to the two boundary value problemsLqi (ui) = fi
on Fi, where qi = qωi + λi and fi, ui ∈ C(Fi), i = 1, 2. Specifically, let µ

Fi
1 ≤ · · · ≤ µ

Fi
|Fi|

the eigenvalues of the boundary value
problem Lqi (ui) = fi on Fi, i = 1, 2 and {v

Fi
j }

|Fi|
j=1 ⊂ C(Fi) a corresponding orthonormal system of eigenfunctions.

Remember that always µ
Fi
1 is simple and moreover v

Fi
1 > 0 on Fi, i = 1, 2. In addition, µFi

1 = λi iff Fi = Vi and then
v
Fi
1 = ωi. Therefore, µ

Fi
1 > 0, except when Fi = Vi and λi = 0, simultaneously.

The main result in product networks is that the eigenvalues and the eigenfunctions for the boundary value problem (3)
in product subsets, are completely characterized in terms of the eigenvalues and the eigenfunctions of each factor.

Theorem 5.1. For any j = 1, . . . , |F1| and any k = 1, . . . , |F2| we have that

Lq(v
F1
j ⊗ v

F2
k ) = (µF1

j + µ
F2
k )vF1

j ⊗ v
F2
k on F1 × F2.

Moreover,
{
µ

F1
j + µ

F2
k

}
1≤j≤|F1 |

1≤k≤|F2 |

are the eigenvalues of Lq on F1 × F2 and the set
{
v
F1
j ⊗ v

F2
k

}
1≤j≤|F1 |

1≤k≤|F2 |

is an orthonormal basis in

C(F1 × F2).

Proof. From Proposition 4.1, on F1 × F2 we have

Lq(v
F1
j ⊗ v

F2
k ) = L1

q1 (v
F1
j ) ⊗ v

F2
k + v

F1
j ⊗ Lq2 (v

F2
k )

= µ
F1
j v

F1
j ⊗ v

F2
k + µ

F2
k v

F1
j ⊗ v

F2
k = (µF1

j + µ
F2
k )vF1

j ⊗ v
F2
k .
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Since the system
{
v
F1
j ⊗ v

F2
k

}
1≤j≤|F1 |

1≤k≤|F2 |

⊂ C(F1 × F2) is orthonormal and dim C(F1 × F2) = |F1| · |F2| we conclude that{
v
F1
j ⊗ v

F2
k

}
1≤j≤|F1 |

1≤k≤|F2 |

is a basis of C(F1 × F2). Moreover, since any eigenfunction corresponding to an eigenvalue, other than

µ
F1
j + µ

F2
k , j = 1, . . . , |F1|, k = 1, . . . , |F2|, must be orthogonal to the above basis, we conclude that

{
µ

F1
j + µ

F2
k

}
1≤j≤|F1 |

1≤k≤|F2 |

determines all eigenvalues. □

Notice that µ
F1
1 + µ

F2
1 is the lowest eigenvalue, it is simple and moreover v

F1
1 ⊗ v

F2
1 > 0 on F1 × F2. In addition, since

µ
F1
j + µ

F2
k ≥ λ1 + λ2 = λ ≥ 0 we have that µ

F1
j + µ

F2
k > 0 except when F1 = V1, F2 = V2 and λ = 0 simultaneously. Notice

that λ = 0 iff λ1 = λ2 = 0 and then, if in addition F1 = V1, F2 = V2, we have v
Fi
1 = ωi, i = 1, 2.

In general, the eigenvalues µ
F1
j + µ

F2
k , j = 1, . . . , |F1|, k = 1, . . . , |F2| when j + k > 2 have multiplicity greater than

1, even if each factor has only simple eigenvalues. For instance this happens in the square network Γ × Γ for the weight
ω ⊗ ω, ω ∈ Ω . In this case, given F ⊂ V , each eigenvalue of the boundary value problem (3) on F × F other than the 2µF

j ,
j = 1, . . . , |F |, has multiplicity 2 at least: Given j ̸= k, then vF

j ⊗vF
k and vF

k ⊗vF
j are eigenfunctions corresponding toµF

j +µF
k .

The main consequence of Theorem 5.1 is that we can compute the Green function for product networks in terms of the
eigenvalues and the eigenfunctions of each factor by applying the Mercer Theorem.

Corollary 5.2. Under hypothesis of Theorem 5.1, for any (x1, y1), (x2, y2) ∈ V1 × V2, we have that

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

|F1|∑
j=1

|F2|∑
k=1

(µF1
j + µ

F2
k )#vF1

j (x1)v
F1
j (x2)v

F2
k (y1)v

F2
k (y2).

The above formula requires the knowledge of eigenvalues and eigenfunctions for the two factors. Therefore, except for
structured networks, the application of the above method is very restrictive. F. Chung and S.T. Yau obtained in [11], see
also [13,14], a nice formula based in a clever use of the complex integration, that avoids the computation of eigenvalues and
eigenvectors and only needs the evaluation of the Green function of each factor, but considering complex-valued potentials.
Although the above authors only consider normalized Laplacians on regular networks, and hence combinatorial Laplacians,
their technique is easily extensible to positive semidefinite Schrödinger operators.

Lemma 5.3. Let a, b ∈ C and consider γ a smooth and simple curve enclosing a and moreover it leaves −b in its exterior when
a + b ̸= 0. Then,

(a + b)# =
1

2π i

∫
γ

dz
(a − z)(b + z)

Proof. If f (z) =
1

(a − z)(b + z)
, then f has isolated singularities at a and −b and moreover, since f (z) =

1
a + b

[
1

a − z
+

1
b + z

]
when a+ b ̸= 0 and f (z) =

−1
(z − a)2

when a+ b = 0, the residue of f at a is (a+ b)#. Therefore, we obtain the result

applying the Residue Theorem, see [12]. □

We can use the above identity, to express à la Chung & Yau, the Green function of the boundary value problem (3) in a
product set.

Proposition 5.4. In the preceding conditions, for any (x1, y1), (x2, y2) ∈ V1 × V2, we have that

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

1
2π i

∫
γ

GF1
q1+z(x1, x2)G

F2
q2−z(y1, y2)dz

where γ is a smooth and simple curve satisfying the following conditions:

(i) If either λ > 0 or F1 × F2 ̸= V1 × V2, then γ surrounds µ
F1
1 , . . . , µ

F1
|F1|

and leave −µ
F2
1 , . . . ,−µ

F2
|F2|

in its exterior.
(ii) If λ = 0, F1 = V1 and F2 = V2, then γ surrounds µ

F1
1 , . . . , µ

F1
|F1|

and leave −µ
F2
2 , . . . ,−µ

F2
|F2|

in its exterior.

Proof. From Corollary 5.2 and applying Lemma 5.3, we have that

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

1
2π i

∫
γ

[ |F1|∑
j=1

|F2|∑
k=1

v
F1
j (x1)v

F1
j (x2)v

F2
k (y1)v

F2
k (y2)

(µF1
j − z)(µF2

k + z)

]
dz

=
1

2π i

∫
γ

[|F1|∑
j=1

v
F1
j (x1)v

F1
j (x2)

µ
F1
j − z

|F2|∑
k=1

v
F2
k (y1)v

F2
k (y2)

µ
F2
k + z

]
dz
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and the result follows by applying the secondpart ofMercer Theoremand taking into account that, according to the definition
of γ , any complex value z ∈ C lying on the trace of γ , is neither an eigenvalue for the boundary value problem (3) on F1 nor
−z is an eigenvalue for the boundary value problem (3) on F2.

Although Chung & Yau’s method avoids the explicit computation of eigenvalues and eigenfunctions, it requires to
calculate an infinite family of Green’s functions, depending on a complex parameter, and hence to evaluate a complex
integral. We finish this paper showing a technique that mix the two former methods. It only requires the computation of
eigenvalues and eigenfunctions for one of the factor networks and also the computation of a finite family of Green’s functions
corresponding to the other product network. In fact this method is nothing else but the discrete version of the well-known
Separation of Variables Method to solve boundary value problems in PDE.

The key issue to apply the Separation of Variables Method lies on the use of an appropriate expression for functions in
C(F1 × F2). With the above notations, for any given h ∈ C(F1 × F2), for any j = 1, . . . , |F1| and any k = 1, . . . , |F2|we consider
the functions αj(h) ∈ C(F2) and βk(h) ∈ C(F1) defined as

αj(h)(y) = ⟨hy, v
F1
j ⟩ =

∑
z∈V1

h(z, y)vF1
j (z) =

∑
z∈F1

h(z, y)vF1
j (z), y ∈ V2,

βk(h)(x) = ⟨hx, v
F2
k ⟩ =

∑
z∈V2

h(x, z)vF2
k (z) =

∑
z∈F2

h(x, z)vF2
k (z), x ∈ V1.

Lemma 5.5. For any h ∈ C(F1 × F2) the following identities hold

h =

|F1|∑
j=1

v
F1
j ⊗ αj(h) =

|F2|∑
k=1

βk(h) ⊗ v
F2
k

In particular, if ĥ ∈ C(F1 × F2), then h = ĥ iff αj(h) = αj(ĥ), j = 1, . . . , |F1| or equivalently iff βk(h) = βk(ĥ), k = 1, . . . , |F2|.

Proof. Since
{
v
F2
k

}
1≤k≤|F2|

is an orthonormal basis in C(F2), for any x ∈ F1 we have that hx
=

∑|F2|

k=1⟨h
x, v

F2
k ⟩v

F2
k =∑|F2|

k=1 β(h)(x)vF2
k ; that is, for any y ∈ F2 we have

h(x, y) =

|F2|∑
k=1

βk(h)(x)v
F2
k (y) =

|F2|∑
k=1

(
βk(h) ⊗ v

F2
k

)
(x, y).

The other identity can be proved in an analogous way. □

Theorem5.6. Under the conditions and notations in this section, for i = 1, 2 consider the real-valued potentials p1k = q1+µ
F2
k =

qω1 + λ1 + µ
F2
k ∈ C(F1), k = 1, . . . , |F2| and p2j = q2 + µ

F1
j = qω2 + λ2 + µ

F1
j ∈ C(F2), j = 1, . . . , |F1|. Then,

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

|F2|∑
k=1

GF1
p1k
(x1, x2)v

F2
k (y1)v

F2
k (y2)

=

|F1|∑
j=1

GF2
p2j
(y1, y2)v

F1
j (x1)v

F1
j (x2).

Proof. Because the proof of both identities follows the same reasoning, we only prove the first one. Moreover, we first
develop the separation of variables technique in a general setting and then we specify it to the computation of the Green
function.

Given f , u ∈ C(F1 × F2), applying Lemma 5.5 we have

f =

|F2|∑
k=1

βk(f ) ⊗ v
F2
k and u =

|F2|∑
k=1

βk(u) ⊗ v
F2
k .

On the other hand, from Proposition 4.1, we have that

Lq(u) =

|F2|∑
k=1

L1
q1 (βk(u)) ⊗ v

F2
k +

|F2|∑
k=1

µ
F2
k βk(u) ⊗ v

F2
k

=

|F2|∑
k=1

[
L1

q1 (βk(u)) + µ
F2
k βk(u)

]
⊗ v

F2
k =

|F2|∑
k=1

L1
p1k
(βk(u)) ⊗ v

F2
k

and hence, f = Lq(u) on F1 × F2 iff

L1
p1k
(βk(u)) = βk(f ), on F1 k = 1, . . . , |F2|.
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To analyze the above boundary value problem, we first observe that p1k = qω1 + λ1 + µ
F2
k , k = 1, . . . , |F2|.

When either F1 × F2 ̸= V1 ×V2 or λ1 +λ2 = λ > 0, then λ1 +µ
F2
k > 0, k = 1, . . . , |F2|, and hence all the above boundary

value problems have a unique solution that is given by

βk(u)(x) =

∑
z∈V1

GF1
p1k
(x, z)βk(f )(z).

When Fi = Vi, i = 1, 2 and λ = 0 then the boundary value problem Lq(u) = f on V1 × V2 is solvable iff f ∈ (ω1 ⊗ ω2)⊥,
and then, there exists a unique solution in (ω1 ⊗ ω2)⊥. In this case λ1 = λ2 = 0, µF2

1 = 0 and hence λ1 + µ
F2
k = µ

F2
k > 0,

k = 2, . . . , |F2|.
Moreover, ⟨β1(f ), ω1⟩ = ⟨f , ω1 ⊗ ω2⟩ since v

F2
1 = ω2 and hence we have that f ∈ (ω1 ⊗ ω2)⊥ iff β1(f ) ∈ ω⊥

1 . So, under
the above conditions, if f ∈ (ω1 ⊗ ω2)⊥ all the boundary value problems L1

p1k
(βk(u)) = βk(f ) on F1, k = 2, . . . , |F2| have

βk(u)(x) =

∑
z∈V1

GF1
p1k
(x, z)βk(f )(z)

as unique solution, whereas

β1(u)(x) =

∑
z∈V1

GF1
p11
(x, y)β1(f )(z)

is the unique solution of the boundary value problem L1
p11
(β1(u)) = β1(f ) belonging to ω⊥

1 .
Consider now x2 ∈ F1 and y2 ∈ F2. Then f = ε(x2,y2) = εx2 ⊗ εy2 and hence,

βk(f ) = v
F2
k (y2)εx2 , k = 1, . . . , |F2|.

When either F1 × F2 ̸= V1 × V2 or λ > 0, for any k = 1, . . . , |F2|, we have

βk(u)(x) =

∑
z∈V1

GF1
p1k
(x, z)βk(f )(z) = GF1

p1k
(x, x2)v

F2
k (y2), x ∈ V1,

which implies that

GF1×F2
q

(
(x1, y1), (x2, y2)

)
=

|F2|∑
k=1

βk(u)(x1)v
F2
k (y1)

=

|F2|∑
k=1

GF1
p1k
(x1, x2)v

F2
k (y2)v

F2
k (y1).

When Fi = Vi, i = 1, 2 and λ = 0, since v
Fi
1 = ωi, we consider now f = ε(x2,y2) − ω1(x2)ω2(y2)(ω1 ⊗ ω2) =

εx2 ⊗ εy2 − ω1(x2)ω2(y2)(ω1 ⊗ ω2). Then,

β1(f ) = ω2(y2)
[
εx2 − ω1(x2)ω1

]
, βk(f ) = v

F2
k (y2)εx2 , k = 2, . . . , |F2|

which implies that

βk(u)(x) =

∑
z∈V1

GF1
p1k
(x, z)βk(f )(z) = GF1

p1k
(x, x2)v

F2
k (y2), x ∈ V1

where we have taken into account that p1 = qω1 and that∑
z∈V1

GF1
p11
(x, z)ω1(z) = GF1

qω1
(ω1) = 0.

Therefore, the result follows as in the above case. □

6. The Green function of Pm × Sh

As an illustration of the main result of the paper, we compute the Green function of a positive semidefinite Schrödinger
of the cartesian product of two networks: a path Pm and a Star network Sh. Notice that none of the factors is regular as it was
required in previous works, see for instance [14]. In this case, we are going to apply Theorem 5.6 by using the eigenvalues
and eigenfunctions of the path and the Green function of the Star. The product network P5 × S3 is depicted in Fig. 3 and its
factors in Fig. 2.

Consider Pm the path onm vertices labeledV1 = {x1, . . . , xm} and constant conductance c(xi, xi+1) = c for i = 1, . . . ,m−1
and c > 0. It is known that, the eigenvalues and eigenfunctions of a path Pm for L are, see [6],

µj = 2c(1 − rj)
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Fig. 2. A path P5 (left) and a Star S3 (right).

Fig. 3. The product network P5 × S3 .

where rj = cos
(
jπ
m

)
, 0 ≤ j ≤ m − 1, and the orthonormal eigenfunctions are

u0(xk) =
1

√
m

, uj(xk) =

√
2
m

cos
(
(2k − 1)jπ

2m

)
, k = 1, . . . ,m.

The Star network Sh has h + 1 vertices, V2 = {y0, y1, . . . , yh}, and non null conductances ai = c(yi, y0) > 0, i = 1, . . . , h.
Moreover, let ωi = ω(yi), i = 0, . . . , h be a weight on Sh. In addition, given λ2 ≥ 0, and the potential q2 = qω + λ2 we
also consider the corresponding positive semi-definite Schrödinger operator Lq2 . For the sake of simplicity we consider the
following value

Q (λ2, ω) =

h∑
j=1

ω3
j

λ2ωj + ajω0
.

In particular, for λ2 = 0, Q (ω) =
1
ω0

∑h
j=1

ω3
j

aj
.

It is known that if λ2 > 0, see [8, Corollary 5.4], the Green function GV2
q2 (yk, ys) is given by

GV2
q2 (y0, y0) =

ω2
0

λ2
[
1 − λ2Q (λ2, ω)

] ,

GV2
q2 (y0, yi) =

aiωiω
2
0

λ2
[
1 − λ2Q (λ2, ω)

][
λ2ωi + aiω0

] ,

GV2
q2 (yk, yi) =

aiakωiωkω
2
0

λ2
[
1 − λ2Q (λ2, ω)

][
λ2ωi + aiω0

][
λ2ωk + akω0

] ,

GV2
q2 (yi, yi) =

a2i ω
2
i ω

2
0

λ2
[
1 − λ2Q (λ2, ω)

][
λ2ωi + aiω0

]2 +
ωi

λ2ωi + aiω0
,

(7)

where i, k = 1, . . . , h and k ̸= i. Moreover, for λ2 = 0, the Green function of the Star, with respect to ω is given by

GV2
qω (y0, y0) = ω2

0Q (ω), GV2
qω (y0, yi) = ωi

[
ω0Q (ω) −

ωi

ai

]
,

GV2
qω (yk, yi) =

ωiωk

ω0

[
ω0Q (ω) −

ωi

ai
−

ωk

ak

]
,

GV2
qω (yi, yi) =

ω2
i

ω0

[
ω0Q (ω) −

2ωi

ai

]
+

ωi

aiω0
,

(8)

where i, k = 1, . . . , h and k ̸= i.
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We are now going to obtain the Green function of the product network Pm × Sh for the Schrödinger operator Lq, where
q = q1⊗ω + λ, λ > 0. Moreover, we consider that λ1 = 0 and λ = λ2. Under the conditions and notations of Section 5 we
get the following result, where for the sake of simplicity we denote GV1×V2

q by Gq.

Theorem 6.1. For λ > 0, and the real-valued potentials pj = qω + λj ∈ C(V (Sh)), where λj = λ + 4c sin2
(

jπ
2m

)
,

j = 0, . . . ,m − 1, the Green function for Pm × Sh is

Gq
(
(xi, y0), (xk, y0)

)
= Q̂ (λ, ω) + 2

m−1∑
j=1

Q̂ (λj, ω) cos
(
(2i − 1)jπ

2m

)
cos

(
(2k − 1)jπ

2m

)
,

Gq
(
(xi, y0), (xk, ys)

)
=

asωsQ̂ (λ, ω)
λωs + asω0

+ 2asωs

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)
λjωs + asω0

,

Gq
(
(xi, yr ), (xk, ys)

)
=

arasωrωsQ̂ (λ, ω)[
λωr + arω0

][
λωs + asω0

]
+ 2arasωrωs

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)[
λjωr + arω0

][
λjωs + asω0

] ,

Gq
(
(xi, yr ), (xk, yr )

)
=

a2r ω
2
r Q̂ (λ, ω)[

λωr + arω0
]2 +

ωr

m
[
λωr + arω0

]
+ 2a2r ω

2
r

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)[
λjωr + arω0

]2
+

2ωr

m

m−1∑
j=1

cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)
λjωr + arω0

,

for any i, k = 1, . . . ,m, r, s = 1, . . . , h and r ̸= s, where Q̂ (λ, ω) =
ω2

0

mλ
[
1 − λQ (λ, ω)

] .

Proof. From Theorem 5.6, we get that

Gq
(
(xi, yr ), (xk, ys)

)
=

m−1∑
j=0

GV2
pj (yr , ys)uj(xi)uj(xk) =

1
m

GV2
p0 (yr , ys)

+
2
m

m−1∑
j=1

GV2
pj (yr , ys) cos

(
(2i − 1)jπ

2m

)
cos

(
(2k − 1)jπ

2m

)
.

The result follows by substituting the values for GV2
pj (yr , ys) given in (7). □

Finally, we study the case λ = 0.

Theorem 6.2. For λ = 0, and the real-valued potentials pj = qω +λj ∈ C(V (Sh)), where λj = 4c sin2
(

jπ
2m

)
, j = 0, . . . ,m−1,

the Green function for Pm × Sh is

Gqω

(
(xi, y0), (xk, y0)

)
=

ω2
0

m
Q (ω) + 2

m−1∑
j=1

Q̂ (λj, ω) cos
(
(2i − 1)jπ

2m

)
cos

(
(2k − 1)jπ

2m

)
,

Gqω

(
(xi, y0), (xk, ys)

)
=

ωs

m

[
ω0Q (ω) −

ωs

as

]
+ 2asωs

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)
λjωs + asω0

,
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Gqω

(
(xi, yr ), (xk, ys)

)
=

ωrωs

mω0

[
ω0Q (ω) −

ωr

ar
−

ωs

as

]
+ 2arasωrωs

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)[
λjωr + arω0

][
λjωs + asω0

] ,

Gqω

(
(xi, yr ), (xk, yr )

)
=

ω2
r

mω0

[
ω0Q (ω) −

2ωr

ar

]
+

ωr

marω0

+ 2a2r ω
2
r

m−1∑
j=1

Q̂ (λj, ω) cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)[
λjωr + arω0

]2
+

2ωr

m

m−1∑
j=1

cos
( (2i−1)jπ

2m

)
cos

( (2k−1)jπ
2m

)
λjωr + arω0

,

for any i, k = 1, . . . ,m, r, s = 1, . . . , h and r ̸= s.

As far as the authors knowledge neither the eigenvalues nor the eigenfunction of a general Schrödinger operator for the
Star network are known. Therefore, the above developments are the only way of obtaining an explicit expression of the
Green function of the product network Pm × Sh. Even in the most simple case; that is, constant weight and conductances in
the Star network, the orthonormal basis of eigenfunctions is still quite intricate.

For ω =
1

√
h + 1

and c(y0, yi) = a > 0 for i = 1, . . . , h, the eigenvalues for L are,

µ1 = 0, µj = a, µh+1 = a(h + 1),

j = 2, . . . , h. The associated eigenfunctions vk are:

(i) When µ1 = 0, the eigenfunction is v1 =
1

√
h + 1

.

(ii) For µj = a, j = 2, . . . , h, the eigenfunction is

vj(yk) =
1

√
j(j − 1)

{ 1, k = 2, . . . , j,
1 − j, k = j + 1,
0, otherwise.

(iii) For the eigenvalue a(h + 1) the eigenfunction is,

vh+1(y0) =

√
h

h + 1
, vh+1(yk) = −

1
√
(h + 1)h

for any k = 1, . . . , h.

In addition, to apply Theorem 5.6 we have to take into account the Green function of the Path. If λ1 > 0, see [6], the Green
function GV1

λ1
is given by

GV1
λ1
(xi, xk) =

Vi−1(q)Vm−k(q)
λ1Um−1(q)

, (9)

where q = 1 +
λ1

2c
and GV1

λ1
(xi, xk) = GV1

λ1
(xk, xi) for any 1 ≤ i ≤ k ≤ m.

When λ1 = 0, the expression for the Green function of the path with constant conductance is

GV1 (xi, xk) =
3i(i − 1) + 3(m − k)(m + 1 − k) + 1 − m2

6mc
, (10)

and GV1 (xi, xk) = GV1 (xk, xi) for any 1 ≤ i ≤ k ≤ m.

So, in this context it would be possible to get an explicit expression of Gq but it would include a lot of cases, according
with vertices yi, and it would have an awful appearance.
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