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BOUNDS FOR THE NAKAMURA NUMBER

JOSEP FREIXAS AND SASCHA KURZ

ABSTRACT. The Nakamura number is an appropriate invariant of a simple game to study the existence of

social equilibria and the possibility of cycles. For symmetric quota games its number can be obtained by an easy

formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized.

However, in general, not much is known about lower and upper bounds depending on invariants of simple,

complete or weighted games. Here, we survey such results and highlight connections with other game theoretic

concepts.

1. INTRODUCTION

Consider a committee with a finite set N of committee members. Suppose that a subset S of the com-

mittee members is in favor of variant A of a certain proposal, while all others, i.e., those in N\S, are in

favor of variant B. If the committee’s decision rule is such that both S and N\S can change the status quo,

then we may end up in an infinite chain of status quo changes between variant A and variant B – a very

unpleasant and unstable situation. In the context of simple games the described situation can be prevented

easily. Here, a simple game is a mapping from the set of subsets of committee members, called coalitions,

into {0, 1}, where “1” means to accept a proposal and “0” to defeat it. In the latter case we call the coalition

winning. In order to ensure “stability”, one just has to restrict the allowed class of voting systems to proper

simple games, i.e., each two winning coalitions have at least one common player. As a generalization, the

Nakamura number of a simple game is the smallest number k such that there exist k winning coalitions with

empty intersection, see Section 2 for more details. So, a simple game is proper if and only if its Nakamura

number is at least 3. Indeed, the Nakamura number turned out to be an appropriate invariant of a simple

game to study the existence of social equilibria and the possibility of cycles in a more general setting, see

[Schofield, 1984]. As the author remarks, individual convex preferences are insufficient to guarantee convex

social preferences. If, however, the Nakamura number of the used decision rule is large enough, with respect

to the dimension of the involved policy space, then convex individual preferences guarantee convex social

preferences. Having this relation at hand, a stability result of [Greenberg, 1979] on q-majority games boils

down to the computation of the Nakamura number for these games. The original result of [Nakamura, 1979]

gives a necessary and sufficient condition for the non-emptiness of the core of a simple game obtained

from individual preferences. Further stability results in terms of the Nakamura number are e.g. given by

[Le Breton and Salles, 1990]. A generalization to coalition structures can be found in [Deb et al., 1996].

For other notions of stability and acyclicity we refer e.g. to [Martin, 1998, Schwartz, 2001, Truchon, 1996].

Unifications of related theorems have been presented by [Saari, 2014]. Complexity results for the compu-

tation of the Nakamura number can e.g. be found in [Bartholdi et al., 1991, Takamiya and Tanaka, 2016].

There is a loose connection to the capacity of a committee, see [Holzman, 1986, Peleg, 2008].
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Here we study lower and upper bounds for the Nakamura number of different types of voting games.

The mentioned q-majority games, see [Greenberg, 1979], consist of n symmetric players and are therefore

also called symmetric (quota) games. The quota q is the number of necessary players for a coalition to pass

a proposal, i.e., coalitions with at least q members are winning. For those games the Nakamura number

was analytically determined to be
⌈

n
n−q

⌉
by [Ferejohn and Grether, 1974] and [Peleg, 1978]. For n = 5

and q = 3 the Nakamura number is given by 3, i.e., every two winning coalitions intersect in at least one

player and e.g. the winning coalitions {1, 2, 3}, {3, 4, 5}, and {1, 2, 4, 5} have an empty intersection. The

Nakamura number for two-stage voting games, has been determined by [Peleg, 1987].

[Kumabe and Mihara, 2008] studied the 32 combinations of five properties of simple games. In each

of the cases the authors determined the generic Nakamura number or the best possible lower bound if

several values can be attained. As a generalization of simple games with more than two alternatives, the

so-called (j, k)-simple games have been introduced, see e.g. [Freixas and Zwicker, 2003]. The notion of

the Nakamura number and a first set of stability results for (j, 2)-simple games have been transfered by

[Tchantcho et al., 2010].

The remaining part of the paper is organized as follows. In Section 2 we state the necessary preliminaries.

Bounds for the Nakamura number of weighted, simple or complete simple games are studied in sections 3,

4, and 5, respectively. The maximum possible Nakamura number within special subclasses of simple games

is the topic of Section 6. Further relation of the Nakamura number to other concepts of cooperative game

theory are discussed in Section 7. In this context the one-dimensional cutting stock problem is treated in

Subsection 7.1. Some enumeration results for special subclasses of complete and weighted simple games

and their corresponding Nakamura numbers are given in Section 8. We close with a conclusion in Section 9.

2. PRELIMINARIES

A pair (N, v) is called simple game if N is a finite set, v : 2N → {0, 1} satisfies v(∅) = 0, v(N) = 1,

and v(S) ≤ v(T ) for all S ⊆ T ⊆ N . The subsets of N are called coalitions and N is called the grand

coalition. By n = |N | we denote the number of players in N . If v(S) = 1, we call S a winning coalition

and a losing coalition otherwise. By W we denote the set of winning coalitions and by L the set of losing

coalitions. If S is a winning coalition such that each proper subset is losing we call S a minimal winning

coalition. Similarly, if T is a losing coalition such that each proper superset is winning, we call T a maximal

losing coalition. By Wm we denote the set of minimal winning coalitions and by LM we denote the set

of maximal losing coalitions. We remark that each of the sets W , L, Wm or LM uniquely characterizes a

simple game. Instead of (N, v) we also write (N,W) for a simple game.

A simple game (N, v) is weighted if there exists a quota q > 0 and weights wi ≥ 0 for all 1 ≤ i ≤ n
such that v(S) = 1 if and only if w(S) =

∑
i∈S wi ≥ q for all S ⊆ N . As notation we use [q;w1, . . . , wn]

for a weighted game. We remark that weighted representations are far from being unique. In any case

there exist some special weighted representations. By [q̂; ŵ1, . . . , ŵn] we denote a weighted representation,

where all weights and the quota are integers. Instead of specializing to integers we can also normalize

the weights to sum to one. By [q′;w′
1, . . . , w

′
n] we denote a weighted representation with q′ ∈ (0, 1] and

w′(N) :=
∑

i∈N w′
i = 1. For the existence of a normalized representation we remark that not all weights

can be equal to zero, since ∅ is a losing coalition.

Definition 1. Given a simple game (N,W) its Nakamura number, cf. [Nakamura, 1979], ν(N,W) is given

by the minimum number of winning coalitions whose intersection is empty. If the intersection of all winning

coalitions is non-empty we set ν(N,W) = ∞.

It is well-known that this can be slightly reformulated to:
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Lemma 1. For each simple game (N,W) the Nakamura number ν(N,W) equals the minimum number of

minimal winning coalitions whose intersection is empty.

Proof. Since each minimal winning coalition is also a winning coalition, the Nakamura number is a lower

bound. For the other direction we consider r winning coalitions Si for 1 ≤ i ≤ r, where ν(N,W) = r and

∩1≤i≤rSi = ∅. Now let Ti ⊆ Si be an arbitrary minimal winning coalition for all 1 ≤ i ≤ r. Clearly, we

also have ∩1≤i≤rTi = ∅. �

We can easily state an integer linear programming (ILP) formulation for the determination of ν(N,W):

Lemma 2. For each simple game (N,W) and X = W or X = Wm the corresponding Nakamura number

ν(N,W) is given as the optimal target value of:

min r∑

S∈X

xS = r

∑

S∈X : i∈S

xS ≤ r − 1 ∀i ∈ N

xS ∈ {0, 1} ∀S ∈ X

Here we consider r minimal winning coalitions {S ∈ X : xS = 1}. They have an empty intersection iff

each player i ∈ N is contained in at most r− 1 of them. The Nakamura number ν(N,W) is of course given

by the minimum possible value for r.

The use of an ILP is justified by the following observation on the known computational complexity.

Proposition 1. The computational problem to decide whether ν([q;w1, . . . , wn]) = 2 is NP-hard.

Proof. We will provide a reduction to the NP-hard partition problem. So for integers w1, . . . , wn we have

to decide whether there exists a subset S ⊆ N such that
∑

i∈S wi =
∑

i∈N\S wi, where we use the abbre-

viation N = {1, . . . , n}. Consider the weighted game [w(N)/2;w1, . . . , wn]. It has Nakamura number 2 if

and only if a subset S with w(S) = w(N\S) exists. �

Next we introduce special kinds of players in a simple game. Let (N, v) be a simple game. A player i ∈ N
such that i ∈ S for all winning coalitions S is called a vetoer. Each player i ∈ N that is not contained in any

minimal winning coalition is called a null player. If {i} is a winning coalition, we call player i passer. If {i}
is the unique minimal winning coalition, then we call player i a dictator. Note that a dictator is the strongest

form of being both a passer and a vetoer. Obviously, there can be at most one dictator. We easily observe:

Proposition 2. Let (N,W) be a simple game.

(a) If player i is a null player, then ν(N,W) = ν(N\{i},W ′), where W ′ = {S ∈ W : S ⊆ N\{i}}.

(b) We have ν(N,W) = ∞ if and only if (N,W) contains at least one vetoer.

(c) If (N,W) contains no vetoer, then 2 ≤ ν(N,W) ≤ n.

(d) If (N,W) contains a passer that is not a dictator, then ν(N,W) = 2.

(e) If (N,W) contains no vetoer but d null players, then ν(N,W) ≤ min (|Wm| , n− d).
(f) If (N,W) contains no vetoer, then ν(N,W) ≤

∣∣∩k
i=1Si

∣∣+ k for any k winning coalitions Si.

Proof.

(a) Note that (N\{i},W ′) is a simple game since N\{i} ∈ W . ν(N,W) ≤ ν(N\{i},W ′) follows

from W ′ ⊆ W . For the other direction observe that S ∈ W implies S\{i} ∈ W ′.

(b) If ν(N,W) = ∞ then U := ∩S∈W 6= ∅, i.e., all players in U are vetoers. If player i is a vetoer,

then i is contained in the intersection of all winning coalitions, which then has to be non-empty.
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(c) Since ∅ is a losing coalition, at least two winning coalitions are needed to get an empty intersection,

i.e., ν(N,W) ≥ 2. For each player i ∈ N let Si be a winning coalition without player i, which

needs to exist since player i is not a vetoer. With this we have ∩1≤i≤nSi = ∅, so that ν(N,W) ≤ n.

(d) Let i be a passer in (N,W) and j another non-null player. For a minimal winning coalition S
containing j we have {i} ∩ S = ∅.

(e) From (a) and (c) we deduce ν(N,W) ≤ n− d. Lemma 1 implies ν(N,W) ≤ |Wm|.
(f) Complement the S1, . . . , Sk by the winning coalitions N\{j} for all j ∈ ∩k

i=1Si.

�

So, when determining ν(N,W), we may always assume that (N,W) does not contain any vetoer, null

player, passer, or dictator. With a bit more notation also the simple games with ν(N,W) = 2 can be

completely characterized. To this end, a simple game (N,W) is called proper if the complement N\S of

any winning coalition S ∈ W is losing. It is called strong if the complement N\T of any losing coalition T
is winning. A simple game that is both proper and strong is called constant-sum (or self-dual or decisive).

Directly from the definition we conclude, see also [Kumabe and Mihara, 2008]:

Lemma 3. Let (N,W) be a simple game without vetoers.

(a) We have ν(N,W) = 2 if and only if (N,W) is non-proper.

(b) If (N,W) is constant-sum, then ν(N,W) = 3.

(c) If ν(N,W) > 3, then (N,W) is proper and non-strong.

3. BOUNDS FOR WEIGHTED GAMES

A special class of simple games are so-called symmetric games, where all players have equivalent capa-

bilities. All these games are weighted and can be parametrized as [q̂; 1, . . . , 1], where q̂ ∈ {1, 2, . . . , n}. The

Nakamura number for these games is well known, see e.g. [Ferejohn and Grether, 1974, Nakamura, 1979,

Peleg, 1978]:

(1) ν([q̂, 1, . . . , 1]) =

⌈
n

n− q̂

⌉
=

⌈
1

1− q′

⌉
,

where we formally set n
0 = ∞. More generally, we have:

Theorem 1. For each weighted game we have

(2)

⌈
1

1− q′

⌉
=

⌈
w(N)

w(N)− q

⌉
≤ ν([q;w1, . . . , wn]) ≤

⌈
ŵ(N)

ŵ(N)− q̂ − ω̂ + 1

⌉
≤

⌈
1

1− q′ − ω′

⌉
,

where ω̂ = maxi ŵi and ω′ = maxi w
′
i.

Proof. For the lower bound we set r = ν(N,W) and choose r winning coalitions S1, . . . , Sr with empty

intersection. With I0 := N we recursively set Ii := Ii−1 ∩ Si for 1 ≤ i ≤ r. By induction we prove

w(Ii) ≥ w(N) − i · (w(N) − q) for all 0 ≤ i ≤ r. The statement is true for I0 by definition. For

i ≥ 1 we have w(Ii−1) ≥ w(N) − (i − 1) · (w(N) − q). Since w(Si) ≥ q we have w(Ii−1 ∩ Si) ≥

w(Ii−1)− (w(N) − q) = w(N)− i · (w(N)− q). Thus we have ν([q;w1, . . . , wn]) ≥
⌈

w(N)
w(N)−q

⌉
.

For the upper bound we start with R0 = N and recursively construct winning coalitions Si by setting

Si = N\Ri−1 and adding players from Ri−1 to Si until ŵ(Si) ≥ q̂. By construction we have that Si

is a winning coalition with ŵ(Si) ≤ q̂ + ω̂ − 1. With this we set Ri = Ri−1 ∩ Si and get ŵ(Ri) ≤
max(0, ŵ(N)− i · (ŵ(N)− q̂ − ω̂ + 1)). Since ŵ(Ri) = 0 implies that Ri can contain only null players

of weight zero, we may replace S1 by S1 ∪Ri, so that we obtain the stated upper bound. �
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Note that for symmetric games (2) is equivalent to (1), i.e., Theorem 1 can be seen as a generalization of

the classical result. We remark that one can use the freedom in choosing the representation of a weighted

game to eventually improve the lower bound from Theorem 1. For the representation [2; 1, 1, 1] we obtain

ν([2; 1, 1, 1]) ≥
⌈

3
3−2

⌉
= 3. Since the same game is also represented by [1 + ε; 1, 1, 1] for all 0 < ε ≤ 1

2 ,

we could also deduce ν([2; 1, 1, 1]) ≥
⌈

3
3−1−ε

⌉
= 2, which is a worse bound. The tightest possible bound

is attained if the relative quota is maximized, see Section 7. The greedy type approach of the second part of

the proof of Theorem 1 can be improved so that it yields better upper bounds for many instances. Starting

from N , we iteratively remove the heaviest possible player in Ri−1 from Si such that ŵ(Si) ≥ q̂ until no

player can be removed anymore. However, the following example shows that the lower and the upper bound

can still differ by a constant factor.

Example 1. For a positive integer k, consider a weighted game [q;w] with 2k players of weight 5, 6k
players of weight 2, and quota q = 22k − 11. The greedy algorithm described above chooses the removal

of two players of weight 5 in the first k rounds. Then it removes five (or the remaining number of) players

of weight 2 in the next
⌈
6k
5

⌉
rounds, so that 2k ≤ ν([q;w]) ≤ k +

⌈
6k
5

⌉
. Removing 2k times one player of

weight 5 and three players of weight 2 gives indeed ν([q;w]) = 2k.

In the special case of ŵi ≤ 1, i.e. ŵi ∈ {0, 1}, for all 1 ≤ i ≤ n, the bounds of Theorem 1 coincide,

which is equivalent to the null player extension of Equation (1). In general we are interested in large classes

of instances where the lower bound of Theorem 1 is tight. Promising candidates are weighted representa-

tions where all minimal winning coalitions have the same weight equaling the quota. Those representations

are called homogeneous representations and the corresponding games are called, whenever such a repre-

sentation exists, homogeneous games. However, the lower bound is not tight in general for homogeneous

representations, as shown by the following example.

Example 2. The weighted game (N,W) = [90; 910, 24, 12], with ten players of weight 9, four players of

weight 2, and two players of weight 1, is homogeneous since all minimal winning coalitions have weight

90. The lower bound of Theorem 1 gives ν(N,W) ≥
⌈

100
100−90

⌉
= 10. In order to determine the exact

Nakamura number of this game we study its minimal winning coalitions. To this end let S be a minimal

winning coalition. If S contains a player of weight 2, then it has to contain all players of weight 2, one

player of weight 1, and nine players of weight 9. If S contains a player of weight 1, then the other player

of weight 1 is not contained and S has to contain all players of weight 2 and nine players of weight 9. If

S contains neither a player of weight 1 nor a player of weight 2, then S consists of all players of weight 9.

Now we are ready to prove that the Nakamura number of (N,W) equals 11. Let S1, . . . , Sr be a minimal

collection of minimal winning coalitions whose intersection is empty. Clearly all coalitions are pairwise

different. Since there has to be a coalition where not all players of weight 2 are present, one coalition, say

S1, has to consist of all players of weight 9. Since each minimal winning coalition contains at least nine

players of weight 9, we need 10 further coalitions Si, where each of the players of weight 9 is missing once.

Thus ν(N,W) ≥ 11 and indeed one can easily state a collection of 11 minimal winning coalitions with

empty intersection.

Note that in Example 2 the used integral weights are as small as possible, i.e.,
∑

i wi is minimal, so

that one also speaks of a minimum sum (integer) representation, see e.g. [Kurz, 2012]. Example 2 can

further be generalized by choosing an integer k ≥ 3 and considering the weighted game (N,W) :=[
k(k + 1); kk+1, 2l, 1k+1−2l

]
, where 1 ≤ l ≤ ⌊k/2⌋ is arbitrary. The lower bound from Theorem 1 gives

ν(N,W) ≥ k + 1, while ν(N,W) = k + 2.
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However, homogeneous games seem to go into the right direction and we can obtain large classes of

tight instances by “homogenizing” an initial weighted game. It is well known that one can homogenize

each weighted game, given by an integer representation, by adding a sufficiently large number of players of

weight 1 keeping the relative quota “constant”. Other possibilities are to consider replicas, i.e., each of the

initial players is divided into k equal players all having the initial weight, where we also assume a “constant”

relative quota. If no players of weight 1 are present, then the game eventually does not become homogeneous,

even if the replication factor k is large. But indeed the authors of [Kurz et al., 2014] have recently shown that

for the case of a suitably large replication factor k the nucleolus coincides with the relative weights of the

players, i.e., the lower bounds of Theorem 5, see Section 7, and Theorem 1 coincide. Both transformations

from the literature, eventually homogenizing an initial weighted game, lead to weighted games where the

lower bound of Theorem 1 gives the exact value of ν(N,W):

Theorem 2. Let w1 ≥ · · · ≥ wn ≥ 1 be (not necessarily pairwise) coprime integer weights with sum

Ω =
∑n

i=1 wi and q ∈ (0, 1) be a rational number.

(a) For each positive integer r we consider the game

χ = [q · (Ω + r);w1, . . . , wn, 1
r] ,

with r players of weight 1. If r ≥ max
(
Ω, 2+w1

1−q

)
we have ν(χ) =

⌈
1

1−qr

⌉
, where qr = ⌈q(Ω+r)⌉

Ω+r
.

(b) For each positive integer r we consider the game

χ = [q · (Ω · r);wr
1 , . . . , w

r
n] ,

where each player is replicated r times. If r is sufficiently large, we have ν(χ) =
⌈

1
1−qr

⌉
, where

qr = ⌈q(Ω·r)⌉
Ω·r .

Proof.

(a) At first we remark that the proposed exact value coincides with the lower bound from Theorem 1.

Next we observe

qr =
⌈q(Ω + r)⌉

Ω + r
≤

1 + q(Ω + r)

Ω + r
= q +

1

Ω + r
≤ q +

1

r
.

Consider the following greedy way of constructing the list S1, . . . , Sk of winning coalitions with

empty intersection. Starting with i = 1 and h = 1 we choose an index h ≤ g ≤ n such that

Ui = {h, h+ 1, . . . , g} has a weight of at most (1 − qr)(Ω + r) and either g = n or Ui ∪ {g + 1}
has a weight larger than (1− qr)(Ω+ r). Given Ui we set Si = {1, . . . , n+ r}\Ui, h = g+1, and

increase i by one. If (1− qr)(Ω+ r) ≥ wi for all 1 ≤ i ≤ n, then no player in {1, . . . , n} has a too

large weight to be dropped in this manner. Since we assume the weights to be ordered, it suffices to

check the proposed inequality for w1. To this end we consider

(1− qr)(Ω + r) ≥

(
1− q −

1

r

)
· (Ω + r) = (1 − q)Ω− 1−

Ω

r
+ (1− q)r ≥ (1− q)r − 2,

where we have used r ≥ Ω. Since r ≥ 2+w1

1−q
≥ 2+wi

1−q
the requested inequality is satisfied.

So far the winning coalitions Si can have weights larger than qr(Ω + r) and their intersection is

given by the players of weight 1, i.e. by {n+ 1, . . . , n+ r}. For all 1 ≤ i < k let hi be the player

with the smallest index in Ui, which is indeed one of the heaviest players in this subset. With this

we conclude w(Si) ≤ qr(Ω + r) + whi
− 1 since otherwise another player from Ui+1 could have

been added. In order to lower the weights of the Si to qr(Ω + r) we remove w(Si)− (qr(Ω + r)))
players of Si for all 1 ≤ i ≤ k, starting from player n + 1 and removing each player exactly
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once. Since
∑k−1

i=1 whi
≤ Ω ≤ r this is indeed possible. Now we remove the remaining, if any,

players of weight 1 from Sk until they reach weight qr(Ω + r) and eventually start new coalitions

Si = {1, . . . , n+ r} removing players of weight 1. Finally we end up with r+ l winning coalitions

with empty intersection, where the coalitions 1 ≤ i ≤ k+ l− 1 have weight exactly qr(Ω + r) and

the sets {1, . . . , n+ r}\Si do contain only players of weight 1 for i ≥ r + 1. Since each player is

dropped exactly once the Nakamura number of the game equals k + l =
⌈

1
1−qr

⌉
.

(b) We write q = p

q
with positive comprime integers p, q. If p 6= q − 1, then

⌈
1

1− q

⌉
=

⌈
q

q − p

⌉
>

1

1− q
,

i.e., we always round up. Obviously limr→∞ qr = q (and qr ≥ q). Since also

lim
r→∞

w(N r)

w(N r)− qrw(N r)− w1 + 1
= lim

r→∞

w(N r)

w(N r)− qrw(N r)
=

1

1− q
,

we can apply the upper bound of Theorem 1 to deduce that the lower bound is attained with equality

for sufficiently large replication factors r.

In the remaining part we assume p = q − 1, i.e., 1 − q = 1
q

. If Ω · r is not divisible by q, i.e.

qr > q, we can apply a similar argument as before, so that we restrict ourselves to the case q|Ω · r,

i.e. q = qr. Here we have to show that the Nakamura number exactly equals q (in the previous case

it equals q+ 1). This is possible if we can partition the grand coalition N into q subsets U1, . . . , Uq

all having a weight of exactly Ω·r
q

. (The list of winning coalitions with empty intersection is then

given by Si = N\Ui for 1 ≤ i ≤ q.) This boils down to a purely theoretical question of number

theory, which is solved in the next lemma.

�

Lemma 4. Let g ≥ 2 and w1, . . . , wn be positive integers with
n∑

i=1

wi = Ω and greatest common divisor 1.

There exists an integer K such that for all k ≥ K , where k·Ω
q

∈ N, there exist non-negative integers ui
j with

n∑

j=1

ui
j · wj =

k · Ω

q
,

for all 1 ≤ i ≤ q, and
q∑

i=1

ui
j = k,

for all 1 ≤ j ≤ n.

Proof. For k = 1, setting ui
j =

1
q

is an inner point of the polyhedron

P =




ui
j ∈ R≥0 |

n∑

j=1

ui
j · wj =

Ω

q
∀1 ≤ i ≤ q and

q∑

i=1

ui
j = 1 ∀1 ≤ j ≤ n




 ,

so that is has non-zero volume.

For general k ∈ N>0 we are looking for lattice points in the dilation k · P . If q is a divisor of k · Ω, then

Znq ∩ k · P is a lattice of maximal rank in the affine space spanned by k · P . Let k0 the minimal positive

integer such that q divides k0 · Ω. Using Erhart Theory one can count the number of lattice points in the

parametric rational polytope in m · k0 · P , where m ∈ N>0, see e.g. [Beck and Robins, 2007]. To be more
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precise, the number of (integer) lattice points in m · k0 · P grows asymptotically as md vold(k0P ), where

d is the dimension of the affine space A spanned by k0 · P and vold(k0P ) is the (normalized) volume of

k0 ·P within A. Due to the existence of an inner point we have vold(k0P ) > 0, so that the number of integer

solutions is at least 1 for m ≫ 0. �

There is a relation between the problem of Lemma 4 and the Frobenius number, which asks for the largest

integer which can not be expressed as a non-negative integer linear combination of the wi. Recently this type

of problem occurs in the context on minimum sum integer representations, see [Freixas and Kurz, 2014b].

According to the Frobenius theorem every sufficiently large number can be expressed as such a sum. Here

we ask for several such representations which are balanced, i.e., each coin is taken equally often.

3.1. α-roughly weighted games. There exists a relaxation of the notion of a weighted game. A simple

game (N,W) is α-roughly weighted if there exist non-negative weights w1, . . . , wn such that each winning

coalition S has a weight w(S) of at least 1 and each losing coalition T has a weight of at most α. Weighted

games are exactly those that permit an α < 1. 1-roughly weighted games are also called roughly weighted

games in the literature.

Now we want to transfer Theorem 1 to α-roughly weighted games. Instead of a quota q seperating

between winning and losing coalitions we have the two thresholds 1 and α, i.e., coalitions with a weight

smaller than 1 are losing and coalitions with a weight larger than α are winning. Those two thresholds 1 and

α play the role of the quota q in the lower and upper bound of Theorem 1, respectively:

Proposition 3. Let (N,W) be a simple game with α-roughly representation (w1, . . . , wn) satisfyingα+ω >

w(N), where ω = max{wi | i ∈ N}. Then,
⌈

w(N)
w(N)−1

⌉
≤ ν(N,W) ≤

⌈
w(N)

w(N)−α−ω

⌉
.

Proof. Since each winning coalition has a weight of at least 1, the proof of the lower bound of Theorem 1

also applies here. The proof of the upper bound can be slightly adjusted. In order to construct winning

coalitions Si with empty intersection we set Si = N\Ri−1 and add players from Ri−1 until Si becomes a

winning coalition. We remark w(Si) ≤ α+ ω so that we can conclude the proposed statement. �

Of course an α-roughly weighted game is α′-roughly weighted for all α′ ≥ α. The minimum possi-

ble value of α such that a given simple game is α-roughly weighted is called critical threshold value in

[Freixas and Kurz, 2014a]. Taking the critical threshold value gives the tightest upper bound. A larger value

of α means less information on whether coalitions are losing or winning. Thus, it is quite natural that the

lower and the upper bound of Proposition 3 diverge if α increases.

4. BOUNDS FOR SIMPLE GAMES

As each simple game is α-roughly weighted for a suitable α, we have the bounds of Proposition 3 at

hand. However, the minimal possible α can be proportional to n, i.e., fairly large. Another representation of

a simple game is given by the intersection or union of a finite number r of weighted games. The minimum

possible number r is called dimension or co-dimension, respectively, see e.g. [Freixas and Marciniak, 2009].

Since for two simple games (N,W1), (N,W2) with W1 ⊆ W2 we obviously have ν(N,W1) ≥ ν(N,W2)
and the intersection or union of simple games with the same grand coalition is also a simple game, we can

formulate:

Lemma 5. Let r be a positive integer and (N,Wi) be simple games for 1 ≤ i ≤ r.

(a) If W = ∩1≤i≤rWi, then ν(N,W) ≥ ν(N,Wi) for all 1 ≤ i ≤ r.

(b) If W = ∪1≤i≤rWi, then ν(N,W) ≤ ν(N,Wi) for all 1 ≤ i ≤ r.



BOUNDS FOR THE NAKAMURA NUMBER 9

For simple games we do not have a relative quota q′, which is the most essential parameter in the bounds

of Theorem 1. However, in Section 7 we present a slightly more involved substitute. Prior to that, we

consider bounds for the cardinalities of minimal winning coalitions as parameters and slightly adjust the

proof of Theorem 1. If both parameters coincide we obtain an equation comprising Equation (1).

Theorem 3. Let m be the minimum and M be the maximum cardinality of a minimal winning coalition of a

simple game (N,W). Then,
⌈

n
n−m

⌉
≤ ν(N,W) ≤ 1 +

⌈
m

n−M

⌉
≤

⌈
n

n−M

⌉
.

Proof. For the lower bound, we set r = ν(N,W) and choose r winning coalitions S1, . . . , Sr with empty

intersection. Starting with I0 := N , we recursively set Ii := Ii−1 ∩ Si for 1 ≤ i ≤ r. By induction we

prove |Ii| ≥ n− i · (n−m) for all 0 ≤ i ≤ r. The statement is true for I0 by definition. For i ≥ 1 we have

|Ii−1| ≥ n− (i− 1) · (n−m). Since |Si| ≥ m we have |Ii−1 ∩ Si| ≥ |Ii−1| − (n−m) ≥ n− i · (n−m).

Thus we have ν(N,W) ≥
⌈

n
n−m

⌉
, where we set n

0 = ∞ and remark that this can happen only, if N is the

unique winning coalition, i.e., all players are vetoers.

If M = n, we obtain the trivial bound ν(N,W) ≤ ∞ so that we assume M ≤ n− 1. We recursively de-

fine Ii := Ii−1∩Si for 1 ≤ i ≤ r and set I0 = N . In order to construct a winning coalition Si we determine

U = N\{Ii−1} and choose a max(0,M − |U |)-element subset V of Ii−1. With this we set Si = U ∪ V .

If |Si| > M , we remove some arbitrary elements so that |Si| = M , i.e. all coalitions Si have cardinality

exactly M and thus are winning for all i ≥ 1. By induction we prove |Ii| ≥ max(0, n− i · (n−M)), so

that the stated weaker upper bound follows. For the stronger version we choose S1 as a winning coalition of

cardinality m. �

Next we consider notation that is beneficial for simple games with many equivalent players. Let (N, v)

be a simple game. We write i ⊐ j (or j ⊏ i) for two agents i, j ∈ N if we have v
(
{i}∪S\{j}

)
≥ v(S) for

all {j} ⊆ S ⊆ N\{i} and we abbreviate i ⊐ j, j ⊐ i by i�j. The relation � partitions the set of players N
into equivalence classes N1, . . . , Nt. For [4; 5, 4, 2, 2, 0]we have N1 = {1, 2}, N2 = {3, 4}, and N3 = {5}.

Obviously, players having the same weight are contained in the same equivalence class, while the converse

is not necessarily true. But there always exists a different weighted representation of the same game such

that the players of each equivalence class have the same weight, i.e., [2; 2, 2, 1, 1, 0] in our example.

For the weighted game [7; 3, 3, 3, 1, 1, 1] the minimal winning coalitions are given by {1, 2, 3}, {1, 2, 4},

{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}, and {2, 3, 6}. Based on the equivalence

classes of players one can state a more compact description. Let (N,W) be a simple game with equivalence

classes N1, . . . , Nt. A coalition vector is a vector c = (c1, . . . , ct) ∈ Nt
≥0 with 0 ≤ ci ≤ |Ni| for all

1 ≤ i ≤ t. The coalition vector of a coalition S is given by (|S ∩N1| , . . . , |S ∩Nt|). A coalition vector

is called winning if the corresponding coalitions are winning and losing otherwise. If the corresponding

coalitions are minimal winning or maximal losing the coalition vector itself is called minimal winning or

maximal losing. In our previous example the minimal winning (coalition) vectors are given by (3, 0) and

(2, 1), where N1 = {1, 2, 3} and N2 = {4, 5, 6}.

Using the concept of coalition vectors the ILP from Lemma 2 can be condensed for simple games:

Lemma 6. Let (N,W) be a simple game without vetoers and N1, . . . , Nt be its decomposition into equiv-

alence classes. Using the abbreviations nj = |Nj| for all 1 ≤ j ≤ t and V ⊆ Nt
≥0 for the set of minimal
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winning coalition vectors, the Nakamura number of (N,W) is given as the optimal target value of:

min
∑

v∈V

xv

∑

v=(v1,...,vt)∈V

(nj − vj) · xv ≥ nj ∀1 ≤ j ≤ t

xv ∈ Z≥0 ∀v ∈ V

Proof. First we show that each collection S1, . . . , Sr of minimal winning coalitions with empty intersection

can be mapped onto a feasible, not necessarily optimal, solution of the above ILP with target value r.

Each minimal winning coalition Si has a minimal winning coalition vector vi. We set xv to the number

of times vector v is the corresponding winning coalition vector. So the xv are non-negative integers and the

target value clearly coincides with r. The term |Nj| − |Si\Nj| counts the number of players of type j which

are missing in coalition Si. Since every player has to be dropped at least once from a winning coalition, we

have
∑r

i=1 nj − |Si\Nj| ≥ nj for all 1 ≤ j ≤ t. The number on the left hand side is also counted by
∑

v=(v1,...,vt)∈V

(nj − vj) · xv,

so that all inequalities are satisfied.

For the other direction we choose r vectors v1, . . . , vr ∈ V such that
∑r

i=1 v
i =

∑
v∈V xv · v, i.e.,

we take xv copies of vector v for each v ∈ V , where r =
∑

v∈V xv . In order to construct corresponding

minimal winning coalitions S1, . . . , Sr, we decompose those desired coalitions according to the equivalence

classes of players: Si = ∪Si
j with Si

j ⊆ Nj for all 1 ≤ j ≤ t.

For an arbitrary fix index 1 ≤ j ≤ t we start with R0 = Nj and recursively construct the sets Si
j as

follows: Starting from i = 1 we set Si
j = Nj\Ri−1 and Ri = ∅ if |Ri−1| < nj − vij . Otherwise we choose

a subset U ⊆ Ri−1 of cardinality nj − vij and set Si
j = Nj\U and Ri = Ri−1\U . For each 1 ≤ i ≤ r we

have Nj\ ∩1≤h≤i S
i
j = Nj\Ri.

By construction, the coalition vector of Si is component-wise larger or equal to vi, i.e., the Si are winning

coalitions. Since
∑r

i=1

(
nj − vij

)
≥ nj , we have Ri = ∅ in all cases, i.e., the intersection of the Si is

empty. �

As an example, we consider the weighted game [4; 2, 2, 1, 1, 1, 1] with equivalence classes N1 = {1, 2},

N2 = {3, 4, 5, 6} and minimal winning coalition vectors (2, 0), (1, 2), and (0, 4). The corresponding ILP

reads:

minx(2,0) + x(1,2) + x(0,4)

0 · x(2,0) + 1 · x(1,2) + 2 · x(0,4) ≥ 2

4 · x(2,0) + 2 · x(1,2) + 0 · x(0,4) ≥ 4

x(2,0), x(1,2), x(0,4) ∈ Z≥0

Solutions with the optimal target value of 2 are given by x(2,0) = 1, x(1,2) = 0, x(0,4) = 1 and x(2,0) = 0,

x(1,2) = 2, x(0,4) = 0. For the first solution we have v1 = (2, 0) and v2 = (0, 4) so that S1
1 = {1, 2},

S2
1 = ∅, S1

2 = ∅ and S2
2 = {3, 4, 5, 6}, where we have always chosen the players with the smallest index.

For the second solution we have v1 = (1, 2) and v2 = (1, 2) so that S1
1 = {1}, S2

1 = {2}, S1
2 = {3, 4}, and

S2
2 = {5, 6}.

For further bounds for the Nakamura number of simple games we refer to Theorem 5 and Proposition 9

in Section 7.
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5. BOUNDS FOR COMPLETE SIMPLE GAMES

In between weighted games and simple games there is an important subclass. These so-called complete

simple games are introduced and studied in this section. They can be parameterized by some numerical

invariants, see Theorem 4, which allows to derive some further bounds on the Nakamura number.

A simple game (N,W) is called complete if the binary relation ⊐ is a total preorder, i.e., i ⊐ i for all

i ∈ N , i ⊐ j or j ⊐ i for all i, j ∈ N , and i ⊐ j, j ⊐ h implies i ⊐ h for all i, j, h ∈ N . All weighted

games are obviously complete since wi ≥ wj implies i ⊐ j.

Definition 2. For two vectors u, v ∈ Nt
≥0 we write u � v if

∑i

j=1 uj ≤
∑i

j=1 vj for all 1 ≤ i ≤ t. If

neither u � v nor v � u, we write u ⊲⊳ v. We call a winning coalition vector u shift-minimal winning

if all coalition vectors v � u, v 6= u (v ≺ u for short) are losing. Similarly, we call a losing vector u
shift-maximal losing if all coalition vectors v ≻ u are winning.

For [7; 3, 3, 3, 1, 1, 1] the vector (2, 1) is shift-minimal winning and (3, 0) is not shift-minimal winning,

since one player of type 1 can be shifted to be of type 2 without losing the property of being a winning

vector. Complete simple games are uniquely characterized by their count vector ñ = (|N1| , . . . , |Nt|) and

their matrix M̃ of shift-minimal winning vectors. In our example we have ñ = (3, 3), M̃ =
(
2 1

)
. The

corresponding matrix of shift-maximal losing vectors is given by L̃ =

(
2 0
1 3

)
. By m̃1, . . . , m̃r we denote

the shift-minimal winning vectors, i.e., the rows of M̃ . The crucial characterization theorem for complete

simple games, using vectors as coalitions and the partial order �, was given in [Carreras and Freixas, 1996]:

Theorem 4.

(a) Given a vector

ñ = (n1, . . . , nt) ∈ N
t
>0

and a matrix

M =




m1,1 m1,2 . . . m1,t

m2,1 m2,2 . . . m2,t

...
. . .

. . .
...

mr,1 mr,2 . . . mr,t


 =




m̃1

m̃2

...

m̃r




satisfying the following properties:

(i) 0 ≤ mi,j ≤ nj , mi,j ∈ N for 1 ≤ i ≤ r, 1 ≤ j ≤ t,
(ii) m̃i ⊲⊳ m̃j for all 1 ≤ i < j ≤ r,

(iii) for each 1 ≤ j < t there is at least one row-index i such that mi,j > 0, mi,j+1 < nj+1 if

t > 1 and m1,1 > 0 if t = 1, and

(iv) m̃i ⋗ m̃i+1 for 1 ≤ i < r, where ⋗ denotes the lexicographical order.

Then, there exists a complete simple game (N,χ) associated to (ñ,M).
(b) Two complete simple games (ñ1,M1) and (ñ2,M2) are isomorphic if and only if ñ1 = ñ2 and

M1 = M2.

Shift-minimal winning coalitions are coalitions whose coalition vector is shift-minimal winning. For

shift-minimal winning coalitions an analogue lemma like Lemma 1 for minimal winning coalitions does not

exist in general. As an example consider the complete simple game uniquely characterized by ñ = (5, 5)

and M̃ =
(
2 3

)
. Here we need three copies of the coalition vector (2, 3) since 2 · (ñ− (2, 3)) = (6, 4) 6≥

(5, 5) = ñ but 3 · (ñ− (2, 3)) ≥ ñ. On the other hand the Nakamura number is indeed 2, as one can choose

the two minimal winning vectors (2, 3) and (3, 2), where the latter is a shifted version of (2, 3).
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As further notation, we write v =
∑

(u) ∈ Nt
≥0 for vi =

∑i

j=1 uj for all 1 ≤ i ≤ t, where u ∈ Nt
≥0.

Let v ∈ Nt
≥0 be a minimal winning vector of a complete simple game (N,W). Directly from definition we

conclude that if v � u, then u is also a winning vector and
∑

(v) ≤
∑

(u).

Lemma 7. For each complete simple game, uniquely characterized by ñ and M̃ , without vetoers and equi-

valence classes N1, . . . , Nt the corresponding Nakamura number ν(N,W) is given as the optimal target

value of

min

r∑

i=1

xi

r∑

i=1

(
oj − pij

)
· xi ≥ oj ∀1 ≤ j ≤ t

xi ∈ Z≥0 ∀1 ≤ i ≤ r,

where o := (o1, . . . , ot) =
∑

(ñ), pi :=
(
pi1, . . . , p

i
t

)
=

∑
(m̃i), and nj = |Nj |.

Proof. Consider a list of minimal winning vectors v1, . . . , vr corresponding to an optimal solution of the ILP

of Lemma 6. We aim to construct a solution of the present ILP. To this end, consider an arbitrary mapping τ
from the set of minimal winning vectors into the set of shift-minimal winning vectors, such that τ(u) � u
for all minimal winning vectors u. We choose the xi’s as the number of occurrences of m̃i = τ(vj) for

all 1 ≤ j ≤ j. Thus, the xi are non-negative numbers, which sum to the Nakamura number of the given

complete game. Since τ(vi) � vi we have
∑

(τ(vi)) ≤
∑

(vi). Thus
∑

(ñ)−
∑

(τ(vi)) ≥
∑

(ñ)−
∑

(vi),
so that all inequalities are satisfied.

For the other direction let xi be a solution of the present ILP. Choosing xi copies of shift-minimal winning

vector m̃i we obtain a list of shift-minimal winning vectors v10 , . . . , v
r
0 satisfying

∑r

i=1

∑
(ñ) −

∑
(vi0) ≥∑

(ñ). Starting with j = 1 we iterate: As long we do not have
∑r

i=1 ñ − vij ≥ ñ, we choose an index

1 ≤ h ≤ t, where the hth component of
∑r

i=1 ñ − vij is smaller than ñh. Since
∑r

i=1

∑
(ñ) −

∑
(vij) ≥∑

(ñ) we have h ≥ 2 and the (h − 1)th component of
∑r

i=1

∑
(ñ) −

∑
(vij) is at least one larger than

the (h − 1)th component of
∑

(ñ). Thus, there exists a vector vi
′

j where we can shift one player from

class h to a class with index lower or equal than h − 1 to obtain a new minimal winning vector vi
′

j+1. All

other vectors remain unchanged. We can easily check, that the new list of minimal winning vectors also

satisfies
∑r

i=1

∑
(ñ)−

∑
(vij+1) ≥

∑
(ñ). Since

∑r

i=1

∑
(ñ)−

∑
(vij) decreases one unit in a component

in each iteration the process must terminate. Thus, finally we end up with a list of minimal winning vectors

satisfying
∑r

i=1 ñ− vij ≥ ñ. �

In Figure 1 we have depicted the Hasse diagram of the shift-relation for coalition vectors for ñ = (1, 2, 1).
If we consider the complete simple game with shift-minimal winning vectors (1, 0, 1) and (0, 2, 0), then for

the minimal winning vector (1, 1, 0) we have two possibilities for τ .

As an example we consider the complete simple game uniquely characterized by ñ = (10, 10) and

M̃ =
(
7 8

)
. An optimal solution of the corresponding ILP is given by x1 = 4. I.e. initially we have

v10 = (7, 8), v20 = (7, 8), v30 = (7, 8), and v40 = (7, 8). We have
∑r

i=1

∑
(ñ) −

∑
(vi0) = (12, 20) ≥

(10, 20) =
∑

(ñ) and
∑r

i=1 ñ − vi0 = (12, 8) 6≥ (10, 10) = ñ. Here the second component, with value 8,

is too small. Thus the first component must be at least 1 too large, and indeed 12 > 10. We can shift one

player from class 2 to class 1. We may choose v11 = (8, 7), v21 = (7, 8), v31 = (7, 8), and v41 = (7, 8), so

that
∑r

i=1

∑
(ñ) −

∑
(v10) = (11, 20) ≥ (10, 20) =

∑
(ñ) and

∑r

i=1 ñ − vi0 = (11, 9) 6≥ (10, 10) = ñ.

Finally we may shift one player in v11 again or in any of the three other vectors to obtain v′2 = v22 = (7, 8)
and v32 = v42 = (8, 7).
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FIGURE 1. The Hasse diagram of the vectors with counting vector (1, 2, 1).

(
0 0 0

)

(
0 0 1

)

(
0 1 0

)

(
1 0 0

) (
0 1 1

)

(
1 0 1

) (
0 2 0

)

(
1 1 0

) (
0 2 1

)

(
1 1 1

)

(
1 2 0

)

(
1 2 1

)

✻

✻

◗
◗❦

✑
✑✸

✑
✑✸

◗
◗❦

✑
✑✸

✑
✑✸

◗
◗❦

✑
✑✸

✑
✑✸

◗
◗❦

✻

✻

Note that a complete simple game (N,W) uniquely characterized by its count vector ñ and its matrix

M̃ = (m̃1, . . . , m̃r)T contains vetoers if and only if m̃i
1 = ñ1 for all 1 ≤ i ≤ r. The next lemma concerns

complete simple games with minimum, i.e., with a unique minimal winning vector in M̃ .

Proposition 4. The Nakamura number of a complete simple game without vetoers, uniquely characterized

by ñ = (n1, . . . , nt) and M̃ =
(
m1

1 . . . m1
t

)
, is given by

max
1≤i≤t

⌈ ∑i

j=1 nj

∑i

j=1 nj −m1
j

⌉
≤ max

1≤i≤t

⌈∑i

j=1 nj

i

⌉
≤ max(2, n− 2t+ 3).

Proof. We utilize the ILP in Lemma 7. In our situation it has only one variable x1. The minimal integer

satisfying the inequality number i is given by

⌈ ∑
i
j=1

nj
∑

i
j=1

nj−m1

j

⌉
.

Next we consider the first upper bound just involving the cardinalities of the equivalence classes. Since

the complete simple game has no vetoers we have m1
1 ≤ n1 − 1. Due to the type conditions in the parame-

terization theorem of complete simple games, we have 1 ≤ m1
j ≤ nj − 1 and nj ≥ 2 for all 2 ≤ j ≤ t− 1.

If t ≥ 2 then we additionally have 0 ≤ m1
t ≤ nt − 1 and nt ≥ 1. Thus we have

∑i

j=1 nj −m1
j ≥ i and

conclude the proposed upper bound.

By shifting one player from Ni to Ni−1 the upper bound max1≤i≤t

⌈∑
i
j=1

nj

i

⌉
does not decrease. Thus

the minimum is attained at nt = 1, and ni = 2 for all 2 ≤ i ≤ t − 1, which gives the second upper bound

only depending on the number of players and equivalence classes. �
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Corollary 1. Let (N,W) be a complete simple game with t types of players. If (n1 − 1, . . . , nt − 1) is a

winning vector, then we have

ν(N,W) ≤ max
1≤i≤t

⌈∑i

j=1 nj

i

⌉
≤ n− t+ 1.

Proof. Proceeding as in the proof of Proposition 4 yields the first bound. The second bound follows from

n1 + · · ·+ ni

i
≤

n− t+ i

i
=

n− t

i
+ 1 ≤ n− t+ 1.

�

Using Proposition 4 as a heuristic, i.e., using just a single shift-minimal winning vector, we obtain:

Proposition 5. The Nakamura number of a complete simple game uniquely characterized by ñ = (n1, . . . , nt)

and M̃ = (m1, . . . ,mr)T , where mi = (mi
1, . . . ,m

i
t), is upper bounded by

max
1≤i≤t

⌈ ∑i

j=1 nj
∑i

j=1 nj −mi
j

⌉

for all 1 ≤ i ≤ r.

6. MAXIMUM NAKAMURA NUMBERS WITHIN SUBCLASSES OF SIMPLE GAMES

In this section we consider the “worst case”, i.e., the maximum possible Nakamura number within a given

class of games. Clearly, (N,W) = [n − 1; 1, . . . , 1] attaines the maximum ν(N,W) = n in the class of

simple or weighted games with n ≥ 1 players. However, all players of this example are equivalent, which

is rather untypical for a simple game. Thus, it is quite natural to ask for the maximum possible Nakamura

number if the number of players and the number of equivalence classes is given.

By S we denote the set of simple games, by C we denote the set of complete simple games, and by T we

denote the set of weighted games.

Definition 3. NakX (n, t) is the maximum Nakamura number of a game without vetoers with n ≥ 2 players

and t ≤ n equivalence classes in X , where X ∈ {S, C, T }.

Clearly, we have

2 ≤ NakT (n, t) ≤ NakC(n, t) ≤ NakS(n, t) ≤ n,

if the corresponding set of games is non-empty. Before giving exact formulas for small t, we characterize

all simple games with ν(N,W) ≥ n− 1:

Lemma 8. Let (N,W) be a simple game. If ν(N,W) = n, then (N,W) = [n− 1; 1, . . . , 1] and n ≥ 2. If

ν(N,W) = n− 1, then (N,W) is of one of the following types:

(1) (N,W) = [2n− 4; 2n−2, 12], t = 2, for all n ≥ 3;

(2) (N,W) = [1; 13], t = 1, for n = 3;

(3) (N,W) = [2n− 5; 2n−3, 13], t = 2, for all n ≥ 4;

(4) (N,W) = [n− 1; 1n−1, 0], t = 2, for all n ≥ 3;

(5) (N,W) = [5n− 2k − 9; 5n−k−1, 3k, 11], t = 3, for all n ≥ 4 (2 ≤ k ≤ n− 2).

Proof. Let us start with the case ν(N,W) = n. Due to part (b) and (f) of Proposition 2 all minimal winning

coalitions have cardinality n − 1. Part (e) gives that there are no null players, i.e., all players are contained

in some minimal winning coalition.
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Now let ν(N,W) = n − 1. Again, due to part (b) and part (f) of Proposition 2 all minimal winning

coalitions have either cardinality n − 2 or n − 1. So, we can describe the game as a graph by taking N
as the set of vertices and by taking edge {i, j} if and only if N\{i, j} is a winning coalition. Again by

using Proposition 2.(f) we conclude that each two edges need to have a vertex in common. Thus, our graph

consists of isolated vertices and either a triangle or a star. To be more precise, we consider the following

cases:

• only isolated vertices, which gives ν(N,W) = n;

• a single edge: this does not correspond to a simple game since the empty coalition has to be losing;

• a single edge and at least one isolated vertex: this is case (1);

• a triangle: this is case (2);

• a triangle and at least one isolated vertex: this is case (3);

• a star (with at least three vertices) and no isolated vertex: this is case (4);

• a star (with at least three vertices) and at least one isolated vertex: this is case (5).

�

Proposition 6.

(a) For n ≥ 2 we have NakT (n, 1) = NakC(n, 1) = NakS(n, 1) = n.

(b) For n ≥ 3 we have NakT (n, 2) = NakC(n, 2) = NakS(n, 2) = n− 1.

(c) For n ≥ 4 we have NakT (n, 3) = NakC(n, 3) = NakS(n, 3) = n− 1.

(d) For n ≥ 5 we have NakT (n, 4) = NakC(n, 4) = NakS(n, 4) = n− 2.

Proof. Due to Lemma 8 it remains to give an example for each case.

(a) [n− 1; 1n]
(b) [n− 2; 1n−1, 01]
(c) Consider the example [5n−2k−9; 5n−k−1, 3k, 11], where k ≥ 2 and n−k−1 ≥ 1, i.e., n ≥ k+2

and n ≥ 4, with n − k − 1 players of weight 5, k players of weight 3, and one player of weight 1
– this is indeed the minimum integer representation, so that we really have 3 types of players (this

may also be checked directly).

Let S be a minimal winning coalition. If a player of weight 5 is missing in S, then all players of

weight 3 and the player of weight 1 belong to S. Thus, we need n − k − 1 such versions in order

to get an empty intersection of winning coalitions. If a player of weight 3 is missing, then all of the

remaining players of weight 3 and all players of weight 5 have to be present, so that we need k such

versions. Thus, the game has Nakamura number n− 1 for all n ≥ 4 (if k is chosen properly).

(d) We append a null player to the stated example in part (c), which is possible for n ≥ 5 players.

�

We remark that each simple game (N,W) with n = t ≤ 2 players contains a vetoer, so that ν(N,W) =
∞, see Proposition 2.(b). Note that there exists no simple game with n ≤ 3 players and 3 types. Moreover,

there exists no weighted game with 4 types and n ≤ 4 players.

By computing the maximum possible Nakamura number for some small parameters n and t, we have

some evidence for:

Conjecture 1. If n is sufficiently large, then we have n− t+1 ≤ NakT (n, t) ≤ n− t+2, where t ∈ N>0.

We leave it as an open problem to determine NakT (n, t), NakC(n, t), and NakS(n, t) for t > 4. The

section is concluded by two constructions of parametric classes of simple games providing lower bounds for

NakS(n, t).
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Proposition 7. For n ≥ t and t ≥ 6 we have NakS(n, t) ≥ n−
⌊
t−1
2

⌋
.

Proof. Consider a simple game with t types of players given by the following list of minimal winning

vectors:

(n1 − 1, n2, . . . , nt)

(n1, n2 − 1, n3 − 1, n4, . . . , nt)

(n1, n2, n3 − 1, n4 − 1, n5, . . . , nt)

...

(n1, n2, . . . , nt−2, nt−1 − 1, nt − 1)

(n1, n2 − 1, n3, . . . , nt−1, nt − 1),

i.e., if a player of class 1 is missing, then all other players have to be present in a winning coalition, no two

players of the same type can be missing in a winning coalition, and at most two players can be missing in a

winning vector, if they come from neighbored classes (where the classes 2, 3, . . . , t are arranged on a circle).

At first we check that this game has in fact t types. Obviously class 1 is different from the other ones.

Let i < j be two indices in {2, 3, . . . , t} and x{a,b} = (x1, . . . , xt), where xh = nh − 1 if h ∈ {a, b} and

xh = nh otherwise. Choose some index c ∈ {2, . . . , t}\{i, j} as follows. If i = 2, then let c ∈ {3, t} and

c ∈ {i − 1, i + 1} otherwise. We can further ensure that c /∈ {j − 1, j + 1} and (c, j) 6= (2, t). With this

x{i,c} is a winning vector and x{j,c} is a losing vector. Thus, the classes i and j have to be different.

With respect to the Nakamura number we remark that we have to choose n1 coalitions of the form

(n1 − 1, n2, . . . , nt). All other coalitions exclude 2 players, so that we need
⌈
n2+···+nt

2

⌉
of these. Taking

n2 = · · · = nt = 1 gives the proposed bound. �

Proposition 8. Let k ≥ 3 be an integer. For 2k + 1 ≤ t ≤ k + 2k and n ≥ t we have NakS(n, t) ≥ n− k.

Proof. Let V be an arbitrary k-element subset of N . Let U1, . . . , Ut−k be distinct subsets of V including

all k one-element subsets and the empty subset. For each 1 ≤ i ≤ t − k we choose a distinct player vi in

N\V . We define the game by specifying the set of winning coalitions as follows: The grand coalition and all

coalitions of cardinality n−1 are winning. Coalition N\V and all of its supersets are winning. Additionally

the following coalitions of cardinality n− 2 are winning: For all 1 ≤ i ≤ t− k and all u ∈ Ui the coalition

N\{vi, u} is winning.

We can now check that the k players in V are of k different types, where each equivalence class contains

exactly one player (this is due to the 1-element subsets Ui of V ). Players vi also form their own equivalence

class, consisting of exactly one player – except for the case of Ui = ∅, where all remaining players from

N\V are pooled. Thus, we have 2k + 1 ≤ t ≤ k + 2k types of players.

Suppose we are given a list S1, . . . , Sl of winning coalitions with empty intersection, then |N\(Si\V )| =
1, i.e., every winning coalition can miss at most one player from N\V . Thus, the Nakamura number is at

least n− k. �
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7. RELATIONS FOR THE NAKAMURA NUMBER

As we have already remarked, the lower bound of Theorem 1 can be strengthened if we maximize the

quota, i.e., if we solve

max q

w(S) ≥ q ∀S ∈ W

w(T ) < q ∀T ∈ L

w(N) = 1

wi ≥ 0 ∀1 ≤ i ≤ n

Since the losing coalitions were not used in the proof of the lower bound in Theorem 1, we consider the

linear program

max q

w(S) ≥ q ∀S ∈ W

w(N) = 1

wi ≥ 0 ∀1 ≤ i ≤ n,

which has the same set of optimal solutions, except for the target value, as

min 1− q

w(S) ≥ q ∀S ∈ W

w(N) = 1

wi ≥ 0 ∀1 ≤ i ≤ n.

Note that (N,W) does not need to be weighted. Here the optimal value 1 − q is also called the minimum

maximum excess e⋆, which arises in the determination of the nucleolus.

Dividing the target function by q > 0 and replacing wi = w′
iq, which is a monotone transform, we obtain

that the set of the optimal solutions of the previous LP is the same as the one of:

min
1− q

q
=

1

q
− 1

w′(S) ≥ 1 ∀S ∈ W

w′(N) =
1

q

w′
i ≥ 0 ∀1 ≤ i ≤ n,

If we now set ∆ := 1
q
− 1 and add ∆ ≥ 0, we obtain the definition of the price of stability for games where

the grand coalition is winning, see e.g. [Bachrach et al., 2009]. Thus, we have:

Theorem 5. Let (N,W) be a simple game.

(a) We have ν(N,W) ≥
⌈

1
e⋆

⌉
for the minimum maximum excess e⋆ of (N,W).

(b) We have ν(N,W) ≥
⌈
1+∆
∆

⌉
=

⌈
1

1−q

⌉
for the price of stability ∆ of (N,W).

Note that in part (b) we formally obtain the same lower bound as in Theorem 1, while there is of course

no notion of a quota q in a simple game. We remark that we have e⋆ = 0 or ∆ = e⋆

1−e⋆
= 0 if and only if

(N,W) contains a vetoer. In general, the Nakamura number is large if the price of stability is low. It seems

that Theorem 5 is the tightest and most applicable lower bound that we have at hand for the Nakamura
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number of a simple game. An interesting question is to study under what conditions it attains the exact

value.

7.1. The Nakamura number and the one-dimensional cutting stock problem. Finally we would like

to mention another relation between the Nakamura number of a weighted game and a famous optimization

problem – the one-dimensional cutting stock problem. Here, one-dimensional objects like e.g. paper reels

or wooden rods, all having length L ∈ R>0 should be cut into pieces of lengths l1, . . . , lm in order to satisfy

the corresponding order demands b1, . . . , bm ∈ Z>0. The minimization of waste is the famous 1CSP. By

possible duplicating some lengths li, we can assume bi = 1 for all 1 ≤ i ≤ m, while this transformation

can increase the value of m. Using the abbreviations l = (l1, . . . , lm)T we denote an instance of 1CSP by

E = (m,L, l). The classical ILP formulation for the cutting stock problem by Gilmore and Gomory is based

on so-called cutting patterns, see [Gilmore and Gomory, 1961]. We call a pattern a ∈ {0, 1}m feasible (for

E) if l⊤a ≤ L. By P (E) we denote the set of all patterns that are feasible for E. Given a set of patterns

P = {a1, . . . , ar} (of E), let A(P ) denote the concatenation of the pattern vectors ai. With this we can

define

zB(P,m) :=

r∑

i=1

xi → min subject to A(P )x = 1, x ∈ {0, 1}r and

zC(P,m) :=

r∑

i=1

xi → min subject to A(P )x = 1, x ∈ [0, 1]r.

Choosing P = P (E) we obtain the mentioned ILP formulation for 1CSP of [Gilmore and Gomory, 1961]

and its continuous relaxation. Obviously we have zB(P (E),m) ≥ ⌈zC(P (E),m)⌉. In cases of equality

one speaks of an IRUP (integer round-up property) instance – a concept introduced for general linear min-

imization problems in [Baum and Trotter, 1981]. In practice almost all instances have the IRUP. Indeed,

the authors of [Scheithauer and Terno, 1995] have conjectured that zB(P (E),m) ≤ ⌈zC(P (E),m)⌉ + 1
– called the MIRUP property (modified integer round-up property), which is one of the most important

theoretical issues about 1CSP, see also [Eisenbrand et al., 2013].

There is a strong relation between the 1CSP instances and weighted games, see [Kartak et al., 2015].

For each weighted games there exists an 1CSP instance where the feasible patterns correspond to the losing

coalitions. For the other direction the feasible patterns of a 1CSP instance correspond to the losing coalitions

of a weighted game if the all-one vector is non-feasible. In our context, we can utilize upper bounds for zB
in at least two ways.

Lemma 9. Let (N,W) be a strong simple game on n players, then ν(N,W) ≤ zB(L, n), where L denotes

the incidence vectors corresponding to the losing coalitions L = 2N\W ⊆ 2N .

Proof. The value zB(L, n) corresponds to the minimal number of losing coalitions that partition the set N ,

which is the same as the minimum number of (maximal) losing coalitions that cover the grand coalition N .

Let L1, . . . , Lr denote a list of losing coalitions, where r = zB(L, n). Since (N,W) is strong the coalitions

N\L1, . . . , N\Lr are winning and have an empty intersection, so that ν(N,W) ≤ zB(L, n). �

As the assumption of a strong simple game (without vetoers) implies ν(N,W) ∈ {2, 3}, the applicability

is quite limited. This is not the case for the second, more direct, connection.

Proposition 9. For a simple game (N,W) on n players we have ν(N,W) = zB(1 − W , n), where W
denotes the incidence vectors corresponding to the winning coalitions and 1 is the vector with n ones.

Proof. Let r = zB(1 − W , n) and x1, . . . , xr corresponding incidence vectors. Then the sets Si corre-

sponding to the incidence vectors 1− xi are winning and have empty intersection. If otherwise, S1, . . . , Sr
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n ∞ 2 3 4 5 6 7 8 9

1 1

2 2 1

3 4 2 1

4 8 5 1 1

5 16 9 4 1 1

6 32 19 8 2 1 1

7 64 34 18 7 2 1 1

8 128 69 36 14 4 2 1 1

9 256 125 86 24 12 4 2 1 1

10 512 251 160 60 24 8 4 2 1

11 1024 461 362 120 43 21 8 4 2

12 2048 923 724 240 86 42 16 8 4

13 4096 1715 1525 513 194 78 38 16 8

14 8192 3431 3050 1026 388 156 76 32 16

15 16384 6434 6529 2052 776 312 145 71 32

16 32768 12869 12785 4377 1517 659 290 142 64

17 65536 24309 27000 8614 3174 1318 580 276 136

18 131072 48619 54000 17228 6348 2636 1160 552 272

19 262144 92377 111434 35884 12696 5221 2371 1104 535

20 524288 184755 222868 71768 25392 10442 4742 2208 1070

21 1048576 352715 462532 142567 51468 21169 9484 4416 2140

22 2097152 705431 917312 292886 102936 42338 18898 8902 4280

23 4194304 1352077 1893410 585772 205872 84676 37796 17804 8560

24 8388608 2704155 3786820 1171544 411744 169352 75592 35608 17120

25 16777216 5200299 7738389 2379267 830572 338198 151690 71124 34332

TABLE 1. Complete simple games with minimum (r = 1) per Nakamura number – part 1

are winning coalitions with empty intersection, then we can enlarge the coalitions to T1, . . . , Tr such that

the intersection remains empty but every player is missing in exactly one of the Ti. Since the Ti are win-

ning coalitions by construction, 1 minus the incidence vector of Ti gives r vectors that are feasible for

zB(1−W , n). �

Example 3. For an integer k ≥ 2 consider the weighted game v = [16k − 20; 9k, 7k]. We can easily

check that all coalitions of size 2k − 2 are winning while all coalitions of size 2k − 3 are losing, so that

v = [2k − 2; 12k] and ν(v) = k. The lower bound of Theorem 1 only gives ν(v) ≥
⌈
4k
5

⌉
. The feasible

incidence vectors in zB(1−W , n) are those that contain at most two 1s, so that even zC(1−W , n) gives

a tight upper bound.

Of course the advantage of the incidence vectors is that no explicit weights are involved, while the lower

bound of Theorem 1 depends on the weighted representation. We remark that zB(1−W , n) ≥
⌈

1
1−q′

⌉
for

any normalized representation (q′, w′) of (N,W).
We can also use 1CSP instances without the IRUP property to construct weighted games where the lower

bound of Theorem 1 is never tight for any weighted representation. Let L = 155 be the length of the material
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to be cut and l = (9, 12, 12, 16, 16, 46, 46, 54, 69, 77, 102) be the lengths of the requested final pieces. Tak-

ing
∑11

i=1 li−L = 304 as quota gives the weighted game v = [304; 9, 12, 12, 16, 16, 46, 46, 54, 69, 77, 102].
Theorem 1 gives ν(v) ≥ 3 while ν(v) = 4.

Conjecture 2. For any weighted game (N,W) on n players we have ν(N,W) ≤
⌊
zC(1−W , n)

⌋
+ 1.

8. ENUMERATION RESULTS

In order to get a first idea of the distribution of the attained Nakamura numbers we consider the class of

complete simple games with a unique shift-minimal winning vector, i.e., r = 1, see Table 1 and Table 2, as

well as their subclass of weighted games, see Table 3.

We have chosen these subclasses since they allow to exhaustively generate all corresponding games for

moderate sizes of the number of players n, which is not the case for many other subclasses of simple games.

Additionally, the corresponding Nakamura numbers can be evaluated easily applying Proposition 4.

n 10 11 12 13 14 15 16 17

10 1

11 1 1

12 2 1 1

13 4 2 1 1

14 8 4 2 1 1

15 16 8 4 2 1 1

16 32 16 8 4 2 1 1

17 64 32 16 8 4 2 1 1

18 128 64 32 16 8 4 2 1

19 265 128 64 32 16 8 4 2

20 530 256 128 64 32 16 8 4

21 1050 522 256 128 64 32 16 8

22 2100 1044 512 256 128 64 32 16

23 4200 2077 1035 512 256 128 64 32

24 8400 4154 2070 1024 512 256 128 64

25 16800 8308 4128 2060 1024 512 256 128

TABLE 2. Complete simple games with minimum (r = 1) per Nakamura number – part 2

One might say that being non-weighted increases the probability for a complete simple game with a

unique shift-minimal winning vector to have a low Nakamura number. In Table 3 the last entries of each

row seem to coincide with the sequence of natural numbers, where the number of entries increases every

two rows.

9. CONCLUSION

The Nakamura number measures the degree of rationality of preference aggregation rules such as simple

games in the voting context. It indicates the extent to which the aggregation rule can yield well defined

choices. If the number of alternatives to choose from is less than this number, then the rule in question will

identify “best” alternatives. The larger the Nakamura number of a rule, the greater the number of alternatives

the rule can rationally deal with. This paper provides new results on: the computation of the Nakamura

number, lower and upper bounds for it or the maximum achievable Nakamura number for subclasses of
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n ∞ 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17

1 1

2 2 1

3 4 2 1

4 8 5 1 1

5 16 8 4 1 1

6 31 14 7 2 1 1

7 57 20 11 6 2 1 1

8 99 30 16 10 3 2 1 1

9 163 40 26 11 8 3 2 1 1

10 256 55 32 18 13 4 3 2 1 1

11 386 70 45 25 14 10 4 3 2 1 1

12 562 91 59 33 16 16 5 4 3 2 1 1

13 794 112 74 42 25 17 12 5 4 3 2 1 1

14 1093 140 91 52 34 19 19 6 5 4 3 2 1 1

15 1471 168 117 63 44 21 20 14 6 5 4 3 2 1

16 1941 204 136 84 46 32 22 22 7 6 5 4 3 2

17 2517 240 166 96 59 43 24 23 16 7 6 5 4 3

18 3214 285 198 110 72 55 26 25 25 8 7 6 5 4

19 4048 330 231 136 86 57 39 27 26 18 8 7 6 5

20 5036 385 267 163 101 60 52 29 28 28 9 8 7 6

21 6196 440 316 179 117 76 66 31 30 29 20 9 8 7

22 7547 506 355 210 134 92 68 46 32 31 31 10 9 8

23 9109 572 409 242 152 109 71 61 34 33 32 22 10 9

24 10903 650 466 276 171 127 74 77 36 35 34 34 11 10

25 12951 728 524 311 207 130 93 79 53 37 36 35 24 11

TABLE 3. Weighted games with minimum (r = 1) per Nakamura number

simple games and parameters as the number of players and the number of equivalent types of them. We

highlight the results found in the classes of weighted, complete, and α-roughly weighted simple games. In

addition, some enumerations for some classes of games with a given Nakamura number are obtained.

Further relations of the Nakamura number to other concepts of cooperative game theory like the price of

stability of a simple game or the one-dimensional cutting stock problem are provided.

As future research, it would be interesting to study the truth of Conjecture 1 or finding new results on

the Nakamura number for other interesting subclasses of simple games, as for example, weakly complete

simple games. However, the main open question is to determine further classes where the lower bound of

Theorem 1 is tight and to come up with tighter upper bounds.
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