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Abstract. We study the optimal bounds for the Hardy operator S minus the
identity, as well as S and its dual operator S∗, on the full range 1 ≤ p ≤ ∞, for
the cases of decreasing, positive or general functions (in fact, these two kind of
inequalities are equivalent for the appropriate cone of functions). For 1 < p ≤ 2,
we prove that all these estimates are the same, but for 2 < p <∞, they exhibit a
completely different behavior.

1. Introduction

Denote by M(R+) the class of all measurable functions on R+ = (0,∞), and for
f ∈ M(R+), let us consider the classical Hardy averaging operator S and its dual
S∗ (see, e.g., [6]):

Sf(x) =
1

x

∫ x

0

f(t) dt and S∗f(x) =

∫ ∞
x

f(t)

t
dt.

In what follows, we will always assume that S(|f |)(1) < ∞ and S∗(|f |)(1) < ∞.
These are natural conditions so that S(f) and S∗(f) are well defined. Moreover,
such functions satisfy that S∗(|f |) ∈ L1(0, 1), which is an important property we
will use later on. In fact,

(1)

∫ 1

0

S∗(|f |)(t) dt =

∫ 1

0

|f(t)| dt+

∫ ∞
1

|f(t)|dt
t
.

An important fact about S and S∗, which is a consequence of the classical Hardy
inequalities, is that these operators are bounded in Lp(R+)

(2) ‖Sf‖p ≤ p′‖f‖p, ‖S∗f‖p ≤ p‖f‖p
and p′ = p/(p − 1) and p are, respectively, the best constants. Furthermore, their
norms are comparable (see [7, pp. 240, 244]),

(3)
1

p′
‖Sf‖p ≤ ‖S∗f‖p ≤ p‖Sf‖p, for 1 < p <∞.

However, the optimal constants in (3) were actually found in [9] very recently:

Theorem 1.1. [9, Theorem 1.1] Let f ∈M(R+) be a positive function and assume
1 < p <∞. Then,

(4) (p− 1)‖Sf‖p ≤ ‖S∗f‖p ≤ (p− 1)1/p‖Sf‖p,
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if 1 < p ≤ 2, and

(5) (p− 1)1/p‖Sf‖p ≤ ‖S∗f‖p ≤ (p− 1)‖Sf‖p,
if 2 ≤ p <∞. Moreover, the constants in (4) and (5) are the best possible.

In recent years, extensions of Hardy’s inequalities, for other operators, have been
considered restricted to the cone of decreasing functions. In particular, sharp esti-
mates for S − Id and f ↓ were proved in [5], on the range 2 ≤ p <∞ (see also [10]
for a previous result when p = 2, 3, 4, . . . ). The best constants in the full interval
1 < p < ∞, again for decreasing functions, were finally characterized in [9]. One
of the main techniques used in [9] is to show that the boundedness for S − Id on
decreasing functions is equivalent to estimates of the form ‖Sf‖p . ‖S∗f‖p, for
positive functions f ≥ 0. Inequalities of restricted type have been also obtained for
all indexes 1 < p <∞ [11].

To complete this framework, it is interesting to also recall that, motivated by
the well-known Iwaniec’s conjecture [8] regarding the norm of the Beurling operator
B on Lp(C) (see [1, 4] for more information), and using the fact that, for radial
functions F (z) = f(|z|2), the following equality holds

BF (z) =
z

z
(S − Id)f(|z|2), z ∈ C,

then the norm of B on such radial functions is equivalent to the norm of S − Id for
general functions f . In this case, optimal constants are only known if 1 < p ≤ 2
(see [2]).

In this work, we will describe the best constants in all known cases, for the in-
equalities involving S−Id, S and S∗, in all three different cones of functions (general
f , positive f ≥ 0 or decreasing f ↓). For the estimates still open, we will give the
best bounds available.

The following result, based on the arguments given in [9] for decreasing and pos-
itive functions, is an important tool we will use to prove the equivalence of the
optimal constants for general functions. In what follows, we will assume X and Y
to be lattice quasi-Banach spaces over R+ (e.g., Lp, 1 ≤ p ≤ ∞ or L1,∞).

Lemma 1.2. Let X and Y be two lattice quasi-Banach spaces over R+. If for every
function f , the following inequality holds

‖Sf − f‖Y ≤ CX,Y ‖f‖X ,
then

‖Sf‖Y ≤ CX,Y ‖S∗f‖X .

Proof. Let f be a general function and let g(x) = S∗f(x). Then, as a consequence
of (1), it is easy to see that we can use Fubini’s theorem, and hence

Sg(x)− g(x) = S(S∗f)(x)− S∗f(x) = Sf(x) + S∗f(x)− S∗f(x) = Sf(x).

Thus, by hypothesis,

‖Sf‖Y = ‖Sg − g‖Y ≤ CX,Y ‖g‖X = CX,Y ‖S∗f‖X .
�

The following table summarizes our main goals. For a given norm (or quasi-norm)
‖ · ‖ we are going to describe the best known constants for each inequality on the
first column, and for all three different cones of the first row.
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Norm: ‖ · ‖ f ↓ f ≥ 0 f

‖Sf − f‖ . ‖f‖ A B C

‖Sf‖ . ‖S∗f‖ D E F

Table 1. Best constants for different cones of functions.

Observe that we easily get the inequalities A ≤ B ≤ C; D ≤ E ≤ F , and, using
Lemma 1.2, we also have that F ≤ C. Moreover, in all cases we are going to also
obtain that A = E.

In Section 2 we review the optimal constants on Table 1, for the range 1 < p < 2
and observe that they are all equal to the value 1/(p− 1). Section 3 deals with the
range 2 ≤ p < ∞. Here we show that the constants behave more wildly (they are
all different, except for the trivial cases). Our main results are the following: In
Theorem 3.2 we find the sharp estimate for S− Id, on the cone of positive functions
f ≥ 0 and in Theorem 3.3 we also obtain the best bound relating S and S∗, for
f decreasing, whenever p = 2, 3, 4, . . . In Section 4, we study what happens at the
endpoints p = 1 and p = ∞. In Section 5 we make some final remarks about the
constants C, D and F , which are still unknown in its full generality, for the range
2 < p <∞.

2. Sharp estimates for 1 < p < 2

Sharp estimates for the norm of the Hardy operator minus the identity in the
cone of decreasing functions, on the range 1 < p < 2, were proved in [9]. The main
techniques used in that paper consist of establishing the equivalence of optimal
constants between Lp norms of the functions Sf and S∗f , f ≥ 0, and Lp norms of
the functions Sϕ− ϕ and ϕ, where ϕ is a decreasing function on R+. The result is
the following:

Theorem 2.1. [9, Theorems 1.1 and 1.2] Let 1 < p < 2.

(i) If f ≥ 0 on R+, then the inequality

(6) ‖Sf‖p ≤
1

p− 1
‖S∗f‖p,

is sharp.
(ii) If f is decreasing on R+, then the inequality

(7) ‖Sf − f‖p ≤
1

p− 1
‖f‖p

is sharp.

Remark 2.2. The optimality of (6) was proved by considering the family of de-
creasing functions gε(x) = xε−1/pχ(0,1)(x), for 0 < ε ≤ 1/p. Therefore, we also obtain
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that the best constant in (6), for decreasing functions, is equal to 1/(p− 1). Thus,
in the notation of Table 1, we have that A = D = E = 1/(p− 1).

Estimate (7), for general functions f ∈ Lp(R+), and 1 < p < 2, was established
in [2]. The proof makes use of very subtle arguments and is more involved than the
case of decreasing functions.

Theorem 2.3. [2, Theorem 4.1] If 1 < p < 2, and f ∈ Lp(R+), then the inequality

(8) ‖Sf − f‖p ≤
1

p− 1
‖f‖p

is sharp.

Remark 2.4. We observe that using (7) and (8), we have that ‖Sf−f‖p ≤ 1
p−1
‖f‖p

is also optimal for f ≥ 0. Thus, in the notation of Table 1, we also have that
A = B = C = D = E = 1/(p− 1).

Corollary 2.5. Let 1 < p < 2, then, for any f ∈ Lp(R+) the following inequality is
optimal,

‖Sf‖p ≤
1

p− 1
‖S∗f‖p.

Proof. It is a direct consequence of Theorems 2.1 and 2.3, and Lemma 1.2. �

Thus, we have finally proved that on the range 1 < p < 2 all constants are the
same: A = B = C = D = E = F = 1/(p− 1).

3. Sharp estimates for 2 ≤ p <∞

In [5], as a particular case of the sharp constants obtained for the norm of the
operator S − Id, acting on the cone of decreasing functions in weighted Lp spaces,
we were able to prove that for any p ≥ 2 and f ↓, then

‖Sf − f‖p ≤ (p− 1)−1/p‖f‖p,

and the constant A = (p− 1)−1/p is optimal. For p ≥ 2 a natural number, this was
previously obtained in [10]. Again, using (5), it also holds that E = (p− 1)−1/p; i.e.,
for any positive function f ≥ 0

(9) ‖Sf‖p ≤ (p− 1)−1/p‖S∗f‖p.

For the proof of our main result on the norm of S − Id acting on the cone of
positive functions in Lp(R+), the following lemma will be useful.

Lemma 3.1. If p ≥ 2 and 0 < t ≤ s, then

(i)

f1(s, t) = sp
[(

1− t

s

)p
− 1 +

p t

s

]
− tp ≥ 0

and
(ii)

f2(s, t) = ptp−1(t− s)− tp + sp
[
1−

(
1− t

s

)p]
≥ 0.
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Proof. For the proof of part (i), by homogeneity, it is enough to consider f1 as a
function of the variable 0 ≤ r = t/s ≤ 1 and define

g1(r) = f1(1, r) = (1− r)p − 1 + pr − rp.

Then, g1(0) = 0 and g1 is increasing in [0, 1], since its derivative

g′1(r) = p(1− rp−1 − (1− r)p−1) ≥ 0,

because p ≥ 2 and 0 ≤ r ≤ 1.
Similarly, to prove (ii), let us write f2 in terms of the variable 0 ≤ r = t/s ≤ 1

and define

g2(r) = f2(1, r) = (p− 1)rp − prp−1 − (1− r)p + 1.

In this case, g2(0) = g2(1) = 0 and its derivative

g′2(r) = p(p− 1)rp−2(r − 1) + p(1− r)p−1

has a unique zero at the point r0 = 1/(1 + (p−1)1/(p−2)), which is a local maximum,
since p ≥ 2. As a consequence, g2 is increasing in [0, r0) and decreasing in (r0, 1], so
g2(r) ≥ 0, for r ∈ [0, 1]. �

It is well-known that the operator S−Id is an isometry in L2(R+) (see [6]). Hence,
A = B = C = 1, if p = 2. Concerning p > 2, we have the following result:

Theorem 3.2. If 2 < p < ∞, and f is a positive function in Lp(R+), then the
following sharp estimate holds

‖Sf − f‖p ≤ ‖f‖p.

Proof. By a density argument, we can restrict ourselves to the case of f a positive
function of compact support that agrees with a polynomial in its support. Then,
Sf − f is also a continuous function on R+, except possibly at one point where it
would have a jump discontinuity, has a finite number of changes of sign, and no
zeros outside the support of f .

Then, let us consider Ij = (aj−1, aj), 1 ≤ j ≤ N be a finite partition of R+ with
a0 = 0, aN =∞, in such a way that the sign of Sf − f is constant in the interval Ij
and it changes between two consecutive intervals. Let J be the collection of indexes
1 ≤ j ≤ N such that Sf − f > 0 on Ij, and J ′ = {1, ..., N} \ J ; that is, Sf − f < 0
on Ij, j ∈ J ′.

For α ∈ R, we will use the following representation in power series of the function
(1 + t)α:

(10) (1 + t)α =
∞∑
k=0

(
α

k

)
tk, |t| < 1,

where, for every positive integer k,(
α

k

)
=
α(α− 1) · · · (α− k)

k!
,

and

(
α

0

)
= 1.
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In every interval Ij = (aj−1, aj), with j ∈ J , since −1 < (f − Sf)/Sf < 0, using
the binomial identity (10), we have

∫
Ij

fp(x) dx =

∫
Ij

(
f(x)− Sf(x)

Sf(x)
+ 1

)p
(Sf(x))p dx

=

∫
Ij

∞∑
k=0

(
p

k

)(
f(x)− Sf(x)

Sf(x)

)k
(Sf(x))p dx.

Then, if we denote by u(t) = Sf(t), we have that f(t) = (tu(t))′ = tu′(t) +u(t), and
hence this last integral is equal to

∫
Ij

∞∑
k=0

(
p

k

)(
tu′(t)

u(t)

)k
(u(t))p dt =

∫
Ij

(
up(t) + ptup−1(t)u′(t)

)
dt

+

∫
Ij

∞∑
k=2

(
p

k

)(
tu′(t)

u(t)

)k
(u(t))p dt.

Integrating the first term of the right-hand side, we obtain

(11)

∫
Ij

(
up(t) + ptup−1(t)u′(t)

)
dt = aju

p(aj)− aj−1u
p(aj−1),

where we understand that if j = N , and hence aN = ∞, then aNu
p(aN) =

limt→∞ tu
p(t) = 0. Therefore, with the original notation, we have obtained that,

for every interval Ij = (aj−1, aj), such that j ∈ J ,

∫
Ij

(
fp(x)− (Sf(x)− f(x))p

)
dx = aj(Sf(aj))

p − aj−1(Sf(aj−1))p

+

∫
Ij

∞∑
k=2

(
p

k

)(
f(x)− Sf(x)

Sf(x)

)k
(Sf(x))p dx(12)

−
∫
Ij

(Sf(x)− f(x))p dx.

Similarly, in every interval Ij = (aj−1, aj), with j ∈ J̃ , since −1 < −Sf/f < 0,
using again the binomial identity (10), we obtain

∫
Ij

(f(x)− Sf(x))p dx =

∫
Ij

(
−Sf(x)

f(x)
+ 1

)p
(f(x))p dx

=

∫
Ij

∞∑
k=0

(
p

k

)(
−Sf(x)

f(x)

)k
(f(x))p dx.
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Therefore, using (11) expressed in terms of u(t) = Sf(t) and f(t) = (tu(t))′ =
tu′(t) + u(t), we obtain that for every interval Ij = (aj−1, aj), such that j ∈ J̃ ,∫

Ij

(
fp(x)− (f(x)− Sf(x))p

)
dx = aj(Sf(aj))

p − aj−1(Sf(aj−1))p

+

∫
Ij

(p− 1)(Sf(x))p − pf(x)(Sf(x))p−1 dx(13)

−
∫
Ij

∞∑
k=1

(
p

k

)(
−Sf(x)

f(x)

)k
(f(x))p dx.

Summing up the equalities proved in (12) for every j ∈ J , and in (13) for every
j ∈ J̃ ,

∫ ∞
0

(
fp(x)− |f(x)− Sf(x)|p

)
dx =

N∑
j=1

(
aj(Sf(aj))

p − aj−1(Sf(aj−1))p
)(14)

+
∑
j∈J

∫
Ij

[ ∞∑
k=2

(
p

k

)(
f(x)− Sf(x)

Sf(x)

)k
(Sf(x))p − (Sf(x)− f(x))p dx

]

+
∑
j∈J̃

∫
Ij

[
(p− 1)(Sf(x))p − pf(x)(Sf(x))p−1 −

∞∑
k=1

(
p

k

)(
−Sf(x)

f(x)

)k
(f(x))p dx

]
.

In order to see that this last expression is positive, we look at the three terms of the
right-hand side that can be simplified as follows. The first one,

N∑
j=1

(
aj(Sf(aj))

p − aj−1(Sf(aj−1))p
)

= lim
r→∞

rSf(r)p − lim
r→0+

rSf(r)p = 0,

due to the fact that f has compact support. For the second one, we observe that,
since j ∈ J ,

∞∑
k=2

(
p

k

)(
f(x)− Sf(x)

Sf(x)

)k
(Sf(x))p − (Sf(x)− f(x))p

=(Sf(x))p
[(

1− Sf(x)− f(x)

Sf(x)

)p
− 1 + p

Sf(x)− f(x)

Sf(x)

]
− (Sf(x)− f(x))p

and this last function is positive, due to Lemma 3.1 (i) for s = Sf(x) > 0 and
t = Sf(x)− f(x) > 0, where 0 < t < s.

Finally the third one, since j ∈ J̃ , then

(p− 1)(Sf(x))p − pf(x)(Sf(x))p−1 −
∞∑
k=1

(
p

k

)(
−Sf(x)

f(x)

)k
(f(x))p

=p(Sf(x))p−1(Sf(x)− f(x))− (Sf(x))p + (f(x))p
[
1−

(
1− Sf(x)

f(x)

)p]
and this last function is positive, due to Lemma 3.1 (ii) for s = f(x) > 0 and
t = Sf(x) > 0, since 0 < t < s. These observations allow us to conclude from (14)
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that

(15) ‖Sf − f‖p ≤ ‖f‖p.

Finally, in order to check that this last estimate is sharp, let us take fr(x) =
χ[1,r+1)(x), with r > 0. For this function fr,

(Sfr − fr)(x) = −1

x
χ[1,1+r)(x) +

r

x
χ(r+1,∞)(x).

Thus

lim
r→0+

‖Sfr − fr‖pp
‖fr‖pp

= lim
r→0+

1

p− 1

(r + 1)p−1 − 1 + rp

r(r + 1)p−1
= 1.

This shows that the constant 1 in the right-hand side of (15) is optimal. �

Equivalently, Theorem 3.2 proves that, for every p ≥ 2, we have that B = 1.
Continuing with the study of best estimates, we observe that, for p = 2, and any
general function f , using the equalities SS∗ = S∗S = S + S∗, we can prove

‖Sf‖2 = ‖S∗f‖2.

In particular, this holds for f decreasing. Now, for other values of p ≥ 2 and f
decreasing, we have the following theorem concerning the constant D.

Theorem 3.3. Let p ≥ 2 be a natural number. Then, for any decreasing function
f ∈ Lp(R+), the following inequality is sharp

‖Sf‖p ≤
(
p′

p!

)1/p

‖S∗f‖p.

Proof. By using the density of simple and decreasing functions in the corresponding
cone in Lp(R+), we can restrict ourselves to prove the inequality for functions

fN(x) =
N∑
k=1

bkχ(0,ak)(x),

with bj ≥ 0, j = 1, . . . , N , and 0 ≤ a1 ≤ a2 ≤ · · · ≤ aN . Easy calculations show
that

SfN(x) =
N∑
j=1

bj

(
χ(0,aj)(x) +

aj
x
χ(aj ,∞)(x)

)
and

S∗fN(x) =
N∑
j=1

bj log
(aj
x

)
χ(0,aj)(x).

Thus, our goal is to check the following sharp inequality, for every function fN

(16)

∫ ∞
0

(SfN)p(x) dx ≤ p′

p!

∫ ∞
0

(S∗fN)p(x) dx.

Looking at both sides of (16) as a homogeneous polynomial of degree N in the
variables b1, · · · , bN , we observe that it is enough to prove the estimate for every
term

∏N
j=1 b

αj

j associated to the multi-index ᾱ = (αj)
N
j=1, with 0 ≤ αj ≤ p and
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∑p
i=1 αi = p. In order to do that, notice that for a fixed multi-index ᾱ = (αj)

N
j=1,

the terms on the left-hand side of (16) correspond to the following integral

(17)

∫ ∞
0

N∏
j=1

(
χ(0,aj)(x) +

(aj
x

)αj

χ(aj ,∞)

)
dx,

and, similarly, the right-hand side for the corresponding term of the same multi-
index is equal to∫ ∞

0

N∏
j=1

logαj

(aj
x

)
χ
αj

(0,aj)(x) dx =

∫ aj0

0

N∏
j=j0

logαj

(aj
x

)
dx,

where j0 = min{j : αj 6= 0}.
To find an explicit expression of the integral in (17), we first introduce the fol-

lowing notation. For ᾱ = (α1, · · · , αN) a fixed multi-index, with 0 ≤ αj ≤ p and∑p
i=1 αi = p, let us define Aj =

∑j
i=1 αi, for any 1 ≤ j ≤ N . Then, it is clear that

0 ≤ A1 ≤ · · · ≤ AN = p, and (17) is equal to

(18) a1 +
N∑
j=1

∫ aj+1

aj

j∏
k=1

aαk
k

xAj
dx,

where a0 = 0 and aN+1 = ∞. As before, let j0 be the smallest index j such that
αj 6= 0. We will distinguish the following two cases:

If αj0 = 1, let us define j1 as the first index such that Aj1 ≥ 2. Hence, Ak = 1,
for all j0 ≤ k ≤ j1 − 1 and Ak ≥ 2, for j1 ≤ k ≤ N . Note that for any j < j0, since
αj = 0, then a

αj

j = 1. Therefore, (18) is equal to

aj0 + aj0

j1−1∑
j=j0

log

(
aj+1

aj

)
+

N∑
j=j1

(
j∏

k=j0

aαk
k

)
a

1−Aj

j − a1−Aj

j+1

Aj − 1
,

taking into account that for j = N , we have that AN = p > 1 and a1−AN
N+1 = 0.

On the other hand, if αj0 ≥ 2, there are no terms with Aj = 1 and the integral in
(18) is equal to

aj0 +
N∑
j=j0

(
j∏

k=j0

aαk
k

)
a

1−Aj

j − a1−Aj

j+1

Aj − 1
.

As a consequence, in order to obtain the estimate (16), we will prove that for every
multi-index ᾱ, with αj0 = 1, the following estimate is sharp

aj0 + aj0

j1−1∑
j=j0

log

(
aj+1

aj

)
+

N∑
j=j1

(
j∏

k=j0

aαk
k

)
a

1−Aj

j − a1−Aj

j+1

Aj − 1
(19)

≤p
′

p!

∫ aj0

0

N∏
j=j0

logαj

(aj
x

)
dx =

p′

p!
aj0

∫ 1

0

N∏
j=j0

logαj

(
aj
aj0x

)
dx.
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A second kind of bounds will consist in proving that the following inequality is
optimal and holds for every multi-index ᾱ, with αj0 ≥ 2,

(20) aj0 +
N∑
j=j0

(
j∏

k=j0

aαk
k

)
a

1−Aj

j − a1−Aj

j+1

Aj − 1
≤ p′

p!
aj0

∫ 1

0

N∏
j=j0

logαj

(
aj
aj0x

)
dx.

First of all, let us prove (20). Since in the expression to be estimated, all the
variables aj involved correspond to j0 ≤ j ≤ N , we can assume, without loss of
generality, that j0 = 1. We adopt the notation α1 = α and separate in (20) the
term with j = j0 = 1. Let us consider, then, the following function Φ of N variables
(a1, · · · , aN) restricted to the set 0 < a1 ≤ · · · ≤ aN ,

Φ(a1, · · · , aN) = a1 +
aα1

α− 1
(a1−α

1 − a1−α
2 )

+
N∑
j=2

(
j∏

k=2

aαk
k

)
a

1−Aj

j − a1−Aj

j+1

Aj − 1
− p′

p!
a1

∫ 1

0

logα
(

1

x

) N∏
j=2

logαj

(
aj
a1x

)
dx.

With this notation, (20) is equivalent to proving that Φ(a1, · · · , aN) ≤ 0, on the set
0 < a1 ≤ · · · ≤ aN .

Dividing all the expression above by a1 > 0, and renaming the variables as rj =
a1/aj, 1 ≤ j ≤ N , our problem is equivalent to consider the function

Ψ(1,r2, · · · , rN) =
α

α− 1
− rα−1

2

α− 1

+
N∑
j=2

(
j∏

k=2

r−αk
k

)
r
Aj−1
j − rAj−1

j+1

Aj − 1
− p′

p!

∫ 1

0

logα
(

1

x

) N∏
j=2

logαj

(
1

rjx

)
dx,

restricted to the set S where 0 < rN ≤ · · · ≤ r2 ≤ 1 = r1 and with the assumption
rN+1 = 0. Also, without loss of generality, we assume αN ≥ 1, otherwise there is
no dependence of the variable rN . We will prove that on S the function attains its
maximum at the point 1 = r2 = · · · = rN . Since

Ψ(1, · · · , 1) = 1 +
1

p− 1
− p′

p!

∫ 1

0

logp
(

1

x

)
dx = p′ − p′

p!
Γ(p+ 1) = 0,

this would prove that the inequality (20) is sharp. We are going to show that Ψ is
an increasing function with respect to the variable rN on the set S. Computing its
partial derivative, we obtain

∂Ψ

∂rN
(1, r2, · · · , rn) = − αN

p− 1

N−1∏
k=2

r−αk
k r

AN−1−2
N

+
p′

p!

αN
rN

∫ 1

0

logα
(

1

x

)N−1∏
j=2

logαj

(
1

rjx

)
logαN−1

(
1

rNx

)
dx.

Therefore, in order to prove that this derivative is positive on the set S, we must
justify that the following inequality holds on S,

N−1∏
k=2

r−αk
k r

AN−1−1
N ≤ 1

(p− 1)!

∫ 1

0

logα
(

1

x

)N−1∏
j=2

logαj

(
1

rjx

)
logαN−1

(
1

rNx

)
dx.
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But, since rN ≤ rk ≤ 1, for k ≥ N − 1,

N−1∏
k=2

r−αk
k r

AN−1−1
N =

N−1∏
k=2

(
rN
rk

)αk

≤ 1

=
1

(p− 1)!

∫ 1

0

logα
(

1

x

)N−1∏
j=2

logαj

(
1

x

)
logαN−1

(
1

x

)
dx

≤ 1

(p− 1)!

∫ 1

0

logα
(

1

x

)N−1∏
j=2

logαj

(
1

rjx

)
logαN−1

(
1

rNx

)
dx,

and we are done. In this way, we will put rN = rN−1 and consider the function of
N − 2 variables Ψ(1, r2, · · · , rN−1, rN−1) on the set 0 < rN−1 ≤ · · · ≤ r2, which will
also define an increasing function on this set with respect the variable rN−1, and
then we proceed recursively by considering, for any 2 ≤ k ≤ N − 1, the function of
k − 1 variables

Ψ(1, r2, · · · , rk, · · · , rk) =
α

α− 1
− rα−1

2

α− 1
+

k−1∑
j=2

(
j∏
i=2

r−αi
i

)
r
Aj−1
j − rAj−1

j+1

Aj − 1

+

k−1∏
i=2

r−αi
i

N∏
i=k

r−αi
k

AN − 1
rAN−1
k − p′

p!

∫ 1

0

logα
(

1

x

) k−1∏
j=2

logαj

(
1

rjx

)
logp−Ak−1

(
1

rkx

)
dx,

and its partial derivative with respect to the last variable rk is equal to

− Ak−1 − p
p− 1

k−1∏
i=2

r−αi
i r

Ak−1−2
k

+
p′

p!

p− Ak−1

rk

∫ 1

0

logα
(

1

x

) k−1∏
j=2

logαj

(
1

rjx

)
logp−Ak−1−1

(
1

rkx

)
dx.

Similarly, as in the previous case, we have that this derivative is positive on the set
0 < rk ≤ · · · ≤ r2 ≤ 1 due to the chain of inequalities

k−1∏
i=2

r−αi
i r

Ak−1−1
k =

k−1∏
k=2

(
rk
ri

)αi

≤ 1 =
1

(p− 1)!

∫ 1

0

logα
(

1

x

)
logp−α−1

(
1

x

)
dx

≤ 1

(p− 1)!

∫ 1

0

logα
(

1

x

) k−1∏
j=2

logαj

(
1

rjx

)
logp−Ak−1−1

(
1

rkx

)
dx.

By this procedure, we can finally reduce the number of the variables until we just
consider, on the set 0 < r2 ≤ 1, the function

Ψ(1, r2, · · · , r2) =
α− rα−1

2

α− 1
+

N∏
i=2

r−αi
2 rp−1

2

p− 1
− p′

p!

∫ 1

0

logα
(

1

x

) N∏
j=2

logαj

(
1

r2x

)
dx.
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As before, we can prove that its derivative in r2 ∈ (0, 1] is also positive and, therefore,
on the set 0 < rN ≤ · · · ≤ r2 ≤ 1

Ψ(1, r2, · · · , rN) ≤ Ψ(1, · · · , 1) = 0,

which ends the proof of (20).

We now proceed with estimate (19). As in the previous case, we can assume
that j0 = 1, since all the variables aj involved in (19) are those with j0 ≤ j ≤ N .
Therefore, we are considering a multi-index ᾱ, with α1 = 1, Aj = 1, 1 ≤ j ≤ j1 − 1,
Aj ≥ 2, for j1 ≤ j ≤ N . Then, dividing the inequality by a1 and defining the
variables ri = a1/ai, 1 ≤ i ≤ N , we have to prove the following inequality, provided
that 0 < rN ≤ · · · ≤ r2 ≤ r1 = 1:

1+log

(
1

rj1

)
+

N∑
j=j1

(
j∏

k=j1

r−αk
k

)
r
Aj−1
j − rAj−1

j+1

Aj − 1
≤ p′

p!

∫ 1

0

log

(
1

x

) N∏
j=j1

logαj

(
1

rjx

)
dx.

Note that the assumptions on the multi-index ᾱ imply that just the variables rj,
with j1 ≤ j ≤ N , appear in the above inequality. We are also assuming that
rN+1 = 0. Let us define the following function restricted to the set S such that
0 < rN ≤ · · · ≤ rj1 ≤ r1 = 1:

Ψ(1, rj1 , · · · , rN) = 1 + log

(
1

rj1

)
+

N∑
j=j1

(
j∏

k=j1

r−αk
k

)
r
Aj−1
j − rAj−1

j+1

Aj − 1

− p′

p!

∫ 1

0

log

(
1

x

) N∏
j=j1

logαj

(
1

rjx

)
dx.

Our goal is to prove that Ψ(1, rj1 , · · · , rN) ≤ 0 on S. We proceed in the same
recursive way as before, proving that Ψ is an increasing function on S, first in the
variable rN and hence reducing the number of variables, since the role of rN is
assumed by rN−1. The process continues until we are restricted to the study of the
function defined on just one variable 0 < rj1 ≤ 1:

Ψ(1, rj1 , · · · , rj1) = 1 + log

(
1

rj1

)
+

1

p− 1

− p′

p!

∫ 1

0

log

(
1

x

) N∏
j=j1

logαj

(
1

rj1x

)
dx

= p′ + log

(
1

rj1

)
− p′

p!

∫ 1

0

log

(
1

x

)
logp−1

(
1

rj1x

)
dx.

Its derivative is

Ψ′(1, rj1 , · · · , rj1) = − 1

rj1
+

1

(p− 1)!

1

rj1

∫ 1

0

log

(
1

x

)
logp−2

(
1

rj1x

)
dx

≥ − 1

rj1
+

1

(p− 1)!

1

rj1

∫ 1

0

logp−1

(
1

x

)
dx = 0.

Since Ψ(1, · · · , 1) = 0, we conclude that the maximum in the set S of the function
Ψ is attained at point (1, · · · , 1), and the sharp estimate (19) is obtained. �
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In Section 5 we will make some comments about the optimality of the constant
D, on Theorem 3.3, and the remaining cases regarding C and F (see Table 1).

4. Endpoint estimates

We start the study of the endpoint estimates for the case p =∞.

Proposition 4.1. Let f ∈ L∞(R+), then following sharp estimates hold:

(i) If f is a decreasing function,

‖Sf − f‖∞ ≤ ‖f‖∞.
Thus, A = 1.

(ii) If f is a positive function,

‖Sf − f‖∞ ≤ ‖f‖∞.
Thus, B = 1.

(iii) If f is a general function,

(21) ‖Sf − f‖∞ ≤ 2‖f‖∞.
Thus, C = 2 (see [2, equation (5.5)]).

Proof. Let us first prove part (i). Since |Sf(x) − f(x)| = Sf(x) − f(x) ≤ Sf(x),
then

‖Sf − f‖∞ ≤ ‖Sf‖∞ ≤ ‖f‖∞.
In order to see that this estimate is sharp, we just consider the decreasing function
f(x) = χ(0,1)(x), for which

Sf(x)− f(x) =
1

x
χ(1,∞)(x).

Thus,
‖Sf − f‖∞ = ‖f‖∞ = 1.

To prove part (ii), we observe that for every positive function f ,

|Sf(x)− f(x)| ≤ max{Sf(x), f(x)}.
Then

‖Sf − f‖∞ ≤ max{‖Sf‖∞, ‖f‖∞} ≤ ‖f‖∞.
Also the sharpness in this last estimate follows by considering the same characteristic
function as in part (i).

Finally, for the proof of part (iii), we observe that trivially,

‖Sf − f‖∞ ≤ ‖Sf‖∞ + ‖f‖∞ ≤ 2‖f‖∞.
The fact that the constant 2 is sharp in the inequality above follows by considering
f(x) = χ(0,1)(x)− χ(1,2)(x), for which Sf(x)− f(x) = 2

x
χ(1,2)(x) and hence

‖Sf − f‖∞ = 2 = 2‖f‖∞.
�

We now deal with the remaining constants relating S and S∗, in the case p =∞.
Observe that since, for any decreasing function f , ‖S∗f‖∞ =∞, then D = 0 and we
just need to consider the cases of positive and general functions, constants E and
F , respectively.
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Proposition 4.2. Let f ∈ L∞(R+), then following sharp estimates hold:

(i) If f is a positive function,

‖Sf‖∞ ≤ ‖S∗f‖∞.
Thus, E = 1.

(ii) If f is a general function,

‖Sf‖∞ ≤ 2‖S∗f‖∞.
Thus, F = 2.

Proof. Part (i) easily follows since, for a fixed t > 0,

‖S∗f‖∞ =

∫ ∞
0

f(s)
ds

s
≥
∫ t

0

f(s)
ds

s
≥ Sf(t).

The optimality of the inequality is due to the fact that, for fr(x) = χ(r,r+1)(x),

‖Sfr‖∞ =
1

r + 1
and ‖S∗fr‖∞ = log

(
r + 1

r

)
.

Thus

lim
r→∞

‖Sfr‖∞
‖S∗fr‖∞

= 1.

Part (ii) is a consequence of Proposition 4.1 (iii) and Lemma 1.2. The sharpness
in the inequality follows by considering, for ε > 0,

fε(x) =
x

ε

(
χ(1−ε,1+ε)(x)− χ(2−ε,2)(x)

)
.

Then

S∗fε(x) = χ(0,1−ε)(x) +
1− x
ε

χ(1−ε,1+ε)(x)− χ(1+ε,2−ε)(x) +
x− 2

ε
χ(2−ε,2)(x).

Thus, for every ε > 0, ‖S∗fε‖∞ = 1, and for 1 + ε < x < 2 − ε, we have that
Sfε(x) = 2/x. Hence,

‖Sfε‖∞ ≥
2

1 + ε
and

2 = lim
ε→0

2

1 + ε
≤ lim inf

ε→0+

‖Sfε‖∞
‖S∗fε‖∞

.

�

Continuing with the study of the endpoint cases, we now address what happens
for p = 1. We start with the action of S − Id on L1(R+) to obtain weak-type
estimates. The sharp bound 1/log 2, for any f ∈ L1(R+), was obtained in [2] (see
also [3] for further extensions to weak-type Lp estimates, 1 ≤ p ≤ 2). In part (iii)
below we will give a simpler argument to prove optimality, which will be useful in
the proof of Proposition 4.4 (iii).

Proposition 4.3. Let f ∈ L1(R+), then following sharp estimates hold:

(i) If f is a decreasing function,

‖Sf − f‖1,∞ ≤ ‖f‖1.

Thus, A = 1.
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(ii) If f is a positive function,

‖Sf − f‖1,∞ ≤ ‖f‖1.

Thus, B = 1.
(iii) If f is a general function,

‖Sf − f‖1,∞ ≤
1

log 2
‖f‖1.

Thus, C = 1/ log 2 (see [2, Theorem 3.3]).

Proof. To prove parts (i) and (ii), let us consider f ≥ 0 and t > 0, and define
αt = sup{x > 0 : Sf(x) ≥ t}. Thus Sf(x) < t, if x > αt. Observe that, since
f ∈ L1(R+), lim

x→∞
Sf(x) = 0, and αt <∞. Also,

|Sf(x)− f(x)| ≤ max{f(x), Sf(x)}.

Thus,

|{x > 0 : |Sf(x)− f(x)| > t}| = |{x ≤ αt : |Sf(x)− f(x)| > t}|
+ |{x > αt : |Sf(x)− f(x)| > t}|

≤ αt + |{x > αt : f(x) > t}|

≤ 1

t

∫ αt

0

f(x) dx+
1

t

∫ ∞
αt

f(x) dx =
1

t
‖f‖1.

Therefore, for every f ≥ 0

(22) ‖Sf − f‖1,∞ ≤ ‖f‖1.

Since for the decreasing function g(x) = χ(0,1)(x), ‖g‖1 = 1, Sg(x) − g(x) =
1
x
χ(1,∞)(x), we get

‖Sg − g‖1,∞ = sup
0<λ≤1

λ
1− λ
λ

= 1.

This proves that (22) is optimal, for both the cone of decreasing functions and the
cone of positive functions.

Part (iii) is a consequence of [2, Theorem 3.3]. The optimality of the constant
can be obtained by considering, for any k ∈ N, the family of functions defined as

(23) gk(x) = kχ(0,1/k)(x)− log xχ(1,2)(x).

Moreover, for this function ‖gk‖1 = 2 log 2, and

Sgk(x)− gk(x) =
1

x
χ(1/k,1)(x) + χ(1,2)(x) +

2− log 4

x
χ(2,∞)(x).

Hence,

|{x > 0 : |Sgk(x)− gk(x)| ≥ 1}| = 2− 1

k
.

We obtain as a consequence,

(24) sup
f

‖Sf − f‖1,∞

‖f‖1

≥ lim
k→∞

‖Sgk − gk‖1,∞

‖gk‖1

≥ lim
k→∞

2− 1/k

2 log 2
=

1

log 2
,

and, therefore, the constant 1/ log 2 is sharp. �
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Proposition 4.4. Let f ∈ L1(R+), then following sharp estimates hold:

(i) If f is a decreasing function,

‖Sf‖1,∞ ≤ ‖S∗f‖1.

Thus, D = 1.
(ii) If f is a positive function,

‖Sf‖1,∞ ≤ ‖S∗f‖1.

Thus, E = 1.
(iii) If f is a general function,

‖Sf‖1,∞ ≤
1

log 2
‖S∗f‖1.

Thus, F = 1/log 2.

Proof. First of all we observe that, if f ≥ 0, Fubini’s theorem implies

‖S∗f‖1 = ‖f‖1.

Hence, sharp weak-type estimates of parts (i) and(ii) follow from the corresponding
well-known weak-type optimal estimate for the Hardy operator,

‖Sf‖1,∞ ≤ ‖S∗f‖1 = ‖f‖1.

As before, part (iii) is a consequence of Proposition 4.3 (iii) and Lemma 1.2. For
the optimality, if gk is as in (23), given j, k ∈ N, we choose gj,k such that gj,k → gk
in L1(R+) and there exists fj,k satisfying S∗(fj,k) = gj,k (observe that, necessarily,
gj,k is a continuous function). For example, it suffices to consider

fj,k(x) = jkxχ(1/k,1/k+1/j)(x) + χ(1,2)(x)− jx log 2χ(2,2+1/j)(x).

Thus, Sfj,k = Sgj,k − gj,k, S∗fj,k = gj,k and using (24)

F = sup
f

‖Sf‖1,∞

‖S∗f‖1

≥ lim
k→∞

lim
j→∞

‖Sgj,k − gj,k‖1,∞

‖gj,k‖1

= lim
k→∞

‖Sgk − gk‖1,∞

‖gk‖1

≥ 1

log 2
.

�

5. Further comments

In previous sections we have obtained all sharp constants of Table 1, A, . . . , F , for
the range 1 < p ≤ 2 and the endpoints p = 1,∞. For the remaining case 2 < p <∞,
we do know the values of A, B, and E. Let us review what can we say for the other
cases:

Remark 5.1. Theorem 3.3 shows that for p ≥ 2, an integer exponent, and f a
decreasing function in Lp(R+), the following inequality is sharp

(25) ‖Sf‖p ≤
(

p′

Γ(p+ 1)

)1/p

‖S∗f‖p;

i.e., D =
(

p′

Γ(p+1)

)1/p

, if p = 2, 3, 4, . . . Now, checking the inequality (25) with

f(x) = χ(0,1)(x), we also get that D ≥
(

p′

Γ(p+1)

)1/p

, for all values of p ≥ 2. Hence, it

is natural to conjecture that the estimate (25) holds and is sharp, for any p ≥ 2 .
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Up to now, the best we can say for a general p ≥ 2 is the following: recall that if
D is the sharp constant in the inequality,

‖Sf‖p ≤ D‖S∗f‖p,
valid for any decreasing f , then from the estimate (9) and the previous observation,
we have (

p′

Γ(p+ 1)

)1/p

≤ D ≤ 1

(p− 1)1/p
.

In order to give a better bound, we observe that for every decreasing function f ,
r > 1, and x > 0 ∫ ∞

x

f(t)

t
dx ≥ f(rx) log r.

Thus,

‖S∗f‖pp ≥ logp r

∫ ∞
0

fp(rx) dx =
logp r

r
‖f‖pp.

Optimizing this last inequality, we observe that since the maximum of g(r) = logp r/r
is attained at r = ep, the following inequality holds

‖S∗f‖p ≥
p

e
‖f‖p.

From here, using (2), it follows that for every decreasing function,

‖Sf‖p
‖S∗f‖p

≤ p′‖f‖p
p
e
‖f‖p

=
e

p− 1
.

Therefore,

(26)

(
p′

Γ(p+ 1)

)1/p

≤ D ≤ min

(
e

p− 1
,

1

(p− 1)1/p

)
.

Finally, observe that

lim
p→2+

(p− 1)

(
p′

Γ(p+ 1)

)1/p

= lim
p→2+

(p− 1) min

(
e

p− 1
,

1

(p− 1)1/p

)
= 1

and

lim
p→∞

(p− 1)

(
p′

Γ(p+ 1)

)1/p

= lim
p→∞

(p− 1) min

(
e

p− 1
,

1

(p− 1)1/p

)
= e.

Hence, the inequalities in (26) are asymptotically optimal, for p ≥ 2.

Remark 5.2. For general functions on the range 2 < p < ∞ (i.e., the constants
C and F ), we do not really have any conjecture about the possible values (see also
[2]). However, using Lemma 1.2 we can prove that F ≤ C.

Regarding C, if we interpolate the isometric property with p = 2 and (21) for
p =∞, and evaluating at f(x) = χ(0,1)(x)− χ(1,2)(x), we obtain that

21−2/p ≥ C ≥
(

2p−1 − 1

p− 1

)1/p

> 1 = B, p > 2.

Finally, observe that

lim
p→2+

21−2/p = lim
p→2+

(
2p−1 − 1

p− 1

)1/p

= 1



18 SANTIAGO BOZA AND JAVIER SORIA

and

lim
p→∞

21−2/p = lim
p→∞

(
2p−1 − 1

p− 1

)1/p

= 2.

Using these estimates and as we did in the proof of Proposition 4.4 (iii), we can
also obtain a similar result for F :

21−2/p ≥ C ≥ F ≥
(

2p−1 − 1

p− 1

)1/p

> 1 >
1

(p− 1)1/p
= E, p > 2.
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