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Abstract

T -generable indistinguishability operators are operators E that can be expressed in the form E = T (Eμ1 , Eμ2 , ..., Eμm), where 
T is a t-norm and Eμ is the fuzzy relation generated by the fuzzy subset μ. In this paper we analyse their relation with powers 
with respect to the t-norm T and with quasi-arithmetic means. For non-strict continuous Archimedean t-norms they are completely 
characterised as generable by crisp equivalence relations. These fuzzy relations are used to define a method, called JADE, useful 
for feature selection and classification tasks. JADE is based on minimising the distance between two indistinguishability measures: 
the one given by weighting the attribute-values describing the domain objects and the other one given by the correct classification 
taken as an equivalence relation. The preliminary experiments we carried out with JADE are promising concerning the accuracy in 
solving classification tasks. We also report some issues of the method that could be improved in the future.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Indistinguishability operators fuzzify the concept of equivalence relation. The flexibility in the selection of a spe-
cific t-norm to model their transitivity and the possibility of assessing degrees of relationship between the elements 
of a system make them very useful when the presence of uncertainty and inaccuracy requires a soft equivalence or 
equality.

One of the main issues on indistinguishability operators is their generation and representation. Every fuzzy subset 
μ of a universe X generates an indistinguishability operator Eμ on X in a very natural way [1]. In particular, for 
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a crisp set A of X, EA is the equivalence relation associated to the partition of X generated by A (i.e., A and its 
complementary A).

The important Representation Theorem [1] states that a fuzzy relation E on a set X is an indistinguishability 
operator if and only if there exists a family (μi)i∈I of fuzzy subsets of X such that E = infi∈I Eμi

. In this way an 
indistinguishability operator can be generated by a family of features or attributes expressed by the corresponding 
fuzzy subsets. Nevertheless, this way of generating indistinguishability operators presents a drawback: for a couple 
x, y ∈ X only one fuzzy subset is used in the calculation of E(x, y). Other methods have been proposed such as the 
use of weighted quasi-arithmetic means, OWA operators or calculating T (Eμ1, Eμ2, ..., Eμm) [2–4].

Bezdek and Harris wrote the first paper dealing with the aggregation of T -indistinguishability operators and using 
the weighted arithmetic mean [5]. They study indistinguishability operators obtained as weighted arithmetic means of 
crisp equivalence relations. These authors also introduce a method for averaging crisp equivalence relations obtaining 
a fuzzy relation, although they do not characterise these T -indistinguishability operators.

Inspired by [5], we continue the study of the aggregation of indistinguishability operators in universes of finite 
cardinality for continuous Archimedean t-norms. First, we generalise the use of quasi-arithmetic means by showing 
that the weights do not need to sum up to one in order to obtain indistinguishability operators. Then we relate this 
result with powers with respect to the t -norm T as defined in [6–8]. T -generable indistinguishability operators E
are those that can be obtained as T (Eμ1, Eμ2, ..., Eμm), where μ1, μ2, ..., μm are fuzzy subsets of the universe. We 
define the set M(X) = {t [−1](

∑
A⊆X pA · t (EA)) | pA ≥ 0} of operators such that the t -norm T is non-strict continuous 

Archimedean, and t is one of its additive generators, and then we prove that E is T -generable if and only if it belongs 
to M(X) (Proposition 2.24). Also T -indistinguishability operators obtained as quasi-arithmetic means of Eμi

(where 
i = 1, 2, ..., m) are proved to be T -generable. In Section 2 we give some preliminaries explaining indistinguishable 
operators, fuzzy similarity relations and some interesting properties of them.

Indistinguishability (or Similarity) operators are the central issue of two subfields of Machine Learning: clustering 
and classification. The goal of clustering is to group objects by similarity. Behind classification, there is also the 
idea of similarity. However, here it is used during problem solving when the goal is to determine the class of a new 
unseen object. In Section 3 we explain how indistinguishability relations are used in machine learning mainly for 
solving classification tasks. In Section 4 the new problem solving method called JADE is introduced. We illustrate 
the explanation of the method with a running example. Section 5 shows the results of the experiments we carried out. 
These experiments are addressed to analyse the accuracy however, due to the complexity of JADE, we have led to 
explore some procedures to cluster the input data base. We also analyse how the partition of the data set influences the 
performance of the method. Finally, Section 6 is devoted to conclusions and future work.

2. T -generable indistinguishability operators

In many real situations the objects do not necessarily satisfy a property categorically, but rather satisfy it only at 
some level or degree (think for example of the property to be rich). In these cases, properties are fuzzy concepts and in 
particular we can not talk about completely equivalent objects, but a certain degree of similarity must be introduced. 
In this way, the equivalence becomes to a fuzzy concept and must be based on the concept of indistinguishability 
operator that is formalised in Definition 2.6.

First, let us recall some basic facts on continuous t-norms. In this section some already known results will be 
referred to suitable literature.

Definition 2.1. [7] A continuous t-norm is a map T : [0, 1] × [0, 1] → [0, 1] such that for all x, y, z ∈ [0, 1] satisfies

1. T (T (x, y), z)) = T (x, T (y, z)) (Associativity)
2. T (x, y) = T (y, x) (Commutativity)
3. T (1, x) = x

4. T is a non-decreasing map
5. T is a continuous map

Commutativity can be derived from the other properties although the proof is not trivial.
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Example 2.2. [7]

1. The minimum t-norm min defined by min(x, y) for all x, y ∈ [0, 1].
2. The t-norm of Łukasiewicz defined by T (x, y) = max(0, x + y − 1).
3. The Product t-norm T (x, y) = x · y.

This paper will only deal with continuous Archimedean t-norms. Throughout the paper we will use the following 
characterisation of these t-norms.

Theorem 2.3. [7] A continuous t-norm T is Archimedean if and only if there exists a continuous and strictly decreas-
ing function t : [0, 1] → [0, ∞) with t (1) = 0 such that

T (x, y) = t [−1](t (x) + t (y))

where t [−1] is the pseudo inverse of t , defined by

t [−1](x) =
{

t−1(x) if x ∈ [0, t (0)]
0 otherwise.

T is strict if t (0) = ∞, and non-strict otherwise. The function t is called an additive generator of T and two generators 
of the same t-norm differ only by a positive multiplicative constant.

As it is clear from the definition of t [−1], t [−1](x) can be replaced by t−1(x) whenever x ∈ [0, t (0)].

Example 2.4. [7]

1. t (x) = 1 − x is an additive generator of the t-norm of Łukasiewicz.
2. t (x) = − log(x) is an additive generator of the Product t-norm.

Definition 2.5. [7] Let T be a left continuous t-norm.

1. The residuation 
−→
T of T is defined for all x, y ∈ [0, 1] by

−→
T (x|y) = max{α ∈ [0,1] | T (α, x) ≤ y}

2. The biresiduation 
←→
T of T is defined for all x, y ∈ [0, 1] by

←→
T (x, y) = min(

−→
T (x|y),

−→
T (y|x))

Definition 2.6. [9,10] Let X be a universe and T a t -norm. A T -indistinguishability operator or similarity relation E
on X is a fuzzy relation E : X × X → [0, 1] on X, satisfying for all x, y, z ∈ X the following properties:

1. E(x, x) = 1 (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)

E(x, y) is interpreted as the degree of similarity, equivalence, or indistinguishability between x and y.
A subset A of a universe X defines a partition of X into two classes in a straightforward way: A and its comple-

mentary set A. This partition has associated an equivalence relation. In a similar way, we will see in Proposition 2.7
that a fuzzy subset μ of X generates a similarity relation Eμ in a natural way. Hence, the attributes of the objects of 
X, considered as fuzzy subsets, generate similarity relations (indistinguishability operators) on X.

Proposition 2.7. [1] Let μ be a fuzzy subset of X. The fuzzy relation on X defined for all x, y ∈ X by Eμ(x, y) =←→
T (μ(x), μ(y)) is a T -indistinguishability operator.
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A particular case of this proposition is the following corollary:

Corollary 2.8. [1] If T is a continuous Archimedean t-norm and t an additive generator of T , then Eμ(x, y) =
t−1(|t (μ(x)) − t (μ(y))|).

In particular,

• If Ł is the Łukasiewicz t-norm, then Eμ(x, y) = 1 − |μ(x) − μ(y)|.
• If P is the Product t-norm, then Eμ(x, y) = min(

μ(x)
μ(y)

, μ(y)
μ(x)

).

Lemma 2.9. If A ⊆ X is a crisp subset of X, then EA is the crisp equivalence relation generated by the partition 
{A, A} of X generated by A

EA(x, y) =
{

1 if x, y ∈ A or x, y ∈ A

0 otherwise

for all x, y ∈ X.

Proof. Trivial. �
Lemma 2.10. Let A ⊆ X be a subset of X and A its complementary. Then EA = EA.

Proof. Trivial. �
Definition 2.11. [2] Let T be a continuous Archimedean t-norm with additive generator t . For weights p1, p2, ..., pk ∈
[0, 1] such that 

∑k
i=1 pi = 1 we can associate to T the quasi-arithmetic mean m

p1,p2,...,pk
t defined for all 

x1, x2, ..., xk ∈ [0, 1] as follows

m
p1,p2,...,pk
t (x1, x2, ..., xk) = t−1(

k∑
i=1

pit (xi)).

Example 2.12. [2]

• If T is the t-norm of Łukasiewicz, then mt is the weighted arithmetic mean.
• If T is the Product t-norm, then mt is the weighted geometric mean.

It is known [2,3] that the weighted quasi-arithmetic mean mp1,p2,...,pk
t (where t is an additive generator of T ) of 

a finite family of T -indistinguishability operators on a set X is also a T -indistinguishability operator on X. Next 
proposition generalises this result by imposing only that the numbers pi have to be non-negative.

Proposition 2.13. Let T be a continuous Archimedean t-norm, t an additive generator of T , E1, E2, ..., Ek

T -indistinguishability operators on a set X, and p1, p2, ..., pk non-negative real numbers. Then the fuzzy relation 
E on X defined for all x, y ∈ X as

E(x, y) = t [−1](p1 · t (E1(x, y)) + p2 · t (E2(x, y)) + ... + pk · t (Ek(x, y)))

is a T -indistinguishability operator on X.

The fuzzy relation E can also be denoted by mp1,p2,...,pk
t (E1, E2, ..., Ek).

When the sum of the numbers pi is less than or equal to one, the last proposition can be rewritten in the following 
way in the case.

Proposition 2.14. Let T be a continuous Archimedean t-norm, t an additive generator of T , E1, E2, ..., Ek

T -indistinguishability operators on a set X, and p1, p2, ..., pk non-negative real numbers with 
∑k

i=1 pi ≤ 1. Then the 
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T -indistinguishability operator E on X defined by mp1,p2,...,pk
t (E1, E2, ..., Ek) is the weighted quasi-arithmetic mean 

m
p1,p2,...,pk,1−∑k

i=1 pi

t (E1, E2, ..., Ek, 1) where 1 is the universal T -indistinguishability operator 1(x, y) = 1 for all 
x, y ∈ X.

Proof. Trivial, since t (1) = 0. �
In [6–8], the power of an element x ∈ [0, 1] with respect to a positive real number p and a given t -norm T is 

defined generalising the power x(n) = T (

n times︷ ︸︸ ︷
x, x, ..., x) n ∈ N to any p ≥ 0. This generalization has been fruitful in 

different fields as can be seen, for instance, in [11–13]. For continuous Archimedean t-norms the following result is 
known.

Proposition 2.15. [6] Let T be a continuous Archimedean t-norm, t an additive generator of T and p ≥ 0. Then,

• x(p) = t [−1](p · t (x)) for all x ∈ [0, 1].
• E(p) is a T -indistinguishability operator on X if E is.

Thanks to Proposition 2.14, x(p) can be interpreted as an average between x and 1 if 0 ≤ p ≤ 1.

Proposition 2.16. Let T be a continuous Archimedean t-norm, t an additive generator of T and p ∈ [0, 1]. Then,

• x(p) = m
p,1−p
t (x, 1) for all x ∈ [0, 1].

• E(p) = m
p,1−p
t (E, 1) for all T -indistinguishability operators E on X.

The next lemma shows that the power E(p) of a T -indistinguishability operator generated by a fuzzy subset μ can 
also be generated by the fuzzy subset μ(p).

Lemma 2.17. Let T be a continuous Archimedean t-norm, t an additive generator of T , X a set, μ a fuzzy subset of 
X, and p ∈ [0, 1]. Then (Eμ)(p) = Eμ(p) .

Proof. For x, y ∈ X,

(Eμ)(p)(x, y) = t−1(p · |t (μ(x)) − t (μ(y))|) = t−1(|p · t (μ(x)) − p · t (μ(y))|)
Since μ(p) = t−1(p · t (μ)), the last member is equal to Eμ(p) . �

We next define the concept of T -generability for a T -indistinguishability operator.

Definition 2.18. Let T be a t-norm, X a set and E a T -indistinguishability operator on X. Then E is T -generable if 
there exists a finite family μ1, μ2, ..., μm of fuzzy subsets of X such that E = T (Eμ1, Eμ2, ..., Eμm).

Proposition 2.19. Let T be a continuous Archimedean t-norm, t an additive generator of T , X a finite set, 
μ1, μ2, ..., μm fuzzy subsets of X, and p1, p2, ..., pm ∈ [0, 1]. Then the T -indistinguishability operator

E = m
p1,p2,...,pm
t (Eμ1,Eμ2, ...,Eμm)

on X is T -generable.

Proof.

E = m
p1,p2,...,pm
t (Eμ1,Eμ2, ...,Eμm)

= t−1(p1 · t (Eμ1) + p2 · t (Eμ2) + ... + pm · t (Eμm)),

μ
(p) = t−1(pi · t (μi)) i = 1, 2, ..., m and by Lemma 2.17, the equation above equals
i
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t−1(t (E
μ

(p)
1

) + t (E
μ

(p)
2

) + ... + t (E
μ

(p)
m

)) =
= T (E

μ
(p)
1

,E
μ

(p)
2

, ...,E
μ

(p)
m

). �
In particular, quasi-arithmetic means of T -indistinguishability operators generated by a fuzzy subset are 

T -generable.
The crisp equivalence relations EA generated by a crisp subset A of X will play a central role for characterizing 

T -generable indistinguishability operators.

Definition 2.20. Let T be a continuous Archimedean t-norm, t an additive generator of T , and X a finite set. The set 
M(X) of T -indistinguishability operators on X is defined by

M(X) = {t [−1](
∑
A⊆X

pA · t (EA)) | pA ≥ 0}.

If the t-norm is strict, then M(X) is the set of all crisp equivalence relations on X (Proposition 2.21). Most interest-
ing case is when T is non-strict since in such situation M(X) coincides with the set of T -generable indistinguishability 
operators (Proposition 2.24).

Proposition 2.21. Let T be a strict continuous Archimedean t-norm, t an additive generator of T , and X a finite set. 
Then M(X) is the set of crisp equivalence relations on X.

Proof. a) If E ∈ M(X), then E = t [−1](
∑

A⊆X pA · t (EA)). For x, y ∈ X and A ⊆ X, EA(x, y) equals either 0 or 
1. So t (EA(x, y)) is either ∞ or 0 and so is 

∑
A⊆X pA · t (EA(x, y)).

b) Let E be a crisp equivalence relation and {A1, A2, ..., Am} the associated partition of X in its equivalence classes. 
Then it is immediate to see that E = t [−1](

∑m
i=1 pi · t (EAi

)), for any p1, p2, ..., pm > 0. �
Proposition 2.22. Let T be a non-strict continuous Archimedean t-norm, t an additive generator of T , and X a finite 
set. Then the crisp equivalence relations on X are in M(X).

Proof. The same as in Proposition 2.21b), but considering p1, p2, ..., pm ≥ 1. �
Lemma 2.23. Let T be a non-strict Archimedean t-norm, t an additive generator of T , and μ a fuzzy subset of the 
finite set X = {x1, x2, ..., xn}. Then Eμ ∈ M(X).

Proof. We can assume without loss of generality that μ(xi) ≤ μ(xj ) if i < j , therefore

Eμ = t−1(
1

t (0)

n−1∑
i=1

(t (μ(xi+1)) − t (μ(xi)) · t (E{x1,x2,...,xi })).

Taking into account both t (1) = 0 and

E{x1,x2,...,xi }(xj , xj+k) =
{

1 if j + k ≤ i or j > i

0 if j ≤ i < j + k

we have that

t−1(
1

t (0)

n−1∑
i=1

(t (μ(xi+1)) − t (μ(xi)) · t (E{x1,...,xi }(xj , xj+k))

= t−1(
1

t (0)

j+k−1∑
i=j

(t (μ(xi+1)) − t (μ(xi)) · t (0)) = t−1(t (xj+k) − t (xj ))

= t−1(|t (xj+k) − t (xj )|) = Eμ(xj , xj+k). �
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In the non-strict case, the next proposition characterises the T -generable indistinguishability operators as the ones 
in M(X).

Proposition 2.24. Let T be a non-strict continuous Archimedean t-norm, t an additive generator of T , X =
{x1, x2, ..., xn} a finite set, and E a T -indistinguishability operator on X. Then E is T -generable if and only if 
E ∈ M(X).

Proof.

⇐) If E ∈ M(X), then there exist some subsets A1, A2, ..., Am of X and p1, p2, ..., pm > 0 such that E =
t [−1](

∑m
i=1 pi · t (EAi

)).
For each i = 1, 2, ..., m we can define the fuzzy subset μi of X:

μi(xj ) =
{

1 if xj ∈ Ai

t [−1](t (0) · pi) otherwise.

Therefore E = T (Eμ1, Eμ2, ..., Eμm).
⇒) Suppose E = T (Eμ1, Eμ2, ..., Eμm). From Lemma 2.23, for l = 1, 2, ..., m

Eμl
= t−1(

1

t (0)

kl∑
i=1

pli EAli
) kl ∈N pli ≥ 0 Ali ⊆ X,

E = T (Eμ1,Eμ2, ...,Eμm) = t [−1](t (Eμ1) + t (Eμ2) + ... + t (Eμm))

= t [−1](t (t−1(
1

t (0)

k1∑
i=1

p1i
EA1i

)) + ... + t (t−1(
1

t (0)

km∑
i=1

pmi
EAmi

)))

= t [−1]( 1

t (0)

k1∑
i=1

p1i
EA1i

+ · · · + 1

t (0)

km∑
i=1

pmi
EAmi

). �

Corollary 2.25. Let T be a non-strict continuous Archimedean t-norm and X a finite set. Then the crisp equivalence 
relations on X are T -generable.

Proof. It is a consequence of Proposition 2.22. �
Definition 2.26. Let T be a t-norm and E a T -generable indistinguishability operator on a set X. The minimum 
number of fuzzy subsets of X needed to T -generate E is called its T -dimension (dimT (E)).

From the Proposition 2.24 we obtain the following corollary.

Corollary 2.27. Let T be a non-strict continuous Archimedean t-norm, t an additive generator of T , X a finite set, 
and E a T -generable indistinguishability operator on X. If E = t [−1](

∑m
i=1 pi · t (EAi

)), then dimT (E) ≤ m.

The next result provides a (very rough) upper bound to the T -dimension of a T -generable indistinguishability 
operator.

Corollary 2.28. Let T be a non-strict continuous Archimedean t-norm, t an additive generator of T , X a finite set of 
cardinality n, and E a T -generable indistinguishability operator on X. Then, dimT (E) ≤ 2n−1.

Proof. The maximum number of subsets of X involved in the representation E = t [−1](
∑m

i=1 pi · t (EAi
)) with pi �= 0

for i = 1, 2, ..., m is 2n. Since EA = EA (Lemma 2.10), we get the upper bound. �
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3. Indistinguishability operators in Machine Learning

Machine Learning algorithms can be classified in two families according to the nature of the input examples: su-
pervised and unsupervised. Supervised learning methods handle labelled input examples. For instance, let us suppose 
we have a set of animals A that according to their morphological description can be classified as bird, reptile or fish. 
The labels indicate the membership of an animal to one of these groups. Let x be a new unseen animal we want to 
classify. The process for its classification is to assess the similarity of x to each one of the known animals of the set A
and to determine the class of x according to these similarities. This is the idea of the k-NN algorithm [14], the basic 
algorithm of Case-based Reasoning (CBR) [15]. The k-NN algorithm classifies an unseen object based on the classes 
of the k most similar objects. Domain objects are commonly described as attribute-value pairs where such values can 
be both categorical or numerical.

The global similarity between two domain objects is assessed by measuring the local similarity of each one of 
the attributes and then, by aggregating these local similarities. Thus, given two domain objects X = (x1, . . . , xn) and 
Y = (y1, . . . , yn) described by n attributes (where xi and yi are the values of the ith attribute of X and Y respectively), 
the global similarity between X and Y is assessed as follows:

Sim(X,Y ) = @n
i=1sim(xi, yi),

where @ is an aggregation function (for instance, the mean, the weighted mean, the OWA operator, etc), and 
sim(xi, yi) is the similarity between the values of the attribute ith of both objects. For instance, using the mean to 
aggregate the local similarities, we have:

Sim(X,Y ) = 1

n

n∑
i=1

sim(xi, yi). (1)

When the values of the attributes are numerical, sim is usually the dual of some normalised distance measure, for 
instance the Euclidean distance, the Minkowski distance or the Mahalanobis distance. Otherwise, when the values are 
categorical, the usual measure is the following:

sim(xi, yi) =
{

1, if xi = yi

0, otherwise.

Notice that in Eq. (1) all the attributes describing the domain objects have the same importance (weight). However, it 
should be possible to consider that some attributes are more important than others and to assess a different weight to 
them. In such situation the Sim function should be

Sim(X,Y ) =
n∑

i=1

pi · sim(xi, yi), with
n∑

i=1

pi = 1.

A different approach of supervised learning methods is the one taken by the inductive learning methods [16], 
where the goal is to construct a domain model that will be further used for classifying unseen objects. Such model 
is composed of discriminant descriptions for each class. Each description of a class Ci has the attributes considered 
as the most relevant for classifying an object as belonging to Ci . The key issue here is to determine such relevant 
attributes and several common measures are used to this purpose: the Gini’s index, the Quilan’s Information Gain, 
the Variance Reduction, etc (see [16]). Most of these measures assess the homogeneity resulting from selecting a 
particular attribute. The goal is to separate as much as possible the input objects according to the classes. The final 
descriptions have to be satisfied by objects of only one of the classes.

Unsupervised learning methods are used when input examples have not class labels. Common methods here are 
clustering methods. The goal of clustering methods is to group the examples by similarity. These groups are called 
clusters and each cluster satisfies that all its elements are more similar between them than to elements of other clusters. 
As in inductive learning methods, here is also key to determine which attributes are relevant to form the clusters.

The assessment of weights to attributes in both, inductive learning methods and clustering, is closely related with 
feature selection methods. Feature selection and feature extraction methods’ goal is to detect and eliminate redundant 
information and take only those features considered relevant for the task at hand. The selection of the appropriate 
features greatly influences the quality of the data used by the algorithms and, thus, the goodness of the final result. 
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Most of feature extraction and feature selection methods are based on similarities. One of the earliest feature selection 
methods is RELIEF [17], used in binary classification, which is an iterative algorithm that adjust the weight of an 
attribute using the formula:

W ′
i = Wi − (xi − nearHiti )

2 + (xi − nearMissi )
2,

where nearHiti is the closest instance to xi belonging to the same class and nearMissi is the closest instance to xi

belonging to a different class. Features are selected if their relevance is greater than a given threshold.
A different approach is the one taken in QPFS [18] where the feature selection problem is reformulated as an 

optimisation problem. The QPFS method works with an objective function that has two terms: one that is quadratic 
and another one that is linear. The quadratic term captures the dependence between each pair of variables whereas the 
linear term captures the relationship between each feature and the class label. Both terms are weighted by a parameter 
α that depends on the domain and that regulates what is preferred in such domain either the quadratic term or the linear 
term. The weights of the features are calculated using quadratic programming. In [18] the QPFS method is explained 
and also experimental results are reported. A similar approach is the one introduced by Zhang et al., [19] where the 
weights are also computed using quadratic programming. In the next section we propose a new approach, namely
JADE, that resembles to both QPFS and the method in [19] in the feature selection task since we also reformulate it 
as an optimisation method.

4. The JADE method

In this section we introduce JADE, a method useful for feature selection and classification, where the problem to 
assess the weights of the attributes has been reformulated as an optimisation problem like the methods in [18] and 
[19]. Conceptually, the idea is to minimise the distance between two indistinguishability relations: the one that gives 
the correct classification of the known examples and the other one that is a linear combination of the indistinguishable 
operators generated by the attributes describing the examples. Such distance is calculated using the Euclidean distance, 
so the function to be minimised is a quadratic one. As we prove in the experiments, JADE can be used for both feature 
selection and also as a classifier. Let us explain JADE in detail.

Let X be a set of labelled domain objects described by a set of attributes A = {a1, a2, . . . , an}, where the attributes 
ai are considered fuzzy subsets of X; and Eai

the Ł-indistinguishability operator generated by ai . Each xi ∈ X belongs 
to one solution class {C1, C2, . . . , Ck}, i.e., there are k classes where an unseen domain object could be classified. 
This is also a difference with approaches as QPFS or [19] since they work only on domains with two solution classes 
(although some further modifications allow to deal with more than two classes). On the set X we can induce two kinds 
of partitions:

• The correct partition that is the one that separates the objects in X according the solution classes C = {C1 . . .Ck}.
• The partitions induced by each attribute in A. Given an attribute aj ∈ A, the objects in X can be separated 

according to the value that they hold in the attribute aj .

In terms of similarity relations, the correct partition can be seen as an equivalence relation R on X, and each 
partition induced by an attribute aj can be seen as a local similarity relation Eaj

on the set X. Both R and each Eaj

can be represented as matrices such that:

• R is a m × m matrix (m being the number of objects in X) where each element rhl is equal to 1 if the objects xh

and xl belong to the same solution class and 0 otherwise.
• Eaj

is a m × m matrix where each element ehl is the similarity that the objects xh and xl with respect to the 
attribute aj .

Notice that the global similarity between two objects can be assessed by the weighted mean E = ∑n
i=1 Eai

pi of 
these local similarity relations.

Based on this, JADE considers the objective function as a distance function that measures how different (or similar) 
are two similarity relations: the one given by the global similarity of the attribute-value pairs describing the domain 
objects (E) and the one given by the correct classification taken as an equivalence relation (R). The goal of JADE is 
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a1 a2 a3 Class
x 0.3 0.2 0.8 C
y 0.2 0.4 0.7 D
z 0.5 0.6 0.2 C

R =
x y z

x 1 0 1
y 0 1 0
z 1 0 1

Fig. 1. Running example. The objects x, y and z are described by three attributes a1, a2 and a3, and there are two solution classes: C and D. At 
the right part, the matrix R representing the class equivalence relation among the domain objects.

to assess the weights pi for which E is closest to R. The weights pi associated to a similarity relation Eai
will denote 

the importance of the feature ai in the process of classifying the examples of X.
Let p1, p2, ..., pn ≥ 0 (with 

∑n
i=1 pi = 1) be the n weights associated to the n attributes describing the objects 

in X. The relation

E = p1 · Ea1 + p2 · Ea2 + ... + pn · Ean (2)

where the attributes ai are considered as fuzzy subsets of X, and Eai
is an Ł-indistinguishability operator on X

(Proposition 2.13). The Euclidean distance d between the relations E and R is defined in the usual way as follows:

d(E,R) =
√ ∑

i,j=1..k

(E(xi, xj ) − R(xi, xj ))2, (3)

where R is the equivalence relation associated to the correct partition and E is the Ł-indistinguishability operator in 
Eq. (2). The key issue in JADE is to minimise such distance, so we have to find the weights that minimise it. Therefore, 
the function in Eq. (3) is our objective function, the one we want to minimise using quadratic programming. In other 
words, our task is

minimise d(E,R)

subject to p1,p2, ..., pn ≥ 0
n∑

i=1

pi = 1.

The attributes generating similarity relations with higher weights help more to the resemblance of E to R. The 
weights of the attributes give an idea of which of them are the more relevant to describe a class (notice that the weight 
of some attributes could be zero). Also, the weights can be used to directly classify unseen objects since, following the 
idea of the k-NN algorithm, a new example y will be classified in the class of the example to which is more similar.

Even in the case in which all attributes are categorical – they generate crisp equivalence relations – the obtained 
relation E from them would be fuzzy containing all the information of these equivalence relations and weighted by 
adequate weights. This would not be possible if we were trying to find a crisp relation E.

In the next sections we will explain with a running example how JADE works for assessing the weights to the 
attributes and also how can be used for classifying unseen objects.

4.1. Running example

Let x, y, z be domain objects described by three attributes a1, a2 and a3 and belonging to one of the two solution 
classes C and D (Fig. 1). The partition induced by the classification of the objects is the equivalence relation R also 
shown in Fig. 1. Each component rij of R is equal to 1 if the corresponding objects belong to the same solution class 
and 0 otherwise. Thus, for instance, r13 = 1 because both x and z belong to the same class, and r12 = 0 because x and 
y belong to different classes.

The continuous attributes a1, a2 and a3 generate Ł-indistinguishability operators Ea1 , Ea2 and Ea3 (as shown in 
Corollary 2.8) that are matrices whose elements can be calculated using the biresiduation of the Łukasiewicz t-norm 
defined as 

←→
T (x, y) = 1 − |x − y|.

Thus, for instance, the elements of Ea1 have been calculated as follows:

Ea1(x.a1, y.a1) = 1 − |x.a1 − y.a1| = 1 − |0.3 − 0.2| = 0.9
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Ea1(x.a1, z.a1) = 1 − |x.a1 − z.a1| = 1 − |0.3 − 0.5| = 0.8

Ea1(y.a1, z.a1) = 1 − |y.a1 − z.a1| = 1 − |0.2 − 0.5| = 0.7,

where x.ai stands for the value of ai of the object x (respectively, of the objects y and z) The elements of Ea2 and 
Ea3 have been calculated in a similar way. Finally, we obtain the following matrices:

Ea1 =
⎛
⎝ 1 0.9 0.8

0.9 1 0.7
0.8 0.7 1

⎞
⎠ , Ea2 =

⎛
⎝ 1 0.8 0.6

0.8 1 0.8
0.6 0.8 1

⎞
⎠ ,

Ea3 =
⎛
⎝ 1 0.9 0.4

0.9 1 0.5
0.4 0.5 1

⎞
⎠ .

In this example, the global similarity among the objects x, y and z, is given by the expression (Eq. (2)): E =
p1 · Ea1 + p2 · Ea2 + p3 · Ea3 . Therefore, the goal is to minimise the objective function (Eq. (3)) taking into account 
that the weights must be numbers between 0 and 1, the problem turns into a quadratic programming one [20] since 
we have to optimise (minimise) the function d(E, R) in the feasible region.

Therefore, in our running example the goal is the following one:

minimise:

d(E,R)2 = 2
(
(E(x, y) − R(x, y))2 + (E(x, z) − R(x, z))2 + (E(y, z) − R(y, z))2)

= 2
(
(0.9p1 + 0.8p2 + 0.9p3 − 0)2 + (0.8p1 + 0.6p2 + 0.4p3 − 1)2 + (0.7p1 + 0.8p2 + 0.5p3 − 0)2),

under the conditions:

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p2 ≤ 1, and p1 + p2 + p3 = 1.

The solution for our running example is the set of weights: p1 = 0.7, p2 = 0 and p3 = 1 − (p1 + p2) = 0.3. 
Therefore, the importance of the attributes is given by the following order: a1, a3 and finally a2.

4.2. How to classify a new object?

In the previous section, we have seen how to asses the weight of each attribute. Now, we can take benefit of these 
weights for classifying unseen objects. Let us suppose a new object v taking the values 0.6, 0.5, 0.3 on the features 
a1, a2 and a3 respectively. We want to classify v into either C or D.

The first step is to assess the similarity of each one of the attributes of v to each one of the attributes of the known 
examples x, y and z. Thus, for Ea1 we have:

Ea1(x.a1, v.a1) = 1 − |x.a1 − v.a1| = 1 − |0.3 − 0.6| = 0.7

Ea1(y.a1, v.a1) = 1 − |x.a1 − v.a1| = 1 − |0.2 − 0.6| = 0.6

Ea1(z.a1, v.a1) = 1 − |x.a1 − v.a1| = 1 − |0.5 − 0.6| = 0.9

Therefore, the three Ł-indistinguishability operators Ea1, Ea2 and Ea3 of the previous subsection have to be ex-
tended with a fourth file (and column, since the matrix is symmetric) with the similarities of the new object v. These 
fourth columns are, respectively:

Ev,a1 = (0.7,0.6,0.9,1),Ev,a2 = (0.7,0.9,0.9,1),Ev,a3 = (0.5,0.6,0.9,1).

Now, aggregating Ea1, Ea2 and Ea3 with the weights p1, p2 and p3 found in the previous section we obtain the 
similarity relation E:

E = 0.7Ea1 + 0Ea2 + 0.3Ea3 =

⎛
⎜⎜⎝

1 0.90 0.68 0.64
0.90 1 0.64 0.60
0.68 0.64 1 0.90
0.64 0.60 0.90 1

⎞
⎟⎟⎠
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Looking at the fourth row (or column) we see that the similarity degrees of v to the examples x, y, z are 0.64, 0.6
and 0.9 respectively. Because the most similar object to v is z, v will be classified as belonging to the class of z, i.e., 
to C.

5. JADE in practise

We have experimented with the JADE method on two well-known data sets from the UCI Machine Learning 
Repository [21]: Iris and Zoology. The Iris data set is composed of 150 objects belonging to three solution classes. 
Each object is described by four continuous attributes. The Zoology data set is composed of 100 objects belonging to 
7 solution classes. Each object is described by 17 categorical attributes.

Our plan was to use the well known 10-fold cross-validation method to assess the predictivity of JADE. However,
JADE has a high complexity, since it has to handle n matrices (where n is the number of attributes of the domain 
objects) having each one a dimension of N ×N (where N is the number of objects of the dataset). For this reason, we 
have to pre-process in some way the input data in order to reduce the number of objects to be handled by JADE. In the 
following sections we explain the pre-process we performed on the input data and also the result of the experiments.

5.1. Pre-processing the input data

The goal of pre-processing the data is to reduce the complexity of JADE by reducing the number of input examples 
that it has to handle. A way to perform such reduction is to partition the set of input examples in smaller subsets and 
then use JADE on each one of these subsets. The criteria we have taken to form the subsets is by similarity. By fixing 
a threshold of similarity h, a subset is formed by all the input objects xi and xj such that sim(xi, xj ) ≥ h. Assuming 
that the attributes of the domain objects are continuous, they have been normalised, we used the following algorithm:

1. To generate a matrix S, where each element sij ∈ S is the similarity (1 − Euclidean distance) of the input objects 
xi and xj .

2. To find the two objects with greatest similarity and take one of them, say p.
3. To construct a cluster Cp with all the objects such that sim(p, xi) ≥ h and where p is its prototype.
4. To use JADE to find the coefficients that characterise the cluster Cp.
5. To consider all the objects in Cp as used and then select a new object q from the remaining ones such that 

sim(p, q) < h and with maximum similarity to p.
6. Repeat all the steps from 3 to 5 until all the objects in the data set have been included in some cluster.

The result of this process is a set of k clusters, each one characterised by a set of coefficients that minimise the 
Eq. (3).

5.2. Classification of unseen objects

Now we have k clusters where the objects have been grouped by similarity, however each cluster can include 
objects of several classes. We also have the coefficients that give the importance of each attribute inside each cluster. 
How can we classify unseen objects? We have several options and we have experimented with all of them. Let xi be 
the object to be classified.

• Version 1 (V1). Each cluster has a prototype pj that is the element from which the cluster has been constructed, 
i.e., all other objects xm in the cluster have similarity sim(pj , xm) ≥ h. We use the coefficients of the cluster 
whose prototype has maximum similarity to the new object xi . Notice that they can exist several prototypes 
having the same similarity to xi . In such situation we use the coefficients of all these clusters to classify xi and 
then the majority rule to propose a final classification for xi .

• Version 2 (V2). For each cluster we can count how many objects xj have sim(xj , xi) ≥ h, and use the coefficients 
of the cluster having the highest number of similar objects. If several clusters have the same number of similar 
objects, we use all of them and then the majority rule to propose the final classification. If there are not objects 
with similarity equal or higher than h, this version does not propose a classification for xi .
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Table 1
Description of the UCI datasets used in the experiments: type of the attributes, number of classes, threshold 
(h) used to form the clusters, size of both the training and the test sets used in the experiments, and the mean 
accuracy for each version.

Data set Type Classes h # train # test Accuracy (%)

V 1 V 2 V 3

Iris Cont. 3 0.9 100 50 96.6 87.8 96.2
Zoology Categ. 7 0.8 90 10 92.0 94.0 95.0

Table 2
Comparison of accuracies (in %) between the methods JADE with V 3, the decision-tree based algorithm J48, 
Random Forest (RF), Naive Bayes (NB), Multilayer Perceptron (MP), and Instance-based algorithm (IB).

Data set JADE J48 RF NB MP IB

Zoology 95 96 – – – –
Iris 96.2 96 95.33 96 95.33 97.33

• Version 3 (V3). To assess the global similarity of each cluster to the new object and use the cluster having the 
maximum similarity. The global similarity of a cluster Ck is assessed as the mean of all the similarities between 
the new object xi and each one of the objects in Ck . If several clusters have the same global similarity, we use all 
of them and then the majority rule to propose the classification for xi .

5.3. Accuracy

We performed experiments with several similarity thresholds h. Notice that for thresholds near to 1, the elements 
of a cluster will be very similar and possibly they belong to the same solution class. However, the number of clusters 
could be high and with few elements. Conversely, with low thresholds, clusters include many elements that possibly 
belong to different classes. We have also seen that for objects represented with attributes with continuous values, 
thresholds have to be higher than the ones used when attributes have categorical values. We carried out experiments 
with values of h from 0.7 to 0.95. Table 1 shows the highest accuracy obtained and the threshold h associated to it. 
These results have been obtained after 10-fold-cross validation.

In these experiments we have seen that continuous and categorical attributes have slightly different requirements. 
Thus, the best threshold of similarity h is higher in Iris (continuous) than in Zoology (categorical). This is an expected 
result because differences between objects are more fine grained when the attributes are continuous. Also we have seen 
that for Iris, best versions are V 1 and V 3, i.e., the one based on prototypes and the one based on global similarities, 
whereas on Zoology the version V 1 is the worst. Again, we think that this is due to the type of the attributes (continuous 
attributes vs categoric ones). This issue should be further analysed by using JADE on other categorical and continuous 
domains.

We compared the JADE accuracy with the one of several classification methods provided by the Weka application 
[22] on Iris. The results obtained with JADE on Zoology were compared only with the results using the J48 algorithm 
because of this domain has categorical attributes. Table 2 shows the accuracy results of all these methods after one trial 
of 10-fold cross-validation. Notice that JADE has a performance similar to the one exhibited by the tree-based classifier 
J48 in both domains with V 3. Also, the JADE performance is lower than the one exhibited by an Instance-based 
learning algorithm (with several values of k), comparable to the one of J48 and Naive Bayes, and higher than the 
accuracy exhibited by both Random Forest and Multilayer Perceptron.

5.4. Analysing the clusters

As we have seen in the previous section, the accuracy of JADE is comparable to the one of the standard method J48. 
However, to reduce the complexity we have to cluster the input data base and each set of this partition has been used as 
input to JADE, resulting in a set of coefficients for each cluster. We have used a k-NN-like method to do the partition, 
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i.e., each cluster is well-formed since it contains similar objects. The question now is, how these well-formed clusters 
influence the accuracy of JADE? Will the accuracy of JADE be higher if the input data set is randomly clustered?

We have the following two hypotheses:

• H1. When the clusters are well-formed, i.e., its elements are very similar, the coefficients characterising the 
clusters are more accurate and therefore, the accuracy of JADE will be higher.

• H2. If the clusters contain elements of different classes, the coefficients could discriminate better among the 
classes.

Notice also that H1 has some shortcoming when classifying unseen objects. Let us suppose a data set where its 
objects belong to two solution classes: C1 and C2. Let us consider an extreme case where the data set has been 
partitioned in two correct clusters: S1 that contains only elements of C1; and S2 that contains only elements of C2. 
Let us suppose now that we are using the version V 1 (see Subsection 5.3) and that an unseen object ok has exactly 
the same similarity to the prototype of the two clusters S1 and S2. Independently of the coefficients found by JADE, 
ok will be classified as belonging to C1 according the cluster S1 and as belonging to C2 according to S2. Therefore, 
the classification for ok is not unique.

Despite of the comment above, we think that may be this case is not so common. For this reason, we carried out 
experiments to check which of the two hypotheses above (H1 or H2) is the most feasible. Therefore, our goal is to 
test how the composition of the clusters influence in the classification accuracy of JADE. The experiments described 
in the previous section have been carried out under hypothesis H1. Now we will repeat the same experiments but 
using clusters randomly formed. Another difference is that now we use the number of clusters we want to partition 
the data set as input of JADE instead of the similarity threshold. Moreover, now versions V 1, V 2 and V 3 have no 
sense because all of them use a similarity threshold with the prototype of the clusters,and under H2 the clusters are 
randomly formed therefore, there is no prototype. We used the following procedure on the Iris data set:

• Randomly select a subset of 50 objects to form the Test set.
• Training = Data set − Test set.
• Let N be the number of clusters we want to partition the Training set.
• Use JADE to compute the coefficients characterising the clusters C1, . . . , CN .

Once all the clusters have been characterised by the coefficients given by JADE, the procedure to evaluate them is 
the following:

• For each obj in Test set.
• For each cluster Ci , use its associated coefficients for classifying obj. Let si be the proposed class.
• Let S = {s1, . . . , sN } the set of classes proposed by each one of the clusters.
• If si = sj for all i, j then all the clusters have proposed the same classification for obj,
• otherwise, the classification for obj is the majority class.

We performed experiments with different number of clusters: N = 3, 5, and 7, and for each N we carried out 10 
trials. Table 3 shows the mean of the accuracy from these 10 trials for each N. In these results we counted multiple 
answers as incorrect. We see that accuracy increases as N increases to achieve a stable value around the 96.0% that is 
similar to the accuracy obtained with versions V 1 and V 3 when clusters are well-formed. The iris data set has three 
solution classes. When the data set is partitioned on well-formed clusters, objects are grouped by similarity in three or 
four clusters. However, to obtain a similar accuracy, when the clusters are randomly formed, it is necessary to partition 
the data set in at least 7 clusters. Therefore a first conclusion could be that JADE performs well although clusters are 
randomly formed; nevertheless in this case, to obtain a comparable accuracy, it is necessary to partition the data set in 
more clusters than when the clusters are well formed.
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Table 3
Accuracies of JADE with random clusters (left part) and well-formed clusters (right part).

N = 3 N = 5 N = 7 N = 9 V 1 V 2 V 3

94.2 95.6 96.4 96.0 96.6 87.8 96.2

6. Conclusions and future work

We have defined and characterised T -generable indistinguishability operators for continuous Archimedean t-
norms. These operators E that can be obtained by indistinguishability operators generated by a fuzzy subset. The 
most interesting situation appears when the t -norm is non-strict. In this case E is T -generable when it can be obtained 
from crisp equivalence relations. The results of this first part have then been applied in the second part of the paper to 
design and implement JADE, a new method for solving classification tasks based on similarity (or indistinguishability) 
relations between domain objects.

JADE is based on minimising the difference between two indistinguishability relations, it is mathematically sound 
and the experimentation proved that it is a promising method for classification tasks. Differently than other feature 
selection methods, it can be used on domains with more than two solution classes. However it has an important 
complexity problem when the number of both attributes and objects in the training set is high. For this reason, we 
propose to cluster the data set and then use JADE on each cluster. We have experimentally seen that this is feasible 
in domains with either categorical or continuous attributes, and that results are comparable to the ones obtained with 
classifiers such as J48, Naive Bayes and Multilayer Perceptron among others. Also, we have experimented with two 
situations: 1) when the clusters are well-formed; and, 2) when the clusters are randomly formed. We have seen that to 
obtain a similar accuracy in both options, there is necessary to have a higher number of random clusters.
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