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THE EFFECTIVE RESISTANCE OF EXTENDED

OR CONTRACTED NETWORKS

Á. Carmona, A.M. Encinas and M. Mitjana

Abstract. In this paper we introduce new effective resistances on a given

network, associated with a positive value and two weights on the vertex set

and investigate under which conditions they determine a distance. We prove

that this property is closely related with superharmonicity. Moreover, we

analyze the behavior of these distances under the usual network transforma-

tions, specially the so–called star–mesh transformation. We also compute

the effective resistance for an extended network; that is the network obtained

from the former one by joining a new vertex, and then study the effect of the

contraction of this new network; that is we apply a star-mesh transformation

with center in the joined vertex.

1. Introduction and Preliminaries

The effective resistance on a given a network is a distance on it, intrinsically associated with the com-
binatorial Laplacian. This means that to compute the effective resistance, all vertices are equally considered
and the only parameter really significant is the weight on each edge, its conductance. Unlike the standard
geodesic distance, defined as the length of the shortest or less resistive path between vertices, the resistance
distance takes into account all the paths between vertices. It results that this distance is very sensitive
to small changes in the conductances and hence allows us to discriminate between networks with similar
structure.

It is possible to define effective resistances that, in addition to the conductance, take also into account
a positive value on each vertex; that is a weight on the vertex set. In addition, when the weight is fixed we
can define a one-parametric family of effective resistances. Each one of these generalized effective resistances
also determine a distance on the network, and is defined through linear operators more general that the com-
binatorial Laplacian, namely positive semidefinite Schrödinger operators, where the parameter is the lowest
eigenvalue and the weight function is the associated eigenfunction, see [4, 7]. The Schrödinger operators are
defined as the combinatorial Laplacian plus a potential, being this potential the element that identifies both,
the weight and the parameter. In particular, when the weight is constant; that is, when it does not discrimi-
nate between vertices, and the value of the parameter is 0, the potential is null and hence the corresponding
Schrödinger operator coincides with the combinatorial Laplacian and we recover the standard resistance
distance. The main properties of these effective resistances where analyzed in [1], by using techniques from
Discrete Potential Theory, and also in [7], where we show that in the case of constant weight these distances
coincide with the so-called adjusted forest metrics introduced by P. Chebotarev and E. Shamis at the late
90’s, see [10]. In the above mentioned works, we can find that each one of this one-parametric family of
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resistance distances is associated with a family of irreducible and symmetric M -matrices with the same
off-diagonal entries. The idea of associating an effective resistance to an M -matrix goes back to M. Fiedler,
who studied the case of diagonally dominant M -matrices, see [12]. The adjusted forest metrics corresponds
to the particular case in which the diagonal excess is constant and the general case was solved in [4].

In this paper we introduce new families of effective resistances on a given network. More specifically
fixed a positive definite Schrödinger operator; or equivalently a network plus a potential q, we define effective
resistances with respect to this potential and another weight on the vertex set. We newly analyze theses
resistances under the light of Discrete Potential Theory and prove that they determine a distance on the
network when the additional weight is q-superharmonic. Moreover, we also analyze the behavior of these
distances under the usual network transformations, specially the so–called star–mesh transformation. We
also compute the effective resistance for an extended network; that is the network obtained from the former
one by joining a new vertex, and then study the effect of the contraction of this new network; that is we
apply a star-mesh transformation with center at the joined vertex.

The triple Γ = (V,E, c) denotes a finite network; that is, a finite connected graph without loops nor
multiple edges, with vertex set V , whose cardinality equals n, and edge set E, in which each edge {x, y} has
been assigned a conductance c(x, y) > 0. So, the conductance can be considered as a symmetric function
c : V × V −→ [0,+∞) such that c(x, x) = 0 for any x ∈ V and moreover, vertex x is adjacent to vertex y,
x ∼ y, iff c(x, y) > 0. Definitely, a finite network is entirely characterized by its vertex set and its conductance
function and hence it can be represented as Γ = (V, c). If c(x, y) > 0, then the value r(x, y) = c(x, y)−1 is
usually called resistance between x and y. In the sequel, we consider the finite network Γ = (V, c) fixed. A

connected network Γ̂ = (V̂ , ĉ) is called host network of Γ when V ⊂ V̂ , V 6= V̂ and ĉ = c on V × V . In this

case we also say that Γ is embedded into Γ̂.

For any x ∈ V , the value κ(x) =
∑
y∈V

c(x, y) is called total conductance at x or (weighted) degree of x.

Since Γ has not any isolated vertex, we obtain that κ(x) > 0 for any x ∈ V .

Given F ⊂ V , its boundary and its closure are the sets δ(F ) = {x ∈ V : c(x, y) > 0 for some y ∈ F}
and F̄ = F ∪ δ(F ), respectively. Clearly δ(F ) ⊂ V \ F and F is a proper subset iff δ(F ) 6= ∅.

Given x, y, z ∈ V , we say that z separates x and y iff the set V \ {z} is not connected and x and y
belong to different connected components. Equivalently, z separates x and y iff any path joined x and y
passes through z.

If P =
{
x = x1 ∼ x2 ∼ · · · ∼ xk = y

}
is a path joining vertices x and y, its length is the value

`c(P ) =
k−1∑
i=1

r(xi, xi+1). The geodesic distance between two vertices x and y is defined as the length of the

less resistive path joining them; that is,

dc(x, y) = min
{
`c(P ) : P is a path from x to y

}
.

The function dc determines a distance on the network that fulfills the property the triangular inequality
is an equality when the central node separates the two others; that is, dc(x, y) = dc(x, z) + dc(z, y) if every
path from x to y passes through z. In general a distance on a network, say d, is called graph geodetic if
d(x, y) = d(x, z) + d(z, y) when z separates x and y, see [11, page 278]. When the triangular inequality
becomes an equality iff every path from x to y passes through z; the distance is called cutpoint additive,
see [9], although sometimes is also named geodetic, see [10]. To avoid missunderstandings, here we use this
terms in the sense of [11], so differentiating between geodetic and cutpoint additive distance.

In the sequel, C(V ) denotes the sets of real functions on V and given u ∈ C(V ), we define the values

||u||
1

=
∑
x∈V
|u(x)| and ||u||

2
=
( ∑
x∈V

u(x)2
) 1

2

. If for u, v ∈ C(V ) we consider 〈u, v〉 =
∑
x∈V

u(x)v(x), then

〈·, ·〉 determines an inner product which associated norm is || · ||
2
. Given u ∈ C(V ) we denote by u⊥ the

subspace of C(V ) orthogonal to u.
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The constant function that takes the value 1 at each vertex is denoted by 1, whereas for any x ∈ V ,
εx is the function that takes the value 1 at x and 0 otherwise.

Given u ∈ C(V ) its support is supp(u) = {x ∈ V : u(x) 6= 0} and hence, supp(u) = ∅ iff u = 0.
Given F ⊂ V a non empty subset, C(F ) is the subspace of real functions vanishing on F c = V \ F the
complementary set of F and hence, u ∈ C(F ) iff supp(u) ⊂ F . In the sequel we identify C(F ) with the set
of functions u : F −→ R. Analogously, each function h : F × F −→ R is identified with h : V × V −→ R
satisfying h(x, y) = 0 when (x, y) /∈ F × F . If h : V × V −→ R its trace is the value tr(h) =

∑
x∈V

h(x, x).

Given u, v ∈ C(V ) we define u⊗ v : V × V −→ R as (u⊗ v)(x, y) = u(x)v(y) for any x, y ∈ V .

If u ∈ C(V ) and F ⊂ V , the notation u ≥ 0 on F or u > 0 on F means that u(x) ≥ 0 or u(x) > 0
respectively, for any x ∈ F . If u ∈ C(V ) and moreover u > 0 on V , then u is called a weight. We denote by
Ω the set of unitary weights; that is, Ω = {u ∈ C(V ) : u > 0 on V and ||u||

2
= 1}.

The combinatorial Laplacian or simply the Laplacian of the network Γ is the endomorphism of C(V )
that assigns to each u ∈ C(V ) the function

(1) L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V.

It is well-known, that 〈L(u), v〉 = 〈u,L(v)〉 and that

〈u,L(u)〉 =
1

2

∑
x,y∈V

c(x, y)
(
u(x)− u(y)

)2 ≥ 0, for any u, v ∈ C(V );

that is, the Laplacian is a self-adjoint and positive semidefinite operator. Moreover, since Γ is connected,
L(u) = 0 iff u is a constant function.

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endomorphism of C(V ) that
assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu, see for instance [2, 3]. A function u ∈ C(V ) is
called q–superharmonic when Lq(u) ≥ 0 on V and q–harmonic when Lq(u) = 0 on V .

2. Admissible potentials and Doob Transforms

A potential q ∈ C(V ) is called admissible for the network Γ iff the associated Schrödinger operator Lq
is positive semidefinite. Our next objective is to provide an useful characterization of those potentials that
are admissible. To do this, we need to introduce some concepts and techniques.

If ω ∈ C(V ) is a weight, then the potential qω = −ω−1L(ω) is called the potential determined by ω.
Notice that when σ = aω then qσ = qω. The Doob Transform (with respect to ω) consists in the identity

(2) Lqω (u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
, x ∈ V, u ∈ C(V ),

which, in particular, implies that

〈u,Lqω (u)〉 =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

,

and hence that Lqω is positive semidefinite. Moreover, we have the following property that generalizes the
corresponding one for the combinatorial Laplacian:

(3) Lqω (u) = 0 iff u = aω, a ∈ R.

In particular, we conclude that qσ = qω iff σ = aω for some a > 0.

We have just proved that any potential determined by a weight is admissible. Moreover, we have a
complete characterization of this fact as a consequence of the properties of symmetric M–matrices, see for
instance [5, Chapter 6] and also [2, Proposition 3.3].
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Proposition 2.1. The map
q : Ω× R −→ C(V )

(ω, λ) −→ qω + λ

is bijective and in particular, 0 = q(ω, λ) iff λ = 0 and moreover ω is constant. In addition, if q = q(ω, λ)
then λ is the lowest eigenvalue of Lq; it is simple and Lq(ω) = λω. Therefore, q = q(ω, λ) is admissible iff
λ ≥ 0.

We are interested in the relation between the positive definiteness of the Schrödinger operator Lq and
the existence of q–harmonic or q–superharmonic funcions. Observe that the above Proposition implies that
if q is admissible; that is, q = q(ω, λ) with ω ∈ Ω and λ ≥ 0, then ω is q–superharmonic and q–harmonic only
when λ = 0. These properties are relative to q–harmonic and q–superharmonic weights, but below we prove
that, basically, these are the only functions with this property. Previously to prove this result, we show
the following key fact about positive semidefinite Schrödinger operators, known as the strong Monotonicity
Principle, see [2, Proposition 4.10], that will be useful in many parts of this paper.

Proposition 2.2 (Monotonicity Principle). Let q = q(ω, λ), ω ∈ Ω and λ ≥ 0, be an admissible potential.
Given F ⊂ V a proper subset and u ∈ C(F̄ ) satisfying that Lq(u) ≥ 0 on F and u ≥ 0 on δ(F ), then u ≥ 0
on F̄ . Moreover, if H ⊂ F is a connected component of F , then either u = 0 on H̄ or u > 0 on H. In
addition, if λ > 0 and u ∈ C(V ) satisfies that Lq(u) ≥ 0 on V then either u = 0 or u > 0 on V .

The use the above result together the Doob Transform, in particular Identity (3), to study the relation
between admissibility and the existence of q-harmonic or q–superharmonic functions.

Theorem 2.3. Given q ∈ C(V ), then a weight ω is q-harmonic iff q = qω and it is q-superharmonic iff
q ≥ qω on V . Moreover, if q is admissible and q = q( ω, λ), ω ∈ Ω, λ ≥ 0, the following properties are
satisfied:

(i) When λ = 0, all q–superharmonic functions are q-harmonic and hence multiple of ω. In particular, ω
is the unique unitary q-harmonic weight.

(ii) When λ > 0, the only q–harmonic function is the null function, ω is a q–superharmonic weight and
any q–superharmonic function, but not q-harmonic, is a weight.

Proof. Observe that if ω is a weight, then Lq(ω) = L(ω) + qω = ω(q − qω). Therefore, ω is q–harmonic iff
q = qω and it is q–superharmonic iff q ≥ qω and q 6= qω.

(i) From Identity (3), any q–harmonic function is multiple of ω and hence, ω is the unique unitary
q–harmonic weight. Finally, if u ∈ C(V ) satisfies that Lqω (u) ≥ 0, then

0 = 〈Lq(ω), u〉 = 〈ω,Lq(u)〉

and hence u is q–harmonic, since ω > 0.

(ii) From Proposition 2.1, Lq(ω) = λω > 0, which implies that ω is a q–superharmonic weight.

If u is a q–harmonic function, then −u is also q–harmonic, and hence the last claim in the Monotonicity
Principle implies that u = 0.

Finally, if u is a q–superharmonic function, newly the last claim of the Monotonicity Principle implies
that either u = 0 on V or u is a weight. Since u = 0 would imply that u is q–harmonic, necessarily u is a
weight. �

3. Green Functions

Although on Γ many different self–adjoint boundary value problems can be defined, see for instance
[3] where all of them were considered under the generic name of mixed Dirichlet–Robin problems, here we
restrict ourselves to study two of them, namely Dirichlet problems and the Poisson equation. Therefore,
the main reference for the terminology and main results continue being [2]. Actually, we treat both kind of
problems in a common framework.
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Given the potential q ∈ C(V ) and its corresponding Schrödinger operator Lq, for a non empty set
F ⊂ V we consider the boundary value problem consisting in

(4) given f ∈ C(F ) find u ∈ C(F ) such that Lq(u) = f on F .

This is a self–adjoint problem in the sense that for any u, v ∈ C(F ) it is satisfied that

〈u,Lq(v)〉 =
1

2

∑
x,y∈F̄

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
+
∑
x∈F

q(x)u(x)v(x) = 〈v,Lq(u)〉.

When F = V , Problem (4) is known as the Poisson Equation on V , whereas when F is a proper subset it is
known as the Dirichlet Problem on F . Notice that since C(F ) =

{
u ∈ C(F̄ ) : u = 0 on δ(F )

}
, when F is a

proper subset, the Dirichelt problem can be rewritten, in its most common form, as

given f ∈ C(F ) find u ∈ C(F̄ ) such that Lq(u) = f on F and u = 0 on δ(F ).

The conditions on q under which the above problem (4) has solution, can be establish in the variational
way known as the Dirichlet Principle, see [2, Proposition 3.5]. To obtain the above mentioned conditions,
fixed a potential q ∈ C(V ) for any f ∈ C(V ) we define the quadratic funtional Jf : C(V ) −→ R as

(5) Jf (u) = 2〈f, u〉 − 〈Lq(u), u〉, u ∈ C(V ).

Notice that for any u ∈ C(F ) we have that

Jf (u) = 2
∑
x∈F

f(x)u(x)− 1

2

∑
x,y∈F̄

c(x, y)
(
u(x)− u(y)

)2 −∑
x∈F

q(x)u(x)2.

Proposition 3.1 (Dirichlet Principle). Let q = q(ω, λ), ω ∈ Ω and λ ≥ 0, be an admissible potential. Given
F ⊂ V a non empty subset and f ∈ C(F ), then u ∈ C(F ) is a solution of the problem (4) iff u maximizes Jf
on C(F ) and then Jf (u) = 〈f, u〉 = 〈Lq(u), u〉. Moreover, the following properties hold:

(i) When F is a proper subset or λ > 0, then Jf has a unique maximum.
(ii) When F = V and λ = 0 then Jf has a maximum iff f ∈ ω⊥. In this case, there exists a unique

maximum u ∈ C(V ) such that u ∈ ω⊥ and {u+ aω : a ∈ R} describes the set of all maxima of Jf .

As a by–product of the Dirichlet Principle we have that if the potential q ∈ C(V ) is admissible, then
for any proper subset F ⊂ V , Lq establishes an automorphism on C(F ), and hence for any f ∈ C(F ) the
Problem (4) has a unique solution. The same properties are true for F = V when λ > 0 and hence then Lq
is invertible. In all these cases, the inverse of Lq on C(F ) is called Green operator for F and denoted by GFq .

The function GFq : F × F −→ R defined for any y ∈ F as GFq (·, y) = GFq (εy), the unique solution of Problem
(4) corresponding to f = εy is called the Green function for F . Next, we show the main properties of the
Green function for a given subset of V .

Proposition 3.2. Let q = q(ω, λ), ω ∈ Ω and λ ≥ 0, be an admissible potential. Consider F ⊂ V a non
empty set subset except when λ = 0 in which case F must to be a proper subset. Then Gq is symmetric,

0 ≤ GFq (x, y)ω(y) < GFq (y, y)ω(x), x, y ∈ F, x 6= y

and the first inequality is an equality iff x /∈ Fy, where Fy is the connected component of F containing y. In
particular, when λ > 0, then

0 < GVq (x, y)ω(y) < GVq (y, y)ω(x), x, y ∈ V, x 6= y.

Moreover, given f ∈ C(F ), the function u ∈ C(V ) defined as

u(x) = GFq (f)(x) =
∑
y∈F

GFq (x, y)f(y), x ∈ V,

is the unique solution of Problem (4).



6 Á. Carmona, A.M. Encinas, M. Mitjana

Proof. If u = GFq (εy), then Lq(u) = εy ≥ 0 on F and u = 0 on δ(F ). Applying the Monotonicity Principle,
we get that u > 0 on Fy and u = 0 on F \ Fy.

On the other hand, if a = ω(y)−1GFq (y, y) and v = aω − u, then a > 0 and Lq(v) = aλω − εy ≥ 0 on
F \{y} and v = aω ≥ 0 on δ(F \{y}) ⊂ {y}∪ δ(F ). Applying the Monotonicity Principle, we get that u > 0
on Fy and u = 0 on F \ Fy. �

Another consequence of the Dirichlet Principle is that when the potential q ∈ C(V ) is admissible, then
Lq establishes an automorphism on ω⊥, where ω ∈ Ω is such that q = q(ω, λ) with λ ≥ 0. Notice that
under this hypothesis 〈ω,Lq(u)〉 = λ〈ω, u〉, since Lq(ω) = λω. The inverse of Lq on ω⊥ is called Green
operator for Γ or simply Green operator, and denoted by Gq. We can extend Gq to a self-adjoint and positive
semidefinite endomorphism of C(V ) by defining Gq(f) = Gq(f − 〈f, ω〉ω) for any f ∈ C(V ). The function
Gq : V × V −→ R defined for any y ∈ V as Gq(·, y) = Gq(εy) = Gq(εy − ω(y)ω), the unique solution of
Problem (4) corresponding to f = εy − ω(y)ω is called the Green function for Γ or simply Green function.
Next, we show the main properties of the Green function for Γ.

Proposition 3.3. Let q = q(ω, λ), ω ∈ Ω and λ ≥ 0, be an admissible potential. Then Gq is symmetric and
given f ∈ ω⊥, the function u ∈ C(V ) defined as

u(x) = Gq(f)(x) =
∑
y∈F

Gq(x, y)f(y), x ∈ V,

is the unique solution of Problem (4) belonging to ω⊥. In particular, Gq(f) = 0 iff f = aω, a ∈ R. Moreover,
Gq(y, y) > 0 for any y ∈ V and

Gq(x, y)ω(y) < Gq(y, y)ω(x), x, y ∈ V, x 6= y.

In addition, when λ > 0, then

GVq (x, y) = Gq(x, y) + λ−1ω(x)ω(y), x, y ∈ V
and hence,

−λ−1ω(x)ω(y) < Gq(x, y), x, y ∈ V.

We remark that the Green operator and the Green function for the vertex set V only exist for those
admissible potentials such that the corresponding Schrödinger operator is invertible, whereas the Green
operator and the Green function for the network always exists for admissible potentials. The last part of
the above Proposition determines the relation between the Green function for Γ and the Green function for
V , when the last one exists.

4. Bottleneck functions

In this section we always assume that the potential q ∈ C(V ) is admissible; that is, q = q(ω, λ) where
ω ∈ Ω and λ ≥ 0. We denote by Lq the corresponding Schrödinger operator and by Gq and Gq the Green
operator and the Green function for the network Γ.

For any z ∈ V we consider the boundary value problem consisting in

(6) given f ∈ C(V \ {z}) find u ∈ C(V ) such that Lq(u)− λ〈u, ω〉ω = f on V \ {z} and u(z) = 0.

Theorem 4.1. For any f ∈ C(V \ {z}) the Problem (6) has a unique solution that is given by

u = Gq(f)− ω(z)−1
(
〈f, ω〉 Gq(εz) + Gq(f)(z)ω

)
+ ω(z)−2Gq(z, z)〈f, ω〉ω.

Proof. If v ∈ C(V ) satisfies that Lq(v)− λ〈v, ω〉ω = f on V \ {z}, then

〈f, ω〉 = 〈Lq(v), ω〉 − Lq(v)(z)ω(z)− λ〈v, ω〉+ λ〈v, ω〉ω(z)2

= 〈v,Lq(ω)〉 − λ〈v, ω〉 −
(
Lq(v)(z)− λ〈v, ω〉

)
ω(z) = −

(
Lq(v)(z)− λ〈u, ω〉ω(z)

)
ω(z),

and hence, Lq(v) − λ〈v, ω〉ω = f − ω(z)−1〈f, ω〉 εz. In particular, when f = 0, then Lq(v) = λ〈v, ω〉ω and
hence v = aω, a ∈ R.
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Conversely, since f − ω(z)−1〈f, ω〉 εz ∈ ω⊥, then v = Gq(f − ω(z)−1〈f, ω〉 εz) ∈ ω⊥ and moreover
satisfies that Lq(v) = f − ω(z)−1〈f, ω〉 εz. In particular,

Lq(v)− λ〈v, ω〉 = Lq(v) = f − ω(z)−1〈f, ω〉 εz = f on V \ {z}

In consequence, the set {v + aω : a ∈ R} describes all solutions of the problem Lq(v)− λ〈v, ω〉ω = f
on V \ {z} and hence, u = v − ω(z)−1v(z)ω is the unique solution vanishing at z. �

The above Proposition establishes that for any z ∈ V , Lq − λ〈·, ω〉ω determines an automorphism
on C(V \ {z}), whose inverse is called the Bottleneck operator at z and denoted by Gzq . Since εz is null on
C(V \ {z}) we have that Gzq (εz) = 0.

The function Gzq : V × V −→ R defined for any y ∈ V as Gzq(·, y) = Gzq (εy), the unique solution of
Problem (6) corresponding to f = εy, is called the Bottleneck function at z. Next, we show some of the main
properties of the bottleneck functions.

Proposition 4.2. [4, Theorem 3.7 (ii)] For any z ∈ V it is satisfied that Gzq is symmetric, Gzq(x, z) =
Gzq(z, x) = 0 for any x ∈ V , and given f ∈ C(V \ {z}), the function u ∈ C(V ) defined as

u(x) =
∑
y∈V
y 6=z

Gzq(x, y)f(y), x ∈ V,

is the unique solution of the Problem (6). Moreover,

0 ≤ Gzq(x, y)ω(y) ≤ Gzq(y, y)ω(x), for any x, y 6= z, x 6= y

and the first inequality is an equality iff λ = 0 and z separates x and y, whereas the second inequality is an
equality iff λ = 0 and y separates x and z.

We remark that that above Proposition and Theorem have been established under the hypothesis
λ ≥ 0. However, in the specific case when λ = 0, we could have proved directly the existence and uniqueness
of solutions for Problem (6), since then it is nothing but the Dirichlet Problem for V \ {z} and hence Gzq
and Gzq are the Green operator and the Green function for the the set F = V \ {z}. This corresponds to the
standar case treated in the literature, see for instance [15, 16, 17] and also [21].

On the other hand, Theorem 4.1 shows that there exists a closed relation between the Green function
and the bottleneck functions. Next we made explicit these relations.

Corollary 4.3. Given x, y, z, ẑ ∈ V the following identities are satisfied:

(i) Gzq(x, y) = Gq(x, y)− ω(z)−1
[
ω(x)Gq(y, z) + ω(y)Gq(x, z)

]
+ ω(z)−2Gq(z, z)ω(x)ω(y).

(ii) Gzq(x, y) = ω(x)ω(y)

[
Gq(x, y)

ω(x)ω(y)
− Gq(y, z)

ω(y)ω(z)
− Gq(x, z)

ω(x)ω(z)
+
Gq(z, z)

ω(z)2

]
.

(iii) Gq(x, y) = Gzq(x, y)− ω(x)Gzq (ω)(y)− Gzq (ω)(x)ω(y) + 〈Gzq (ω), ω〉ω(x)ω(y).

(iv) Gẑq(x, y) = ω(x)ω(y)

[
Gzq(x, y)

ω(x)ω(y)
−

Gzq(ẑ, y)

ω(y)ω(ẑ)
−

Gzq(x, ẑ)

ω(x)ω(ẑ)
+
Gzq(ẑ, ẑ)

ω(ẑ)2

]
.

Proof. Part (i) is obtained simply by taking f = εy in Theorem 4.1. In addition (ii) is a straightforward
consequence of (i). To prove part (iii), from (i) and taking into account that Gq(ω) = 0, we have that

Gzq (ω) = −ω(z)−1Gq(εz) + ω(z)−2Gq(z, z)ω

and hence, 〈Gzq (ω), ω〉 = ω(z)−2Gq(z, z) and moreover ω(z)−1Gq(x, z) = 〈Gzq (ω), ω〉ω(x)−Gzq (ω)(x), for any
x ∈ V . Therefore (iii) follows. Finally, the combination of (i) with (iii) gives (iv). �

Notice that the results in the above Corollary can be also expressed as

Gzq = Gq − ω(z)−1
[
ω ⊗ Gq(εz) + Gq(εz)⊗ ω

]
+ ω(z)−2Gq(z, z)ω ⊗ ω,

Gq = Gzq − ω ⊗ Gzq (ω)− Gzq (ω)⊗ ω + 〈Gzq (ω), ω〉ω ⊗ ω
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The matrix version of the second identity is widely used, see [15, 21], since leads to obtain the group
inverse of a singular matrix in terms of the genuine inverse, the bottleneck matrix, of an invertible matrix.

We finish this section by taking advantage of the second identity in Corollary 4.3. If we define
d̃q : V × V −→ R as

d̃q(x, y) =
Gq(y, y)

ω(y)2
− Gq(x, y)

ω(x)ω(y)
, x, y ∈ V,

then, from Proposition 3.3, d̃q(x, y) ≥ 0 and the equality holds iff x = y. Moreover, from part (ii) of Corollary
4.3 and taking into account the symmetry of Gq, we have that

0 ≤ Gzq(x, y) = ω(x)ω(y)

[
Gq(x, y)

ω(x)ω(y)
− Gq(y, y)

ω(y)2
+
Gq(y, y)

ω(y)2
− Gq(z, y)

ω(y)ω(z)
− Gq(x, z)

ω(x)ω(z)
+
Gq(z, z)

ω(z)2

]
,

= ω(x)ω(y)
[
d̃q(x, z) + d̃q(z, y)− d̃q(x, y)

]
x, y, z ∈ V,

which implies that d̃q satisfies the triangular inequality. However, d̃q is not a distance on V since it is not
symmetric. To solve this trouble, define dq : V × V −→ R as

(7) dq(x, y) = d̃q(x, y) + d̃q(y, x) =
Gq(x, x)

ω(x)2
+
Gq(y, y)

ω(y)2
− 2Gq(x, y)

ω(x)ω(y)
, x, y ∈ V,

where we have applied the symmetry of Gq. Clearly, dq is symmetric, nonnegative and dq(x, y) = 0 iff x = y.
Besides, for any x, y, z ∈ V we have

Gzq(x, y) = ω(x)ω(y)
[
d̃q(x, z) + d̃q(z, y)− d̃q(x, y)

]
,

Gzq(y, x) = ω(y)ω(x)
[
d̃q(y, z) + d̃q(z, x)− d̃q(y, x)

]
,

Applying now the symmetry of Gzq

(8) Gzq(x, y) =
1

2
ω(x)ω(y)

[
dq(x, z) + dq(x, z)− dq(x, y)

]
,

and, in particular

(9) dq(x, z) =
Gzq(x, x)

ω(x)2
, for any x, z ∈ V .

Therefore, each admissible potential q ∈ C(V ) determines the distance dq on the network, that we
call the distance determined by q. Moreover, if q = q(ω, λ), ω ∈ Ω and λ ≥ 0, when λ = 0, the distance
determined by q is cutpoint additive, whereas when λ > 0 the distance determined by q satisfies that the
triangular inequality is always strict. In this case, the relation between the Green function and the Green
function for V implies that

(10) dq(x, y) =
GVq (x, x)

ω(x)2
+
GVq (y, y)

ω(y)2
−

2GVq (x, y)

ω(x)ω(y)
, x, y ∈ V,

Finally, from the relation between the Green function and the bottleneck function, part (iii) of Corollary
4.3 , for any z ∈ V we also have that

(11) dq(x, y) =
Gzq(x, x)

ω(x)2
+
Gzq(y, y)

ω(y)2
−

2Gzq(x, y)

ω(x)ω(y)
, x, y ∈ V.
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5. Effective Resistances

In the standard setting, the effective resistance of the network Γ between vertices x and y is defined
throughout the solution of the Poisson equation L(u) = f when the data is the dipole with poles at x and
y; that is, f = εx − εy. Important properties of electrical networks can be deduced from the knowledge of
the effective resistance, see for instance [13, 15, 19].

In [2] some of the present authors introduced the concept of effective resistance with respect to a
weight that in turns was generalized in [4] by considering, in addition, a parameter λ ≥ 0. The analysis
of the generalized effective resistance from a Potential Theory point of view, see [?], leads to good bounds
of the effective resistance and even to its explicit computation in some structured networks. Moreover, a
general Foster’s formula relating effective resistance and the iteration of the probability kernel was proved,
see [?, Theorem 4.2] and also [18] for the standard setting.

Our aim here is to introduce new effective resistances in a network, specifically, for each admissible
potential q ∈ C(V ), we consider a family of the effective resistances associated, firstly to the weights and
secondly to the family of q–superharmonic weights. As we will see, this family include the effective resistances
defined in [?, 2, 4]. We follow here the same route than in these works to introduce the effective resistances.

In this section we newly assume that the potential q ∈ C(V ) is admissible and hence that q = q(ω, λ),
where ω ∈ Ω and λ ≥ 0. As before, we denote by Lq the corresponding Schrödinger operator and by Gq and
Gq the Green operator and the Green function for the network Γ. In addition for any z ∈ V , Gzq and Gzq are
the bottleneck operator and the bottleneck function at z, respectively.

Fixed σ a weight, for any x, y ∈ V the σ-dipole between x and y is the function fσxy =
εx
σ(x)

− εy
σ(y)

.

Notice that fσx,y ∈ σ⊥ for any x, y ∈ V . In addition, fσx,y ∈ ω⊥ for any x, y ∈ V iff
ω(x)

σ(x)
=
ω(y)

σ(y)
for any

x, y ∈ V and this property is equivalent to be σ = aω, a > 0.

For any x, y ∈ V we also consider the quadratic functional Jσx,y : C(V ) −→ R determined for any
u ∈ C(V ) by the expression

(12) Jσx,y(u) = 2

[
u(x)

σ(x)
− u(y)

σ(y)

]
− 〈Lq(u), u〉 = 2〈fσx,y, u〉 − 〈Lq(u), u〉.

When λ = 0, we know that Jσx,y attains a maximum value iff fσxy ∈ ω⊥ and hence, to apply the Dirichlet
Principle for any x, y ∈ V , we must to demand that σ be a multiple of ω. So in the sequel, we assume that
σ = aω, a > 0 when λ = 0. Under this constraint, applying the Dirichlet Principle, we conclude that Jσx,y
attains a maximum value. So, given x, y ∈ V , the effective resistance between x and y, with respect to q and
σ is the value

(13) Rq,σ(x, y) = max
u∈C(V )

{Jσx,y(u)}.

Moreover, the Kirchhoff Index of Γ, with respect to q and σ, is the value

(14) K(q, σ) =
1

2

∑
x,y∈V

Rq,σ(x, y)σ2(x)σ2(y).

The standard case corresponds to take q = 0; that is, ω constant and λ = 0, and σ = 1.

The Dirichlet Principle also establishes that u maximizes Jσx,y iff

(15) Lq(u) = fσx,y =
εx
σ(x)

− εy
σ(y)

and then

(16) Rq,σ(x, y) =
u(x)

σ(x)
− u(y)

σ(y)
= 〈Lq(u), u〉.
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Therefore, if we consider the Doob transform with respect to ω and also with respect to σ, we obtain that

Rq,σ(x, y) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u(x)2

=
1

2

∑
x,y∈V

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)2

+
∑
x∈V

(
q(x)− qσ(x)

)
u(x)2,

where u ∈ C(V ) maximizes Jσx,y.

Since Jσx,y(0) = 0 we have that Rq,σ(x, y) ≥ 0 and the equality holds iff u = 0 maximizes Jσx,y, which

in turns implies that Lq(u) = 0 and hence
εx
σ(x)

=
εy
σ(y)

, what happens iff x = y. Therefore, Rq,σ(x, y) ≥ 0

for any x, y ∈ V and the equality only holds iff x = y.

On the other hand, since Jσx,y(u) = Jσy,x(−u) for any x, y ∈ V and any u ∈ C(V ), we conclude that
Rq,σ(x, y) = Rq,σ(y, x) for any x, y ∈ V . Therefore, the effective resistance with respect to a weight is
symmetric, nonnegative and null iff its two arguments coincide. Our main objective is to investigate when
it determines a distance on the network Γ. Before to do this, we describe some properties of the effective
resistance, that do not depend on it being a distance.

Given a > 0, if we consider the weight σ̂ = aσ then we have that Rq,σ̂(x, y) = a−2Rq,σ(x, y), for
any x, y ∈ V and hence that K(q, σ̂) = a2K(q, σ). Therefore, we could always restrict ourselves to consider
unitary weights to compute these parameters. However, in this paper we prefer to consider arbitrary; that
is non normalized, weights.

When σ = ω, since Rq,ω(x, y) =
u(x)

ω(x)
− u(y)

ω(y)
, where Lq(u) =

εx
ω(x)

− εy
ω(y)

∈ ω⊥, we can take

u = Gq(fωx,y) = ω(x)−1Gq(εx)− ω(y)−1Gq(εy) and hence, for any x, y ∈ V we have

Rq,ω(x, y) =
Gq(x, x)

ω(x)2
− Gq(x, y)

ω(y)ω(x)
− Gq(y, x)

ω(x)ω(y)
+
Gq(y, y)

ω(y)2
= dq(x, y).

So, we have proved that the effective resistance with respect the weight ω such that q = q(ω, λ) is a
distance on Γ that in fact, coincides with the distance determined by q, defined in the previous section.

Definitely, the study of the conditions under which Rq,σ determines a distance on Γ can be limited to
λ > 0 since for λ = 0 necesarily σ = aω, a > 0 and the answer is positive. In fact, the complete analysis for
σ = ω and λ ≥ 0 was carried out in previous works by the authors, see [?, 2, 4].

Assume that λ > 0 and consider GVq and GVq the Green operator and the Green function for V ,
respectively, that are defined under this hypothesis. Applying newly the identities (15) and (16) we obtain
that

(17) Rq,σ(x, y) =
GVq (x, x)

σ(x)2
+
GVq (y, y)

σ(y)2
−

2GVq (x, y)

σ(y)σ(x)
, x, y ∈ V

that implies that

(18) K(q, σ) = ||σ||2
2
tr(GVq )− 〈GVq (σ), σ〉

Taking into account the relation between the Green function for V and the Green function for Γ, the above
identities can be rewritten as

Rq,σ(x, y) =
Gq(x, x)

σ(x)2
+
Gq(y, y)

σ(y)2
− 2Gq(x, y)

σ(y)σ(x)
+ λ−1

(ω(x)

σ(x)
− ω(y)

σ(y)

)2

, x, y ∈ V,(19)

K(q, σ) = ||σ||2
2
tr(Gq)− 〈Gq(σ), σ〉+ λ−1

(
||σ||2

2
− 〈σ, ω〉2

)
.(20)
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Finally, bearing in mind the relation between the Green function for Γ and the bottleneck functions,
part (iii) of Corollary 4.3, for any x, y, z ∈ V we have that

(21)

Rq,σ(x, y) =
Gzq(x, x)

σ(x)2
+
Gzq(y, y)

σ(y)2
−

2Gzq(x, y)

σ(y)σ(x)
+ 2

(
ω(x)

σ(x)
− ω(y)

σ(y)

)(Gzq (ω)(y)

σ(y)
−
Gzq (ω)(x)

σ(x)

)

+
(
λ−1 + 〈Gzq (ω), ω〉

)(ω(x)

σ(x)
− ω(y)

σ(y)

)2

,

for any x, y ∈ V . Therefore,

K(q, σ) = ||σ||2
2
tr(Gzq)− 〈Gzq (σ), σ〉+ 2〈σ, ω〉〈Gzq (ω), σ〉 − 〈Gzq (ω), ω〉

(
||σ||2

2
+ 〈σ, ω〉2

)
+ λ−1

(
||σ||2

2
− 〈σ, ω〉2

)
In particular, taking σ = ω we recover the well known identities, see [4, Corollary 4.4] and also the

identities (10) and (11),

Rq,ω(x, y) =
Gq(x, x)

ω(x)2
+
Gq(y, y)

ω(y)2
−

2Gzq(x, y)

ω(y)ω(x)
=
Gzq(x, x)

ω(x)2
+
Gzq(y, y)

ω(y)2
−

2Gzq(x, y)

ω(y)ω(x)
(22)

K(q, ω) = tr(GVq )− λ−1 = tr(Gq) = tr(Gzq)− 〈Gzq (ω), ω〉.(23)

6. Extending Networks

In the previous section, given an admissible potential q = q(ω, λ), we have defined the effective resis-
tance between two vertices with respect to the potential q and an unitary weight σ ∈ Ω and have proved some
of its main properties. However, except for the case in which σ is a positive multiple of ω, we have not yet
analyzed when the effective resistance determines a metric on Γ, that we declared as our main objective. In
fact, we only have to analyze when the triangular inequality holds, since we have proved the other properties.

In this section we show as the q–harmonicity of the chosen weight σ is essential to prove that the
corresponding effective resistance is a distance on the network. This property was assured in the case λ = 0,
since then σ should be a multiple of ω and hence it is q–harmonic. Therefore, in this section we assume that
the admissible potential q satisfies that q = q(ω, λ) where ω ∈ Ω and λ > 0 and consider Lq, GVq , GVq its
corresponding Schrödinder operator, Green operator for V and Green function for V , respectively.

We also denote by Hq the set of q–superharmonic weights. Since λ > 0, GVq is positive, and moreover

for any y ∈ V we can define the weight σyq = GVq (·, y). Then, we have the following characterization of the
set Hq.

Proposition 6.1. For any y ∈ V we have that σyq ∈ Hq. Moreover,

Hq =
{
GVq (f) =

∑
y∈V

f(y)σyq : f ≥ 0 and f 6= 0
}
.

In particular, ω = λ−1
∑
y∈V

ω(y)σyq ∈ Hq and moreover 1 ∈ Hq iff q ≥ 0 (and q 6= 0).

Given σ ∈ Hq, we also consider Rq,σ the effective resistance with respect to q and σ. To prove that
Rq,σ determines a distance on Γ we use a well known technique originally implemented by M. Fiedler, see
[12] for nonnegative potentials and also [4] for admissible potentials and when σ = ω. The main idea is
to embed the given network Γ in other one in such a way the Green function for V appears as the Green
function of a subset in the host network. The most simple way to do this, is consider a new vertex, the

grounded vertex, x̂ and extend the conductance to form a host network Γ̂ = (V̂ , ĉ), where V̂ = V ∪ {x̂}. In

addition, given σ, a weight on V , we consider σ̂ > 0 on V̂ such that σ̂(x) = σ(x) for any x ∈ V . So, the
extension σ̂ of the weight σ is determined by its value at the grounded vertex, σ(x̂). For any a > 0, we call

the a–extension of σ, the weight σ̂ on V̂ defined as σ̂ = σ on V and as σ̂(x̂) = a.
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To define the value of the conductance ĉ at the pairs (x, x̂), x ∈ V , consider u ∈ C(V ) and the Doob
transform with respect to σ. Then, for any x ∈ V we have

Lq(u)(x) = Lqσ (u)(x) + (q − qσ)(x)u(x) =
1

σ(x)

∑
y∈V

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)
+ (q − qσ)(x)u(x).

If we impose u(x̂) = 0, that electrically means that the new vertex x̂ is grounded, then for any x ∈ V we
have

(q − qσ)(x)u(x) =
1

σ(x)
(q − qσ)(x)σ(x)2 u(x)

σ(x)
=

1

σ(x)

[
(q − qσ)(x)σ(x)σ(x̂)−1

]
σ(x)σ(x̂)

(
u(x)

σ(x)
− u(x̂)

σ(x̂)

)
.

Since σ ∈ Hq, we know that q − qσ ≥ 0 on V and that q 6= qσ. Therefore, if we define the conductance
ĉ(x, x̂) = (q − qσ)(x)σ(x)σ(x̂)−1 = σ(x̂)−1Lq(σ)(x) for any x ∈ V , then

Lq(u)(x) =
1

σ(x)

∑
y∈V̂

ĉ(x, y)σ̂(x)σ̂(y)

(
u(x)

σ̂(x)
− u(y)

σ̂(y)

)
, x ∈ V.

Fixed σ ∈ Hq and a > 0 we consider the a–extension of σ and call the Fiedler extension of the network

Γ = (V, c) with respect to σ and a, the network Γ̂ = (V ∪ {x̂}, ĉ) where ĉ = c on V × V and

ĉ(x, x̂) = ĉ(x̂, x) = a−1
(
q(x)− qσ(x)

)
σ(x) = a−1 Lq(σ)(x), x ∈ V.

Since supp
(
Lq(σ)

)
6= ∅, the Fiedler extension consists in joining each vertex x ∈ supp

(
Lq(σ)

)
with the

grounded vertex x̂ through an edge whose conductance depends on the value of the weight at both extremes

and on the potential excess at x, q(x)− qσ(x). In particular, the host network Γ̂ is always connected. Next,
we prove that any connected host network of Γ with exactly one more vertex, is in fact a Fiedler extension
of Γ.

Lemma 6.2. Let x̂ /∈ V and Γ̂ = (V ∪ {x̂}, ĉ) a connected host network of Γ. Then, for any a > 0 there

exists σ ∈ Hq such that Γ̂ is the Fiedler extension of Γ, with respect to σ and a.

Proof. If we define f ∈ C(V ) as f(x) = aĉ(x, x̂), then f ≥ 0 and moreover f 6= 0. Therefore, from
Proposition 6.1, if σ = Gq(f), then σ ∈ Hq and moreover Lq(σ) = f . This last identity implies that

ĉ(x, x̂) = a−1Lq(σ) and hence, Γ̂ is the Fiedler extension of Γ, with respect to σ and a. �

The combinatorial Laplacian corresponding to the Fiedler extension is denoted by L̂. The next result
establishes the relationship between the original Schrödinger operator Lq and a new singular and positive

semi-definite Schrödinger operator on Γ̂.

Proposition 6.3. If we consider q̂ = q(σ̂, 0), then

q̂ = q − a−1Lq(σ) on V and q̂(x̂) = a−2
(
〈Lq(σ), σ〉u(x̂)− a〈Lq(σ), u〉

)
.

Moreover, for any u ∈ C(V̂ ) we get that

L̂q̂(u) = Lq(u)− a−1Lq(σ)u(x̂) on V and L̂q̂(u)(x̂) = a−2
(
〈Lq(σ), σ〉u(x̂)− a〈Lq(σ), u〉

)
.

Proof. Given u ∈ C(V̂ ), then for any x ∈ V we get that

L̂(u)(x) = L(u|V )(x) + a−1Lq(σ)(x)u(x)− a−1Lq(σ)(x)u(x̂), x ∈ V,

L̂(u)(x̂) = a−1
(
u(x̂)〈q, σ〉 − 〈Lq(σ), u〉

)
,

since 〈Lq(σ), 1〉 = 〈q, σ〉. In particular, taking u = σ̂ we obtain

q̂ = −σ̂−1L̂(σ̂) = qσ − a−1Lq(σ) + σ−1Lq(σ) = q − a−1Lq(σ), on V ,

q̂(x̂) = a−2
(
〈Lq(σ), σ〉 − a〈q, σ〉

)
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and hence

L̂q̂(u) = Lq(u)− a−1Lq(σ)u(x̂), on V ,

L̂q̂(u)(x̂) = a−2
(
〈Lq(σ), σ〉u(x̂)− a〈Lq(σ), u〉

)
.

�

Corollary 6.4. Given f ∈ C(V ) consider u ∈ C(V ), the unique solution of the Poisson equation Lq(u) = f

on V . Then, u = v|V where v is the unique solution of the Dirichlet Problem on Γ̂

L̂q̂(v) = f on V and v(x̂) = 0.

In particular, GVq , the Green function for V is the bottleneck function at x̂ for Γ̂.

Proof. We know that both, the Poisson equation on Γ and the Dirichlet problem have a unique solution,
say u, v ∈ C(V ), respectively. From the above Proposition we have that

f = L̂q̂(v) = Lq(v|V )− a−1Lq(σ) v(x̂) = Lq(v|V ) on V

which implies that u = v|V . �

Now we have all ingredients to prove the result we are looking for.

Theorem 6.5. Given σ ∈ Hq, then Rq,σ, the effective resistance with respect to q and σ, determines a
distance on Γ. Moreover given x, y, z ∈ V , Rq,σ(x, z) + Rq,σ(z, y) = Rq,σ(x, y) iff z separates x, y in Γ and
moreover either x /∈ supp

(
Lq(σ)

)
or y /∈ supp

(
Lq(σ)

)
.

Proof. Consider the potential q̂ = q(σ̂, 0) in the host network Γ̂ and R̂q̂,σ̂ its associated effective resistance.

Then R̂q̂,σ̂ = dq̂ and hence determines a distance on Γ̂. Therefore, its restriction ot V × V also determines
a distance on Γ.

On the other hand, applying the Identity (22), or equivalently the Identity (11), and taking into

account that GVq is the bottleneck function for Γ̂ at x̂, we have that

dq̂(x, y) = Rq̂,σ̂(x, y) =
GVq (x, x)

σ(x)2
+
GVq (y, y)

σ(y)2
−

2GVq (x, y)

σ(y)σ(x)
= Rq,σ(x, y), x, y ∈ V.

�

We remark that, applying the identity (9), in the host network we also have the following identity

R̂q̂,σ̂(x, x̂) =
GVq (x, x)

σ(x)2
, for any x ∈ V .

As a by–product, we have the following relation between the Kirchhoff indexes

(24) K(q̂, σ̂) = K(q, σ) + a2tr(GVq ) =
(
a2 + ||σ||2

2

)
tr(GVq )− 〈GVq (σ), σ〉

In addition, we can newly apply the part (iii) of Corollary 4.3 to obtain the Green function for Γ̂

Ĝq̂(x, y) =



σ(x)σ(y)

[
GVq (x, y)

σ(x)σ(y)
−

GVq (σ)(y)

(a2 + ||σ||2
2
)σ(y)

−
GVq (σ)(x)

(a2 + ||σ||2
2
)σ(x)

+
〈GVq (σ), σ〉

(a2 + ||σ||2
2
)2

]
, x, y ∈ V,

aσ(x)

[ 〈GVq (σ), σ〉
(a2 + ||σ||2

2
)2
−

GVq (σ)(x)

(a2 + ||σ||2
2
)σ(x)

]
x ∈ V, y = x̂,

a2〈GVq (σ), σ〉
(a2 + ||σ||2

2
)2

x = y = x̂.
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Moreover applying the part (iv) of the Corollary 4.3, we have that the bottleneck function for Γ and any
vertex z ∈ V is given by

Ĝzq̂(x, y) =



σ(x)σ(y)

[
GVq (x, y)

σ(x)σ(y)
−
GVq (y, z)

σ(y)σ(z)
−
GVq (x, z)

σ(x)σ(z)
+
GVq (z, z)

σ(z)2

]
, x, y ∈ V,

σ(x)a

[
GVq (z, z)

σ(z)2
−
GVq (x, z)

σ(x)σ(z)

]
, x ∈ V, y = x̂,

a2GVq (z, z)

σ(z)2
, x = y = x̂.

If given z ∈ V we consider the weight σzq , we have the following result.

Corollary 6.6. For any z ∈ V , the function

dz(x, y) =
GVq (x, x)

GVq (x, z)2
+

GVq (y, y)

GVq (y, z)2
−

2GVq (x, y)

GVq (x, z)GVq (y, z)
, x, y ∈ V,

determines a cutpoint additive distance on Γ.

Notice that

dz(z, y) =
GVq (z, z)

GVq (z, z)2
+

GVq (y, y)

GVq (y, z)2
−

2GVq (z, y)

GVq (z, z)GVq (y, z)
=

GVq (y, y)

GVq (y, z)2
− 1

GVq (z, z)

and hence the positiveness of dz(z, y) is equivalent to the Cauchy-Schwarz inequality

GVq (z, y)2 = 〈GVq (εz), εy〉2 ≤ 〈GVq (εz), εz〉〈GVq (εy), εy〉 = GVq (z, z)GVq (y, y)

with equality iff z = y, since Gq is positive definite.

We end this section by observing that the effective resistance on Γ̂ with respect to q̂ = q(σ̂, 0) in fact
does not depend of a the value of the extended weight σ̂ at the grounded vertex x̂.

7. Contracting networks: The Neighborhood Transformation

In this section we introduce a transformation on the network Γ by deleting a given vertex x ∈ V but
maintaining the connectedness. In what follows, we fix x0 ∈ V and F = V \ {x0}. Therefore, C(F ) is the
set of real functions on V vanishing at x0.

Let us consider a potential q ∈ C(F ) and hence such that q(x0) = 0, and the Poisson equation
Lq(u) = f , where f ∈ C(V ). Then, Identity (1) implies that

κ(x0)u(x0) = f(x0) +
∑
y∈V

c(x0, y)u(y)

and hence, we get

(25) u(x0) =
1

κ(x0)

[
f(x0) +

∑
z∈F

c(x0, z)u(z)

]
.

Lemma 7.1. If q ∈ C(F ), then for any f ∈ C(V ), u ∈ C(V ) is a solution of the Poisson equation Lq(u) = f
iff for any x ∈ F we have

f(x) +
c(x0, x)

κ(x0)
f(x0) =

∑
y∈F

[
c(x, x0)c(x0, y)

κ(x0)
+ c(x, y)

] (
u(x)− u(y)

)
+ +q(x)u(x),

and, in addition, u(x0) =
1

κ(x0)

[
f(x0) +

∑
y∈F

c(x0, y)u(y)

]
.
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Proof. Given x ∈ F , then Identity (25) implies that

u(x)− u(x0) =
1

κ(x0)

∑
y∈F

c(x0, y)
(
u(x)− u(y)

)
− f(x0)

κ(x0)

and hence

f(x) = c(x, x0)
(
u(x)− u(x0)

)
+
∑
y∈F

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

= −c(x0, x)

κ(x0)
f(x0) +

∑
y∈F

[
c(x, x0)c(x0, y)

κ(x0)
+ c(x, y)

] (
u(x)− u(y)

)
+ q(x)u(x).

�

The identity given in the above Lemma motivates the definition of the function cx0 : F × F −→ [0,+∞),
given by cx0(x, x) = 0 for any x ∈ F and by

(26) cx0(x, x) = 0, x ∈ F and cx0(x, y) = c(x, y) +
c(x, x0)c(x0, y)

κ(x0)
, x, y ∈ F, x 6= y.

If we define in F × F the adjacency relation x
x0∼ y iff cx0(x, y) > 0 and denote the new graph as Γx0 ,

clearly cx0 is a conductance on Γx0 and then (Γx0 , cx0) is a new network that, in the sequel, we denote simply
by Γx0 . Moreover, its corresponding combinatorial Laplacian is denoted by Lx0 .

We say that the network Γx0 has been obtained from Γ after the Neighborhood Transformation at
vertex x0. Observe that any pair of vertices that are adjacent to x0 in Γ are adjacent in the network Γx0 ,
because if x, y ∼ x0 in Γ, then c(x, x0)c(x0, y) > 0. In other words, the subnetwork in Γx0 consisting in
the neighborhood of x0 in Γ is complete. For this reason, the Neighborhood Transformation is also named
Star–Mesh transformation. Notice that , when x 6∼ x0 in Γ, then cx0(x, y) = c(x, y) for all y ∈ F .

Lemma 7.2. The network Γx0 is connected.

Proof. Let x, y ∈ V x and consider x = z0 ∼ z1 ∼ · · · ∼ zn ∼ zn+1 = y a path joining x and y in Γ. If
zj 6= x0 for any j = 1, . . . , n, then cx0(zi, zi+1) ≥ c(zi, zi+1) > 0 and hence xz1 · · · zny is a path in Γx0 .

On the other hand, if zi = x for some i = 1, . . . , n, then zi−1, zi+1 ∼ x0 and hence zi−1 ∼ zi+1 in Γx0 .
So, we can delete vertex zi in the above path and continue having a path on Γx0 . �

Given u ∈ C(F ), the harmonic extension of u at x0 is uh ∈ C(V ) defined as

(27) uh(y) = u(y) for any y ∈ F and uh(x0) =
1

κ(x0)

∑
y∈F

c(x0, y)u(y).

Observe that if u ≥ 0 on the neighborhood of x0, then uh(x0) ≥ 0 and the equality holds iff u(x) = 0 for
any x ∼ x0.

Lemma 7.3. Given q ∈ C(F ), if u ∈ C(F ) then Lq(uh)(x0) = 0 and conversely if u ∈ C(V ) satisfied that
Lq(u)(x0) = 0, then u = vh where v = u|F .

After the above definitions, (26) and (27), the result of Lemma 7.1 can straightforwardly be re-written
as follows.

Proposition 7.4. Given q, f ∈ C(F ), then u ∈ C(F ) is a solution of the Poisson equation Lx0
q (u) = f on

F iff uh ∈ C(V ) is a solution of the Poisson equation Lq(uh) = f on V . In particular, if ω ∈ C(F ) satisfies
that ω > 0 on F , then ωh is a weight, L(ωh) ∈ C(F ) and moreover Lx0(ω) = L(ωh) on F .

In the sequel we consider the set Ω(F ) = {ω ∈ C(F ) : ω > 0 on F} and denote by Ωx0
, the set of

weights on Γ that are harmonic at x0. It is clear that qω ∈ C(F ) for all ω ∈ Ωx0
. Moreover it is clearly

satisfied that

(28) Ω(F ) =
{
ω|F : ω ∈ Ωx0

}
and Ωx0 =

{
ωh : ω ∈ Ω(F )

}
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Lemma 7.5. Given ω ∈ Ω(F ), then ω−1Lx0(ω) = ω−1
h L(ωh) on F . Conversely, given ω ∈ Ωx0

(V ), then
ω−1Lx0(ω) = ω−1L(ω) on F .

Given ω ∈ Ω(F ), the above Lemma permits to identify the potential on Γx0 associated with ω with
the potential on Γ associated with ωh; that is with ω−1

h L(ωh). In the sequel we systematically use this
identification and then both will be denoted by qω.

Corollary 7.6. Given ω ∈ Ω(F ) and f ∈ C(F ) such that f ∈ ω⊥, then u ∈ C(F ) is a solution of the Poisson
equation Lx0

qω (u) = f on F iff uh ∈ C(V ) is a solution of the Poisson equation Lqω (uh) = f on V .

Consider now fixed ω ∈ Ω(F ) and Gx0
qω the Green function for Γx0 and Gqω the Green function for Γ.

In addition, Rx0
qω and Rqω denote their corresponding effective resistances, respectively.

Theorem 7.7. For any x, y ∈ F , we get

Gx0
qω (x, y) = Gqω (x, y) + ωh(x0)

[
ω(y)Gqω (x, x0) + ω(x)Gqω (x0, y)

]
+ ω(x)ω(y)ω2

h(x0)Gqω (x0, x0),

where ωh(x0) =
1

κ(x0)

∑
y∈F

c(x0, y)ω(y).

Proof. Given y ∈ F , consider f = εy−ω(y)ω and u the unique solution of the Poisson equation Lx0
qω (u) = f

such that u ∈ ω⊥. According with Corollary 7.6,

u = Gqω (·, y)− ω(y)Gqω (ωh − ωh(x0)εx0
) + αω = Gqω (·, y) + ω(y)ωh(x0)Gqω (·, x0) + αω

where
0 = 〈u, ω〉 =

∑
x∈F

ω(x)Gqω (x, y) + ω(y)ωh(x0)
∑
x∈F

ω(x)Gqω (x, x0) + α

= −ωh(x0)Gqω (x0, y)− ω(y)ω2
h(x0)Gqω (x0, x0) + α

that is, α = ωh(x0)
[
G(x0, y) + ω(y)ωh(x0)G(x0, x0)

]
. �

Corollary 7.8. Rx0
qω is the restriction of Rqω to F × F .

Proof. Applying the Identity (19), for any x, y ∈ F ,

Rx0
ω (x, y) =

Gx0
qω (x, x)

ω2(x)
+
Gx0
qω (y, y)

ω2(y)
−

2Gx0
qω (x, y)

ω(x)ω(y)

=
Gqω (x, x)

ω2(x)
+ 2ωh(x0)

Gqω (x, x0)

ω(x)
+ ω2

h(x0)Gqω (x0, x0)

+
Gqω (y, y)

ω2(y)
+ 2ωh(x0)

Gqω (y, x0)

ω(y)
+ ω2

h(x0)Gqω (x0, x0)

− 2Gqω (x, y)

ω(x)ω(y)
− 2ωh(x0)

[Gqω (x, x0)

ω(x)
+
Gqω (x0, y)

ω(y)

]
− 2ω2

h(x0)Gqω (x0, x0) = Rqω (x, y).

�

We end this section considering newly the connected network Γ = (V, c) and the admissible potential
q = q(ω, λ), where ω ∈ Ω. Therefore, Lq is the corresponding Schrödinger operator, Gq and Gq the Green
operator for the network, and Rq the associated effective resistance. In addition we also consider fixed a new
vertex x̂ /∈ V .

Fixed σ ∈ Hq and a > 0, we consider the a–extension of σ and Γ̂ = (V ∪ {x̂}, ĉ), the Fiedler extension
of the network Γ with respect to σ and a, where ĉ = c on V × V and ĉ(x, x̂) = a−1Lq(σ)(x), for any x ∈ V .
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Observe that ĉ(x, x̂) > 0 only when x ∈ supp
(
Lq(σ)

)
. Then κ̂(x̂) = a−1〈q, σ〉 and hence, if σh is the harmonic

extension of σ to Γ̂, then

σh(x̂) =
1

κ̂(x̂)

∑
y∈F

ĉ(x̂, y)σ(y) = 〈q, σ〉−1〈Lq(σ), σ〉.

Therefore, σ̂ = σh iff a = 〈q, σ〉−1〈Lq(σ), σ〉. In particular, when σ = ω, then ĉ(x, x̂) = a−1λω(x), for any
x ∈ V and ω̂ = ωh iff a = ||ω||−1

1
.

Now, consider the Neighborhood Transformation at vertex x̂. Then for any x, y ∈ V , x 6= y, we have
that

cx̂(x, y) = ĉ(x, y) +
ĉ(x, x̂)ĉ(x̂, y)

κ̂(x̂)
= c(x, y) + a−1〈q, σ〉−1Lq(σ)(x)Lq(σ)(y).

As a consequence of the Corollary 7.8, we have the following relation between the effective resistance
of the Fiedler extension and the effective resistance after a Neighborhood Transformation.

Theorem 7.9. Given σ ∈ Hq, consider the conductance cσ : V × V −→ R defined as

cσ(x, y) = c(x, y) + 〈Lq(σ), σ〉−1Lq(σ)(x)Lq(σ)(y), for any x, y ∈ V , x 6= y.

Then Rq,σ = Rσ, where Rσ is the effective resistance of the network Γσ = (V, cσ) with respect to qσ.

Observe that Γσ = (V, cσ) appears as the perturbation of the initial network Γ that consists in to take
the perturbation ε(x, y) = 〈Lq(σ), σ〉−1Lq(σ)(x)Lq(σ)(y), x 6= y. In particular, for any z ∈ V , we have that
cσz = c and hence

Rqσ = Rq,σ.

8. Stars and recoverable complete networks

Given x0 ∈ V we say that V (x0) the subset of vertices adjacent to x0, is a star in Γ if c(z, y) = 0 for
all z, y ∈ V (x0). In this case, x is called the center of the star. The degree of the star is k(x) the degree of
its center.

If S is the star centered at x0, then the Neighborhood Transformation at x transforms Γ into a
connected network Γx0 with n− 1 vertices and 1

2 k(x0)
(
k(x0)− 3

)
more edges. Notice that the this value is

also true when k(x0) = 2, since then Γx0 has one less edge than Γ. In fact, under this transformation the
subnetwork induced by V (x0) in Γ is transformed into a complete subnetwork in Γx0 . For this reason the
Neighborhood Transformation at x is, is this case, also called Star-Complete Transformation, see [20, 22].

Conversely, suppose that an specific subnetwork with vertex set K of a given network (Γ̂, ĉ) is complete,
that is ĉ(z, y) > 0 for any z, y ∈ K. The main question here is when the complete subnetwork is obtained

from a star in a network Γ, that is, when Γ̂ = Γx0 for a network Γ and a vertex x0 ∈ V , where V is the set or
vertices of Γ and V (x0) is a star. In this case we say that the complete subnetwork is recoverable from a star,
or simply that the complete subnetwork is recoverable. In addition, we are also interested in when a complete
network is uniquely recoverable. We remark that in [22] this notion is referred as response-equivalent.

Our objective is to characterize what complete subnetworks are recoverable. In all cases we denote by
x0 a new vertex, that is not belonging to the vertex set of Γ̂. We use this new vertex as the center of the
star that recovers K.

Proposition 8.1. Consider K a complete subnetwork in (Γ̂, ĉ). Then, K is the transformation of a star
after a neighborhood transformation iff there exists α ∈ C(V ) satisfying the following properties:

(i) α ≥ 0.
(ii) supp(α) = K.
(iii) ĉ(x, y) = α(x)α(y) for all x, y ∈ K with x 6= y.
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Moreover, if we add a new vertex, x0, to the vertex set of Γ̂ and define c(x, x0) = α(x)||α||
1

for any x ∈ K,
c(x, y) = 0 for any x, y ∈ K and c(x, y) = ĉ(x, y) otherwise, then K = V (x0) is a star in the network (Γ, c)
and the complete network is obtained from the star after a Neighborhood Transformation at x0. In addition
K is uniquely recoverable iff there exists a unique function α ∈ C(V ) satisfying the above properties.

Proof. Assume that V (x0) is a star in Γ and consider the function α ∈ C(V ) defined as α(x) =
c(x, x0)√
κ(x0)

.

Then supp(α) = V (x0), α(x)α(y) = cx0(x, y) for any x, y ∈ V (x0) with x 6= y and moreover ||α||
1

=
√
κ(x0).

Therefore c(x, x0) = α(x)||α||
1
, for any x ∈ V (x0). �

Corollary 8.2. Any recoverable complete network on more than two vertices is uniquely recoverable. On
the other hand if K is a digon, that is, K is the complete network on two vertices, then K is infinitely
recoverable. Moreover if K = {x, y} and ĉ(x, y) is the conductance, then for any a > 0, K is recoverable
from the star with conductances c(x, x0) = a2 + ĉ(x, y) and c(y, x0) = ĉ(x, y)

[
1 + a−2ĉ(x, y)

]
.

Proof. Let (K, ĉ) a recoverable complete network and suppose that there exist α, β ∈ C(V ) with α, β ≥ 0,
supp(α) = supp(β) = K and such that α(x)α(y) = ĉ(x, y) = β(x)β(y) for any x, y ∈ K with x 6= y. Fixed
y ∈ K and defining a = β−1(y)α(y), the above identity implies that β(x) = aα(x) for x 6= y and moreover
β(y) = a−1α(y). any x ∈ K.

If |K| ≥ 3, and x, y, z ∈ K are different from each other, then α(x)α(z) = β(x)β(z) = a2α(x)α(z),
and hence a = 1, which implies that β = α.

If |K| = 2, K = {x, y} and we consider β(y) = 1 and β(x) = ĉ(x, y), then α ∈ C(V ) with α ≥ 0 and
supp(α) = K satisfies that α(x)α(y) = ĉ(x, y) iff there exists a > 0 such that α(x) = a and α(y) = a−1ĉ(x, y).
Then ||α||

1
= a+a−1ĉ(x, y) and hence c(x, x0) = a

(
a+a−1ĉ(x, y)

)
and c(y, x0) = a−1ĉ(x, y)

(
a+a−1ĉ(x, y)

)
.

�

Now we obtain a geometrical characterization of the recoverable complete networks on, at least, three
vertices. The result is a reformulation of that obtained in [22].

Proposition 8.3 (Triangle Condition). Given (K, ĉ) a complete network such that |K| ≥ 3, then

(K, ĉ) is recoverable iff for any three different vertices x, y, z ∈ K the value
ĉ(x, y)ĉ(x, z)

ĉ(y, z)
depends only on x.

Moreover if the above condition holds, then for any x, y ∈ K such that x 6= y, we have that ĉ(x, y) = α(x)α(y),

where α(x) =

√
ĉ(x, y)ĉ(x, z)

ĉ(y, z)
and z is any vertex different from x and y.

Proof. If the network is recoverable, then there exists α ∈ C(V ) such that α ≥ 0, supp(α) = K and moreover
ĉ(x, y) = α(x)α(y) for any x, y ∈ K with x 6= y. Clearly the above identity implies the triangle conditions

and moreover the equality α(x) =

√
ĉ(x, y)ĉ(x, z)

ĉ(y, z)
for any y, z ∈ K \ {x} with y 6= z.

Conversely, if the Triangle Condition is in force and we define α(x) =

√
ĉ(x, y)ĉ(x, z)

ĉ(y, z)
for any pair of

vertices y, z ∈ K \ {x} with y 6= z, then given v ∈ K \ {x}, if we consider u ∈ K \ {x, v}, we get

α(x)α(v) =

√
ĉ(x, v)ĉ(x, u)

ĉ(v, u)

√
ĉ(v, x)ĉ(v, u)

ĉ(x, u)
= ĉ(x, v)

and hence the network (K, ĉ) is recoverable. �

Corollary 8.4. Let (K, ĉ) be the triangle of vertices x, y, z. Then K is uniquely recoverable from the star
with conductances

c(x, x0) =
β

ĉ(y, z)
, c(y, x0) =

β

ĉ(x, z)
and c(z, x0) =

β

ĉ(x, y)
,
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where β = ĉ(x, y)ĉ(x, z) + ĉ(x, y)ĉ(y, z) + ĉ(x, z)ĉ(y, v).

Proof. Clearly (K, ĉ) satisfies the Triangle Condition. Therefore, if we define

α(x) =

√
ĉ(x, y)ĉ(x, z)

ĉ(y, z)
, α(y) =

√
ĉ(y, x)ĉ(y, z)

ĉ(x, z)
and α(z) =

√
ĉ(z, x)ĉ(z, y)

ĉ(x, y)

then

||α||1 =
ĉ(x, y)ĉ(x, z) + ĉ(y, x)ĉ(y, z) + ĉ(z, x)ĉ(z, y)√

ĉ(y, z)ĉ(x, z)ĉ(x, y)
=

β√
ĉ(y, z)ĉ(x, z)ĉ(x, y)

and the results appears as a consequence of Proposition 8.1. �

Observe that the cases |K| = 2, the digon and |K| = 3, the triangle, correspond to the well-known
transformations on electrical networks, see for instance [6]:

If we have a star of degree 2, then we have two resistances r(x, x0) = c−1(x, x0) and r(y, x0) = c−1(y, x0)
connected in series. Then, after the Neighborhood Transformation at x0 the two resistances are glued forming
a resistance whose value equals to

rx0(x, y) =
1

cx0(x, y)
=
c(x, x0) + c(y, x0)

c(x, x0)c(y, x0)
=

1

c(x, x0)
+

1

c(y, x0)
= r(x, x0) + r(y, x0).

If we have a star of degree 3, then we have three resistances r(x, x0) = c−1(x, x0), r(y, x0) = c−1(y, x0)
and r(z, x0) = c−1(z, x0) forming a Y –structure centered at x0. Then, after the Neighborhood Transfor-
mation at x0, in this case called Star-Triangle transformation, the three resistances are transformed into a
triangle of resistances, with vertices at x, y, z and whose values equal to

rx0(x, y) =
1

cx0(x, y)
=
c(x, x0) + c(x0, y) + c(x0, z)

c(x, x0)c(x0, y)
=
r(x0, y)r(x0, z) + r(x, x0)r(x0, z) + r(x, x0)r(x0, y)

r(x0, z)

and we have analogous expressions for rx0(x, z) and rx0(y, z).

Now we obtain another geometrical characterization of the recoverable complete networks on more
than four vertices. Newly, the result is a reformulation of that obtained in [22].

Proposition 8.5 (Square Condition). Given (K, ĉ) a complete network such that |K| ≥ 4, then (K, ĉ)
is recoverable iff for any four different vertices x, y, u, v ∈ K it is satisfied that ĉ(x, y)ĉ(u, v) = ĉ(x, u)ĉ(y, v).

Proof. It suffices to prove that the square and the triangle conditions are equivalent.

If we assume that the triangle condition holds, then for any four different vertices x, y, u, v ∈ K, we
get

ĉ(x, y)ĉ(x, v)

ĉ(y, v)
=
ĉ(x, u)ĉ(x, v)

ĉ(u, v)

that in turns, clearly implies ĉ(x, y)ĉ(u, v) = ĉ(x, u)ĉ(y, v).

Conversely, if the square condition holds, then for any four different vertices x, y, u, v ∈ K, we get
ĉ(x, y)ĉ(u, v) = ĉ(x, u)ĉ(y, v). Multiplying both sides of the above identity by ĉ(x, v) we obtain

ĉ(x, y)ĉ(u, v)ĉ(x, v) = ĉ(x, u)ĉ(y, v)ĉ(x, v)

and hence that
ĉ(x, y)ĉ(x, v)

ĉ(y, v)
=
ĉ(x, u)ĉ(x, v)

ĉ(u, v)
. �

Theorem 8.6. Let (K, ĉ) a recoverable complete network and consider α ∈ C(V ) such that α ≥ 0, supp(α) =
K and moreover ĉ(x, y) = α(x)α(y) for any x, y ∈ K, x 6= y. Then, for any ω ∈ Ω(K), the Green function
of (K, ĉ) with respect to ω is given by

G(x, y) =
ω(x)ω(y)

〈α, ω〉

[∑
v∈K

ω3(v)

α(v)
− ω(x)

α(x)
− ω(y)

α(y)
+

εx(y)

ω(x)α(x)

]
, x, y ∈ K.
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Proof. From Proposition 8.1, (K, ĉ) is obtained, after a Neighborhood Transformation at x0, from the star

whose conductance is given by c(x, x0) = α(x)||α||
1
. Taking into account that ωh(x0) =

〈α, ω〉
||α||

1

, the Green

function of the star, with respect to the weight 1√
1+ω2

h(x0)
ωh =

||α||
1√

||α||2
1

+ 〈α, ω〉2
ωh is given by

GS(x0, x0) =
〈α, ω〉||α||2

1
Q(

||α||2
1

+ 〈α, ω〉2
)2 ,

GS(x, x0) =
ω(x)||α||1

||α||2
1

+ 〈α, ω〉2

[ ||α||2
1
Q

||α||2
1

+ 〈α, ω〉2
− ω(x)

α(x)

]
,

GS(x, y) =
ω(x)ω(y)||α||2

1

〈α, ω〉
(
||α||2

1
+ 〈α, ω〉2

) [ ||α||2
1
Q

||α||2
1

+ 〈α, ω〉2
− ω(x)

α(x)
− ω(y)

α(y)
+

(
||α||2

1
+ 〈α, ω〉2

)
εx(y)

ω(x)α(x)||α||2
1

]
,

for any x, y ∈ K, where Q =
∑
v∈K

ω3(v)

α(v)
, see [8]. Applying now Theorem 7.7, for any z, y ∈ K we obtain that

G(x, y) = GS(x, y) +
〈α, ω〉
||α||1

[
ω(y)GS(x, x0) + ω(x)GS(x0, y)

]
+
〈α, ω〉2ω(x)ω(y)

||α||2
1

GS(x0, x0)

=
ω(x)ω(y)||α||2

1

〈α, ω〉
(
||α||2

1
+ 〈α, ω〉2

) [ ||α||2
1
Q

||α||2
1

+ 〈α, ω〉2
− ω(x)

α(x)
− ω(y)

α(y)
+

(
||α||2

1
+ 〈α, ω〉2

)
εx(y)

ω(x)α(x)||α||2
1

]

+
〈α, ω〉ω(x)ω(y)

||α||2
1

+ 〈α, ω〉2

[
2||α||2

1
Q

||α||2
1

+ 〈α, ω〉2
− ω(x)

α(x)
− ω(y)

α(y)

]
+
〈α, ω〉3Qω(x)ω(y)(
||α||2

1
+ 〈α, ω〉2

)2
=
ω(x)ω(y)

〈α, ω〉

[
Q− ω(x)

α(x)
− ω(y)

α(y)
+

εx(y)

ω(x)α(x)

]
. �

Corollary 8.7. Any complete network K on n vertices and with constant conductance, c, is recoverable
from the star with n vertices and constant conductance c. Moreover, for any weight ω ∈ Ω(V ) its Green
function is given by

G(x, y) =
ω(z)ω(y)

c
∑
v∈K

ω(v)

[∑
v∈K

ω3(v)− ω(x)− ω(y) +
εx(y)

ω(x)

]
, x, y ∈ K.

In particular, when the weight is also constant, the Green function is given by

G(z, y) =
1

n2c

[
nεx(y)− 1

]
, x, y ∈ K.
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