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Two geometric characterizations of positive definite reflexive and symmetric fuzzy relations 

are provided based on the embeddability of their naturally associated pseudodistances with 

respect to the continuous Archimedean t-norms with additive generators t(x)=arccos x and 

t(x)=sqrt(1-x). 

Due to the important role of the t-norm T_arccos x with additive generator t(x)=arccos x in 

these characterizations, different characterizations of it are given. 

Abstract
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Spain
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Abstract

Two geometric characterizations of positive definite reflexive and
symmetric fuzzy relations are provided based on the embeddability of
their naturally associated pseudodistances with respect to the contin-
uous Archimedean t-norms with additive generators t(x) = arccos x
and t(x) =

√
1− x.

Due to the important role of the t-norm Tarccos x with additive
generator t(x) = arccos x in these characterizations, different charac-
terizations of it are given.

Keywords: t-norm, continuous Archimedean t-norm, additive
generator, T -indistinguishability operator, distance, positive definite
matrix, Cayley-Menger determinant.

1 Introduction

In Volume 157 of this journal two papers ([8, 13]) were devoted to the re-
lationship between positive definiteness and transitivity of a reflexive and
symmetric fuzzy relation from two different points of view. In [13] the sub-
ject was the study of usual similarity measures used e.g. in combinatorial
chemistry while in [8] the interest was put on characterizing kernels (see also
[9]). One of the main results shared by them is that a reflexive and sym-
metric fuzzy relation is three-positive semidefinite (see Definition 3.2) if it is
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Tarccos-transitive (i.e.: a Tarccos-indistinguishability operator) where Tarccos is
the continuous Archimedean t-norm with additive generator t(x) = arccosx.
Also the relationship between positive definiteness and the t-norm generated
by t(x) =

√
1− x was analyzed in [13]. Transitivity with respect to this t-

norm was also considered in the study of fuzzy partitions in another paper of
the same volume of this journal [4]. Lately, also in this journal, [3] insisted in
the question and considered the open problem of characterizing the reflexive
and symmetric fuzzy relations that are positive definite.

It is indeed an interesting problem and the present paper provides geomet-
ric characterizations of such fuzzy relations. After a section of preliminaries,
Section 3 studies and characterizes in different ways the important contin-
uous Archimedean t-norm Tarccos with additive generator t(x) = arccosx
basically relating it to the vanishing of the determinant of one-dimensional
T -indistinguishability operators (see Definition 3.5). The results of Section 4
provide characterizations of a positive definite reflexive and symmetric fuzzy
relation A based on the embeddability of the pseudodistances associated to
A (Proposition 2.9) by T√

1−x and Tarccos into a Euclidean space and a hyper-
sphere respectively.

2 Preliminaries

This section contains the basic definitions and properties of t-norms, T -in-
distinguishability operators and positive definite matrices that will be used
throughout the paper starting with the characterization of continuous Archi-
medean t-norms by their additive generators.

Proposition 2.1. [7] A t-norm T is continuous Archimedean if and only if
there exists a continuous decreasing function t : [0, 1]→ [0,∞] with t(1) = 0
such that for all x, y ∈ [0, 1]

T (x, y) = t[−1](t(x) + t(y))

where t[−1] is the pseudo-inverse of t defined by

t[−1](x) =

{

t−1(x) if x ∈ [0, t(0)]
0 otherwise.

T is strict if t(0) = ∞ and non-strict otherwise. t is called an additive
generator of T and two additive generators of the same t-norm differ only by
a positive multiplicative constant.

2
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From a left-continuous t-norm its residuation and birresiduation can be
derived. If the t-norm is used for modelling the logic conjunction, its residu-
ation and birresiduation represent the logical implication and biimplication.

Definition 2.2. [7] Let T be a left-continuous t-norm.

• The residuation
−→
T of T is the map

−→
T : [0, 1] × [0, 1] → [0, 1] defined

for all x, y ∈ [0, 1] by

−→
T (x, y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

• The birresiduation
←→
T of T is the map

←→
T : [0, 1]× [0, 1]→ [0, 1] defined

for all x, y ∈ [0, 1] by

←→
T (x, y) = min(

−→
T (x, y),

−→
T (y, x)).

Proposition 2.3. [7] Let T be a continuous Archimedean t-norm with addi-
tive generator t. Then for all x, y ∈ [0, 1]

• −→
T (x, y) = t[−1](t(y)− t(x)).

• ←→
T (x, y) = t−1(|t(x)− t(y)|).

We will use the following result that states that a left-continuous t-norm
can be recovered from its residuation.

Proposition 2.4. [1] A t-norm is left-continuous if and only if inf{α ∈
[0, 1] |−→T (x, α) ≥ y} = T (x, y) for all x, y ∈ [0, 1].

From this proposition a left-continuous t-norm can be recovered from its
residuation and hence a t-norm is characterized by it. It is not the case for
non left-continuous t-norms as shown in the following example.

Example 2.5. [1] Consider the two (non left-continuous) t-norms T1 and
T2 defined by

T1(x, y) =

{

0 if (x, y) ∈ [0, 1
2
]× [0, 1

2
]

min(x, y) otherwise

T2(x, y) =

{

T1(x, y) if (x, y) 6= (1
2
, 1
2
)

1
2

if (x, y) 6= (1
2
, 1
2
).

T1 6= T2 but
−→
T 1 =

−→
T 2.

3
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Indistinguishability operators are one of the most important types of fuzzy
relations because they fuzzify the concepts of equivalence and equality. They
have been studied extensively both theoretically and from the applications
point of view and the reader is referred to [10] for a general panorama.

Definition 2.6. [15, 10] Let T be a t-norm and X a set. A fuzzy relation E

on X is a T -indistinguishability operator if and only if for all x, y, z ∈ X

• E(x, x) = 1 (Reflexivity)

• E(x, y) = E(y, x) (Symmetry)

• T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

If E(x, y) = 1 if and only if x = y, then E separates points.

Definition 2.7. A reflexive and symmetric fuzzy relation E on X is called
a proximity or tolerance relation.

Indistinguishability operators are related to distances from different points
of view. One that will be needed in Section 4 is exposed in Proposition 2.9.

Definition 2.8. Let X be a set. A mapping d : X × X → [0,∞] is a
pseudodistance or pseudometric if and only if for all x, y, z ∈ X

• d(x, x) = 0

• d(x, y) = d(y, x)

• d(x, y) + d(y, z)) ≥ d(x, z)

If d(x, y) = 0 if and only if x = y, then d is a distance or metric on X.

Proposition 2.9. [14] Let T be a continuous Archimedean t-norm, t an
additive generator of T and X a set. A fuzzy relation E on X is a T -
indistinguishability operator if and only if t(E) is a pseudodistance on X. E
separates points if and only if t(E) is a distance.

Let us finally recall the definition of positive definite matrix.

Definition 2.10. A symmetric n × n real matrix A is positive definite if
~utA~u > 0 for every non-zero vector ~u ∈ R

n and positive semi-definite if
~utA~u ≥ 0.

4
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There are many characterizations of positive definiteness. The next pro-
position recalls a couple of them and can be found in any book of linear
algebra.

Proposition 2.11. Let A be a symmetric n× n real matrix. The following
statements are equivalent.

• A is positive definite.

• All eigenvalues of A are positive.

• All principal minors of A are positive, where the k-th principal minor
of a matrix A is the determinant of its upper-left k × k sub-matrix.

3 Characterizations of Tarccos

As it was mentioned in the introductory section, the continuous Archimedean
t-norm Tarccos with additive generator t(x) = arccos x plays an important role
in the characterization of positive semidefinite symmetric fuzzy relations. For
example, a symmetric fuzzy relation is three-positive semidefinite (Definition
3.2) if and only if it is a Tarccos-indistinguishability operator. This makes this
t-norm special and therefore it seems worth studying it in more detail. Also in
Subsection 4.1 Tarccos will be used for a geometric characterization of positive
definite symmetric fuzzy relations. This section will provide characterizations
of this t-norm by using one-dimensional indistinguishability operators (see
Definition 3.5).

The next proposition describes explicitly the t-norm Tarccos and its resid-
uation and birresiduation.

Proposition 3.1. For all x, y ∈ [0, 1],

•
Tarccos(x, y) = max(cos(arccosx+ arccos y), 0)

= max(xy −
√
1− x2

√

1− y2, 0)

•
−→
T arccos(x, y) = cos(max(0, arccos y − arccos x))

=

{

1 if x ≤ y

xy +
√
1− x2

√

1− y2 if x > y.

5
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•
←→
T arccos(x, y) = cos(| arccosx− arccos y|)

= cos(arccosx− arccos y)

= xy +
√
1− x2

√

1− y2.

Definition 3.2. [13] A reflexive and symmetric fuzzy relation A on a set
X = {x1, x2, ..., xn} of cardinality n > 2 is three-positive semidefinite if for
all 0 ≤ i, j, k ≤ n, i 6= j 6= k 6= i the submatrix of A





1 aij aik
aij 1 ajk
aik ajk 1





is positive semidefinite, where aij stands for A(xi, xj).

In [8, 13] the following characterization of the three positive semidefinite
tolerance relations is given.

Proposition 3.3. [8, 13] A reflexive and symmetric fuzzy relation A on a
set X is three-positive semidefinite if and only if it is Tarccos-transitive (i.e.:
it is a Tarccos-indistinguishability operator).

The previous proposition has nice geometric interpretations.

• If A = (aij)i,j=1,2,3 is a definite positive 3×3 matrix, then it is the matrix
of an inner product < ·, · > and we can find three linearly independent
vectors ~u1, ~u2, ~u3 with aij =< ~ui, ~uj >. aii = 1 means that these vectors
are unitary and the angle determined by ~ui and ~uj is then arccos aij .
Proposition 3.3 says that in order to be possible the existence of these
vectors, these angles must verify the triangle inequality; in other words,
the sum of two of them must be greater than or equal to the other one.

• Another geometric interpretation can be obtained taking into account
that arccos aij is also the length of the arc joining the heads of the
vectors ~ui and ~uj with their tails in the origin of coordinates. So the
matrix A is positive semidefinite if and only if the lengths of the arcs
joining the heads of the vectors satisfy the triangle inequality. This will
be generalized in Subsection 4.2.

6
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The next proposition provides the most natural way to generate a T -
indistinguishability operator from a given fuzzy subset of a universe X . It
generalizes (fuzzifies) the fact that in the crisp case a (crisp) subset A ⊆ X

partitions X in two parts: A and its complementary X − A.

Proposition 3.4. [14, 10] Let µ be a fuzzy set of a universe X and T a left
continuous t-norm. The fuzzy relation Eµ on X defined for all x, y ∈ X by

Eµ(x, y) =
←→
T (µ(x), µ(y))

is a T -indistinguishability operator.

Definition 3.5. [5, 10] A T -indistinguishability operator on X of the form
Eµ for some fuzzy set µ of X is called one-dimensional.

Lemma 3.6. Let T be a continuous non-strict Archimedean t-norm, t a
generator of T and µ a fuzzy subsets of a set X of finite cardinality. Then
there exists a normalized fuzzy set ν such that Eµ = Eν.

Proof. Consider k = max{−t(µ(x)) | x ∈ X} and ν defined for all x ∈ X by

ν(x) = t−1(t(µ(x)) + k).

• ν is normalized: Let x0 ∈ X be such that k = −t(µ(x0)). Then
ν(x0) = t−1(t(µ(x0))− t(µ(x0)) = t−1(0) = 1.

• Eν = Eµ:

Eν(x, y) = t−1(|t(t−1(t(µ(x)) + k))− t(t−1(t(µ(y)) + k))|)
= t−1(|t(µ(x))− t(µ(y))|) = Eµ(x, y).

Lemma 3.7. Let T be a left continuous t-norm, X a set of finite cardinality
and µ a constant fuzzy subset of X. Then Eµ(x, y) = 1 for all x, y ∈ X and
therefore the rank of Eµ is 1 (rank(Eµ) = 1).

Proof. Trivial.

The next proposition characterizes the t-norm Tarccos as the one for whom
det(Eµ) = 0 for all fuzzy subsets of a set of cardinality 3.

7
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Proposition 3.8. Let X = {x1, x2, x3} be a set of cardinality 3 and T a left
continuous t-norm. det(Eµ) = 0 for all fuzzy subsets µ of X if and only if
T = Tarccos.

Proof. Thanks to the previous lemma we can consider the fuzzy subset µ of
X normalized and, without loss of generality, of the form µ = (1, x, y) with
x, y ∈ [0, 1] and 1 ≥ x ≥ y. Then,

Eµ =







1 x y

x 1
←→
T (x, y)

y
←→
T (x, y) 1






=







1 x y

x 1
−→
T (x, y)

y
−→
T (x, y) 1






.

det(Eµ) = 1+2xy
−→
T (x, y)−x2−y2− (

−→
T (x, y))2 = 0 if and only if

−→
T (x, y) =

xy +
√
1− x2

√

1− y2.
Being this true for all x, y ∈ [0, 1] with x ≥ y, and thanks to Proposition

2.4 we have T = Tarccos.

Another way to put this result is expressed in the next proposition.

Proposition 3.9. Let X = {x1, x2, x3} be a set of cardinality 3 and T a left
continuous t-norm. rank(Eµ) = 2 for all non-constant fuzzy subsets µ of X
if and only if T = Tarccos.

The following result is a generalization in one direction of this result.

Proposition 3.10. Let X = {x1, x2, ..., xn} be a finite set of cardinality
n ≥ 2, µ a non-constant fuzzy subset of X and Eµ the one-dimensional
Tarccos-indistinguishability operator on X generated by µ. Then rank(Eµ) = 2.

Proof. Without loss of generality we can assume that µ = (1, a2, a3, ..., an)
with 1 ≥ a2 ≥ a3,≥ ... ≥ an and we can write µ = (1, cos b2, cos b3, ..., cos bn).
As µ is non-constant, an 6= 1 and hence cos bn 6= 1 and sin bn 6= 0. Then

rank(Eµ) = rank

















1 a2 a3 ... an

a2 1
−→
T (a2, a3) ...

−→
T (a2, an)

a3
−→
T (a2, a3) 1 ...

−→
T (a3, an)

...
...

...
. . .

...

an
−→
T (a2, an)

−→
T (a3, an) . . . 1

















=

8
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rank















1 cos b2 cos b3 ... cos bn
cos b2 1 cos(b3 − b2) ... cos(bn − b2)
cos b3 cos(b3 − b2) 1 ... cos(bn − b3)

...
...

...
. . .

...
cos bn cos(bn − b2) cos(bn − b3) ... 1















.

Subtracting to the i-th column, i > 1, the first one multiplied by cos bi we
get that the rank is

rank















1 0 0 ... 0
cos b2 1− cos2 b2 sin b3 sin b2 ... sin bn sin b2
cos b3 sin b3 sin b2 1− cos2 b3 ... sin bn sin b3

...
...

...
. . .

...
cos bn sin bn sin b2 sin bn sin b3 ... 1− cos2 bn















=

1 + rank











1− cos2 b2 sin b3 sin b2 ... sin bn sin b2
sin b3 sin b2 1− cos2 b3 ... sin bn sin b3

...
...

. . .
...

sin bn sin b2 sin bn sin b3 ... 1− cos2 bn











=

1 + rank











sin2 b2 sin b3 sin b2 ... sin bn sin b2
sin b3 sin b2 sin2 b3 ... sin bn sin b3

...
...

. . .
...

sin bn sin b2 sin bn sin b3 ... sin2 bn











Subtracting to the i-th column, i < n, the last one multiplied by sin bi
sin bn

(recall
that sin bn 6= 0) we get that the rank of Eµ is

1 + rank











0 0 ... sin bn sin b2
0 0 ... sin bn sin b3
...

...
. . .

...
0 0 ... sin2 bn











= 2.

As a corollary we obtain the following characterization of the t-norm
Tarccos.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Proposition 3.11. Let T be a left-continuous t-norm and X a finite set of
cardinality n > 2. T = Tarccos if and only if rank(Eµ) = 2 for all non-constant
fuzzy subsets of X.

Proof.

⇒) Proposition 3.10.

⇐) Consider a t-norm T different from Tarccos and µ a fuzzy subset of X

of the form (1, a2, a3, ..., an) with 1 > a2 > a3 and with
−→
T (a2, a3) 6=−→

T arccos(a2, a3). (Such a2, a3 exist thanks to Proposition 2.4). Then

det







1 a2 a3

a2 1
←→
T (a2, a3)

a3
←→
T (a2, a3) 1






= det







1 a2 a3

a2 1
−→
T (a2, a3)

a3
−→
T (a2, a3) 1






.

This determinant is different from 0 thanks to Proposition 3.8 and
therefore rank(Eµ) ≥ 3.

4 Two Geometric Characterizations of PSD

Reflexive and Symmetric Fuzzy Relations

In this section we provide two characterizations of positive definite reflexive
and symmetric fuzzy relations: in Subsection 4.1 related to the embeddability
into an Euclidean space while in Subsection 4.2 related to the embeddability
into the hypersphere Sn = {~v = (x0, x1, ...xn) ∈ R

n+1 | ∑n

i=0 x
2
i = 1} in R

n+1

with center in the origin of coordinates ~0 and radius 1.

4.1 Embedding into R
n

Definition 4.1. Let X = {x0, x1, ..., xn} be a finite set of cardinality n + 1
and d a distance on X. Denoting d(xi, xj) by dij for all 0 ≤ i, j ≤ n, the

10
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Cayley-Menger determinant CM(x0, x1, ..., xn) is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 ... 1
1 0 d201 d202 ... d20n
1 d201 0 d212 ... d21n
1 d202 d212 0 . . . d22n
...

...
...

...
. . .

...
1 d20n d21n d22n . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The importance of the Cayley-Menger determinant is that if the set X is
in R

n and d is the Euclidean distance, then it is related with the volume of
the n+ 1-simplex generated by the points of X in the following way.

Proposition 4.2. Let X = {x0, x1, ..., xn} be a finite set of n + 1 points in
R

n and d the Euclidean distance. Then the volume v(X) of the n+1-simplex
with vertices the elements of X is

v(X) =

√

(−1)n+1

2n(n!)2
CM(x0, x1, ..., xn).

The previous result can be found in every book and article devoted to
Euclidean embeddings of metric spaces. One of the earliest ones, cited in [6],
is [12]. In particular, the Cayley-Menger determinant must have the same
sign as (−1)n+1. From this, we have the following result that characterizes
the finite metric spaces isometrically embeddable into an Euclidean space.

Proposition 4.3. [6] Let X = {x0, x1, ..., xn} be a finite set of cardinality
n + 1 and d a distance on X. Denoting d(xi, xj) by dij for all 0 ≤ i, j ≤ n,
(X, d) is embeddable into R

n if and only if for every k = 1, 2, ..., n the sign
of CM(x0, x1, ..., xk) is equal to (−1)k+1.

Proposition 4.4. [11] Let X = {x0, x1, ..., xn} be a finite set of cardinality
n + 1 and d a distance on X. Denoting d(xi, xj) by dij for all 0 ≤ i, j ≤ n,
(X, d) is embeddable into R

n if and only if the n × n matrix with entries

xij =
d2
0i+d2

0j−d2ij
2

(1 ≤ i, j ≤ n) is positive definite.

In the case of a reflexive and symmetric fuzzy relation, its associated n×n
matrix A = (xij) has ones in its diagonal, so that for all i = 1, 2, ..., n, we
have

1 = xii =
d20i + d20i − d2ii

2
=

2d20i
2

= d20i

11
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and hence
d0i = 1.

So in this case the Cayley-Menger determinant of d is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 ... 1
1 0 1 1 ... 1
1 1 0 d212 ... d21n
1 1 d212 0 . . . d22n
...

...
...

...
. . .

...
1 1 d21n d22n . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Moreover, from

xij =
d20i + d20j − d2ij

2
=

2− d2ij

2
we get

dij =
√
2
√

1− xij for all 1 ≤ i, j ≤ n.

In terms of the elements of A, then

CM(x0, x1, ..., xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 ... 1
1 0 1 1 ... 1
1 1 0 2(1− x12) ... 2(1− x1n)
1 1 2(1− x12) 0 . . . 2(1− x2n)
...

...
...

...
. . .

...
1 1 2(1− x1n) 2(1− x2n) . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and we obtain the following geometric characterization of reflexive and sym-
metric fuzzy relations with positive definite associated matrix.

Proposition 4.5. A reflexive and symmetric fuzzy relation A on a set X =
{x1, x2, ..., xn} of finite cardinality is positive definite if and only if it is a
T√

1−x-indistinguishability operator and in X ′ = X ∪ {x0} the associated

distance d (i.e.: dij =
√
2
√

1− xij if i, j > 0 and d0i = 1 for i > 0) is
embeddable into R

n.

In the embedding, x0 can be sent to the origin of coordinates x′
0 and the

images x′
i of xi, i > 0 correspond to the heads of the vectors

−−→
x′
0x

′
i so that the

last proposition can be stated in the a clearer way

12
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Proposition 4.6. A reflexive and symmetric fuzzy relation A = (xij) on
a set X = {x1, x2, ..., xn} of finite cardinality n is positive definite if and
only if it is a T√

1−x-indistinguishability operator and X with the distance

d(xi, xj) =
√
2
√

1− xij, 1 ≤ i, j ≤ n, is embeddable into R
n in such a way

that the images of the points of X lie on the hypersphere S
n−1.

In particular, for a set X of cardinality 3 this means that the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 1 1 1
1 1 0 2(1− x12) 2(1− x13)
1 1 2(1− x12) 0 2(1− x23)
1 1 2(1− x13) 2(1− x23) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

8(x12x13x23 − x2
12 − x2

13 − x2
23 + 1)

must be greater than 0. This is equivalent to the fact that A is Tarccos-
transitive and Proposition 3.3 can be re-interpreted in the following way.

Proposition 4.7. The following statements for a reflexive and symmetric
fuzzy relation R on a set X are equivalent.

• R is three-positive semidefinite.

• R is a Tarccos-indistinguishability operator.

•
√
1−R is a pseudodistance on X and every subset of cardinality 3 of

X is embeddable in R
3 in such a way that the points of X lie on the

sphere S
2.

This last proposition also shows the relation between Tarccos and T√
1−x. In

[13] it has been proved that if a reflexive and symmetric fuzzy relation is three
positive semidefinite, then it is T√

1−x-transitive. It is an interesting result
that does not directly follow from the Tarccos-transitivity because the two t-
norms are not comparable: Tarccos(0.7, 0.8) = 0.13 > 0.10 = T√

1−x(0.7, 0.8)
and Tarccos(0.8, 0.8) = 0.28 < 0.45 = T√

1−x(0.8, 0.8). The previous result
clarifies this situation.

13
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4.2 Embedding into S
n

While in the previous subsection the characterization of a positive definite
tolerance relation A has been obtained studying the embeddability of the
metric generated from A using the additive generator t(x) =

√
1− x of the

t-norm T√
1−x into an Euclidean space, in this subsection the characterization

will be done by studying the embeddability of the metric generated by the
additive generator t(x) = arccosx of the t-norm Tarccos into a hypersphere.
This will generalize the geometric interpretations of Proposition 3.3.

Let Sn = {~v = (x0, x1, ...xn) ∈ R
n+1 |

∑n

i=0 x
2
i = 1} be the hypersphere in

R
n+1 with center in the origin of coordinates ~0 and radius 1. The spherical

metric (or great circle metric) d is the metric on S
n defined for all ~u =

(x0, x1, ...xn), ~v = (y0, y1, ..., yn) ∈ S
n by

d(~u,~v) = arccos(|
n

∑

i=0

xi · yi|) = arccos < ~u,~v >

where < ~u,~v > is the standard inner product in R
n+1. It is the length of the

greatest circle arc joining ~u and ~v.

Proposition 4.8. Let X = {x0, x1, ..., xn} be a finite set of cardinality n+1
and d a distance on X. Denoting d(xi, xj) by dij for all 0 ≤ i, j ≤ n, (X, d)
is embeddable in S

n if and only if the n× n matrix with entries xij = cos dij
is positive definite.

In this case, the matrix A with entries xij is the matrix of a reflexive and
symmetric fuzzy relation.

The Cayley-Menger determinant of d is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 ... 1
1 0 1 1 ... 1
1 1 0 arccos2 x12 ... arccos2 x1n

1 1 arccos2 x12 0 . . . arccos2 x2n
...

...
...

...
. . .

...
1 1 arccos2 x1n arccos2 x2n . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Moreover,
xij = cos dij.
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So the next proposition provides an alternative geometric characterization
of reflexive and symmetric fuzzy relations with positive definite associated
matrix.

Proposition 4.9. A reflexive and symmetric fuzzy relation A on a set X =
{x1, x2, ..., xn} of finite cardinality is positive definite if and only if it is
a Tarccos-indistinguishability operator and X with the distance d(xi, xj) =
arccosxij, 1 ≤ i, j ≤ n can be mapped isometrically into S

n−1 with the spher-
ical metric.

5 Concluding Remarks

In this paper metric characterizations of positive definite reflexive and sym-
metric fuzzy relations have been provided using known results of embeddabil-
ity into Euclidean spaces and hyperspheres with the associated distances gen-
erated by additive generators of Tarccos and T√

1−x according to Proposition
2.9.

The results obtained in Subsection 4.2 permit a geometric elegant alter-
native proof of Propositions 3.8 and 3.10. A sketch of it follows: It is known
that an indistinguishability operator E separating points on a set X with
E(x, y) 6= 0 for all x, y ∈ X with respect to a continuous Archimedean t-
norm determines a metric betweenness relation [6] on X that is linear if and
only if E is one dimensional [10]. In particular such a one dimensional Tarccos-
indistinguishability operator E on X = {x1, x2, ..., xn} determines a linear
metric betweenness relation on X . Then t(E) = arccos(E) is a distance that
also determines a linear betweenness relation on X [2] and hence the points
of X can be isometrically embedded into an arc of a hypersphere. Together
with the center of this hypersphere they determine an n + 1-simplex that
lies on a plane and therefore any three of the vectors −−→x0x1,

−−→x0x2,...,
−−→x0xn are

linearly dependent. (This can be also interpreted as that all the volumes of
this simplex of dimension greater than 2 are 0).

The t-norm T√
1−x belongs to the family of Yager t-norms [7] (it cor-

responds to the value 1
2
of the parameter). Modifying the generator t(x) =

arccosx of the t-norm Tarccos, interesting families of t-norms can be obtained.
Indeed, from a continuous, increasing function f : [0, 1]→ [0, 1] with f(1) = 1
we can consider the t-norm with additive generator t(x) = arccos(f(x)). In

15
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particular, for fλ(x) = xλ, 0 < λ < ∞ we have the family (Tλ)λ∈(0,∞) of
non-strict continuous Archimedean t-norms with additive generators tλ(x) =
arccosxλ. It can be proved that limλ→∞ Tλ is the drastic t-norm TD while
limλ→0 Tλ is the t-norm T defined for all x, y ∈ [0, 1] by

T (x, y) =
x · y

e2·
√
lnx·ln y

which is strict (its diagonal is T (x, x) = x4). An additive generator of T is
t(x) =

√
− ln x as can be checked by a direct calculation or by considering

that the limit of the sequence sλ(x) =
1√
λ
· arccosxλ of additive generators

of the family (Tλ)λ∈(0,∞) when λ tends to 0 is
√
2 ·
√
− ln x and applying

Corollary 8.21 of [7].
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