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Abstract

In this paper the fuzzy subgroup set of a group is studied. We use the close

relation between indistinguishability operators and fuzzy subgroups to charac-

terize the morphisms that transform fuzzy subgroups and indistinguishability

operators into fuzzy subgroups and indistinguishability operators respectively.

We show necessary and sufficient conditions over two t-norms to guarantee that

the fuzzy subgroup set induced by the first one is into the fuzzy subgroup set

induced by the second one.
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1. Introduction

t-norms generalize the crisp intersection to the fuzzy framework. They are

very useful in many fields of fuzzy logic and they are a key tool in the develop-

ment of fuzzy subgroup theory and fuzzy relation theory.

Indistinguishability operators are a particular case of fuzzy relations. They5

extend crisp equivalence relations to the fuzzy framework and were introduced

on [1] by Zadeh. They are also named fuzzy equivalences, fuzzy equalities or

similarity relations in different contexts too. These operators have been widely

studied and have been useful in many investigation fields such as fuzzy control,

cluster analysis and approximate reasoning. An overview of these operators is10

shown on [2].
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The first definition of fuzzy subgroup was given by Rosenfeld in [3], fuzzying

conditions for subgroup crisp. He defined a fuzzy subgroup µ of a group G

as a fuzzy set of G such that µ(x) ≥ µ(x−1) and µ(xy) ≥ min{µ(x), µ(y)}

for all x, y ∈ G. Many authors have extended this notion using an arbitrary15

t-norm T instead of the minimum t-norm TM . Das studied widely the fuzzy

subgroup with the minimum t-norm and he characterized them (see [4]). By

definition, it is easy to check that µ(x) = µ(x−1) for all x ∈ G and, for the

minimum t-norm TM , µ(e) ≥ µ(x) for all x ∈ G where e is the neutral element

of G. For this reason, many authors impose µ(e) = 1, this is equivalent to20

the normalized condition (there exist an element which attains the maximum

possible membership degree). In this work, GT will denote a set of all fuzzy

subgroup of a group G regarding a t-norm T .

Fuzzy subgroups and indistinguishability operators can be related as it is

shown on [5]: To every fuzzy subgroup µ of a group G regarding to a t-norm T , it25

is possible to associate two T -indistinguishability operators: Eµ and µE. These

operators are right and left invariant under translations respectively. Conversely,

for every right (left) invariant under translation T -indistinguishability operators

E, a fuzzy subgroup regarding to the t-norm T is associated.

To mention only one field where invariance under translations is usually30

assumed and needed, we can consider Fuzzy Mathematical Morphology [6]. In

the study of objects in the plane R2, isotropy is usually assumed and hence the

used relations must be invariant under translations. For one of these relations

R, two of the basic operators, dilation D and erosion E, can be defined by

D(µ)(~x) = sup~y∈R2 T (R(~y− ~x), µ(~y)) and E(µ)(~x) = inf~y∈R2

−→
T (µ(~y)|R(~y− ~x)).35

If R is an indistinguishability operator, then the structural element is the fuzzy

subgroup R((0, 0), ·) of R2.

In Section 2, the basic definitions and needed properties are shown. Section

3 focus our work using the minimum t-norm, denoted by TM , and t-norms with

an additive generator t. Given a group G and a t-norm T of one of the types40

mentioned before, we study the morphisms on fuzzy subgroup set GT . Let µ

be a fuzzy subgroup of G regarding to T and f : [0, 1] −→ [0, 1] a function, we
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characterise when f ◦ µ is a T -subgroup. On [7], a similar study was done for

T -indistinguishability operator, we support our investigation with these known

results. Due to the close relation between T -indistinguishability operators and45

T -subgroups, it is not difficult to think that the conditions on f , will be very

similar. Section 4 studies the relationship between two fuzzy subgroup sets.

Given a group G and two t-norms T and T ′, the purpose is to compare the

fuzzy subgroup sets GT and GT ′ . As main result, we show conditions on the

t-norms to characterize that GT ⊂ GT ′ .50

2. Preliminares

We introduce the notions which will be used in this work.

Definition 2.1 ([8]). A function t : [0, 1] −→ [0,∞] is called additive generator

of a t-norm T if t is right-continuous in 0, strictly decreasing function with

t(1) = 0 and for all (x, y) ∈ [0, 1]2 we have

t(x) + t(y) ∈ Im t ∪ [t(0),∞]

T (x, y) = t[−1](t(x) + t(y))

where t[−1] : [0,∞] −→ [0, 1] is the pseudo-inverse of t defined by

t[−1](x) =

 t−1(x) if x ≤ t(0)

0 if x > t(0)

Please note that (t[−1] ◦ t)(x) = x and

(t ◦ t[−1])(x) =

 x if x ≤ t(0)

t(0) if x > t(0)

Definition 2.2 ([7]). Given a t-norm T , a T -indistinguishability operator E on

a set X is a fuzzy relation on X that satisfies the following conditions:

(E1) E(x, x) = 1 for all x ∈ X.55

(E2) E(x, y) = E(y, x) for all x, y ∈ X.
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(E3) E(x, z) ≥ T (E(x, y), E(y, z)) for all x, y, z ∈ X.

Definition 2.3 ([5]). Let G be a group and E a fuzzy relation on G. E is

invariant under translations if

E(x, y) = E(zx, zy) (left invariant)

and

E(x, y) = E(xz, yz) (right invariant)

for all x, y, z ∈ G.

Definition 2.4. Given a group G and a t-norm T , we say µ is a fuzzy subgroup

of G regarding the t-norm T , to shorten, a T -subgroup of G if it satisfies:60

(G1) µ(e) = 1, where e is the neutral element of G.

(G2) µ(x) = µ(x−1) for all x ∈ G.

(G3) µ(xy) ≥ T (µ(x), µ(y)) for all x, y ∈ G.

Given a group G and a t-norm T , we will denote the set of all T -subgroups

of G by GT , this means, GT = {µ ∈ [0, 1]G | µ is a T -subgroup of G}. On65

[5], T -subgroup notion and T -indistinguishability operator notion are related as

follows:

Definition 2.5 ([5]). Let µ be a fuzzy set of a group G. The fuzzy relations Eµ

and µE on G defined by

Eµ(x, y) = µ(xy−1) for all x, y ∈ G

and

µE(x, y) = µ(y−1x) for all x, y ∈ G

are the right and left fuzzy relations associated to µ respectively.

Proposition 2.6 ([5]). Given a t-norm T , let µ be a T -subgroup of a group G.

Then Eµ and µE are right and left invariant T -indistinghishability operators on70

G respectively.
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Proposition 2.7 ([5]). Given a t-norm T , let E be a right invariant T -indis-

tinguishability operator on a group G with identify element e. Then the fuzzy

set µE of G defined by µE(x) = E(e, x) for all x ∈ G is a T -subgroup of G and

E = EµE .75

Proposition 2.8 ([5]). Given a t-norm T , let E be a left invariant T -indis-

tinguishability operator on a group G with identify element e. Then the fuzzy

set µE of G defined by µE(x) = E(e, x) for all x ∈ G is a T -subgroup of G and

E = µEE.

As a consequence of these propositions, we obtain the following result.80

Proposition 2.9. Let µ a fuzzy set on a group G and T a t-norm. Then, µ is a

T -subgroup if and only if Eµ (µE) is a right (left) invariant T -indisguishability

operator.

Proposition 2.10 ([5]). Let G be a group, f : [0, 1]m −→ [0, 1] a function,

µ1, ..., µm fuzzy set and µ1
E, ..., µmE and Eµ1

, ..., Eµm their right and left in-

variant fuzzy relations. Then

f(µ1
E, ..., µmE) = f(µ1,..,µm)E

and

f(Eµ1
, ..., Eµm) = Ef(µ1,...,µm)

3. Relating Fuzzy Subgroups with respect to different t-norms

Given a group G and two t-norms T and T ′, we study conditions on a85

function f : [0, 1] −→ [0, 1] to assure that f ◦ µ is a T ′-subgroup, where µ is a

T -subgroup of G. We begin considering the minimum t-norm case, TM . The

following result described in [7] will help us:

Proposition 3.1 ([7]). Let E be a TM -indistinguishability operator on a set X

and f : [0, 1] −→ [0, 1] a map. f ◦E is a TM -indistinguishability operator on X90

if and only if f(1) = 1 and f , restricted to Im E, is a non-decreasing function.
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Using Proposition 2.9 and Proposition 2.10, we obtain the following result.

Corollary 3.2. Let µ be a TM -subgroup of a group G and f : [0, 1] −→ [0, 1] a

map. f ◦ µ is a TM -subgroup of G if and only if f(1) = 1 and f , restricted to

Im µ, is a non-decreasing function.95

Proof. Consider µ a TM -subgroup, Eµ is a right invariant TM -indistinghishabi-

lity operator. By Proposition 3.1, f ◦ Eµ is a TM -indistinguishability operator

on G if and only if f(1) = 1 and f restricted to Im Eµ is a non-decreasing

function. By Proposition 2.10, f ◦Eµ = Ef◦µ. Hence, by Proposition 2.9, f ◦ µ

is a TM -subgroup. Note that Im Eµ = Im µ by construcction of Eµ.100

Below, let us consider general t-norms. Firstly, we provide a characteriza-

tion of T -indistinguishability operators (Proposition 3.5). Secondly, given a T -

indistinguishability operator, we analyse when f ◦E is a T ′-indistinguishability

operator. Please note that T and T ′ can coincide. Later on, some examples

with particular t-norms are provided.105

Definition 3.3 ([10]). We say that a triplet (a, b, c) ∈ [0,∞]3 is a triangular

triplet if

a ≤ b+ c , b ≤ a+ c and c ≤ a+ b

Definition 3.4 ([10]). Given a t-norm T , we say that a triplet (a, b, c) ∈ [0,∞]3

is a T -triangular triplet if

a ≥ T (b, c) , b ≥ T (a, c) and c ≥ T (a, b)

Proposition 3.5. Let X be a set, T a t-norm and E a fuzzy relation on X

such that E(x, x) = 1 for all x ∈ X and E(x, y) = E(y, x) for all x, y ∈ X. The

following assertions are equivalent:

(1) E is a T -indistinguishability operator.

(2) {E(x, y), E(y, z), E(x, z)} is a T -triangular triplet for all x, y, z ∈ X110

Moreover, if T has an additive generator t, above assertions are equivalent to:
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(3) {t◦E(x, y), t◦E(y, z), t◦E(x, z)} is a triangular triplet for all x, y, z ∈ X

Proof.

(2)⇒ (1). Straightforward: Given x, y, z ∈ X, E(x, z) ≥ T (E(x, y), E(y, z))

because {E(x, y), E(y, z), E(x, z)} is a T -triangular triplet, hence E is a T -115

indistinguishability operator.

(1) ⇒ (2). Given x, y, z ∈ X, since E is a T -indistinguishability operator,

we have

E(x, z) ≥ T (E(x, y), E(y, z))

E(x, y) ≥ T (E(x, z), E(z, y)) = T (E(x, z), E(x, y))

E(y, z) ≥ T (E(y, x), E(x, z)) = T (E(x, y), E(x, z))

Hence {E(x, y), E(y, z), E(x, z)} is a T -triangular triplet.

Now, suppose that T has an additive generator t.

(2)⇔ (3). Take x, y, z ∈ X.

T (E(x, y), E(y, z)) ≤ E(x, z)⇒

t[−1](t ◦ E(x, y) + t ◦ E(y, z)) ≤ E(x, z)⇒

t ◦ t[−1](t ◦ E(x, y) + t ◦ E(y, z)) ≥ t ◦ E(x, z)⇒

t ◦ E(x, y) + t ◦ E(y, z) ≥ t ◦ E(x, z)

Conversely,

t ◦ E(x, y) + t ◦ E(y, z) ≥ t ◦ E(x, z)⇒

t[−1](t ◦ E(x, y) + t ◦ E(y, z)) ≤ t[−1] ◦ t ◦ E(x, z) = E(x, z)⇒

T (E(x, y), E(y, z)) ≤ E(x, z)

Similarly,

T (E(x, y), E(x, z)) = T (E(y, x), E(x, z)) ≤ E(y, z)⇔

t ◦ E(x, y) + t ◦ E(x, z) ≥ t ◦ E(y, z)

and

T (E(x, z), ◦E(y, z)) = T (E(x, z), E(z, y)) ≤ E(x, y)⇔

7



t ◦ E(x, z) + t ◦ E(y, z) ≥ t ◦ E(x, y)

Corollary 3.6. Let T and T ′ be two t-norms and t an additive generator of120

T ′. If E is a T -indistinguishability operator on a set X and f : [0, 1] −→ [0, 1]

a function, then, f ◦E is a T ′-indistinguishability operator on X if and only if:

f(1) = 1 and

f = t[−1] ◦ ϕ ◦ t : Im E −→ [0, 1], where ϕ : Im (t ◦ E) −→ [0, t(0)] and

{ϕ ◦ t(E(x, y)), ϕ ◦ t(E(y, z)), ϕ ◦ t(E(x, z))}

is a triangular triplet for all x, y, z ∈ X.

Proof. Taking ϕ = t ◦ f ◦ t[−1] and using Proposition 3.5, the proof is complete.125

A similar results for T -subgroups defined on a group G can be proved.

Proposition 3.7. Let G be a group, T a t-norm and µ a fuzzy set of G such

that µ(e) = 1 and µ(x) = µ(x−1). The following assertions are equivalent:

(1) µ is a T -subgroup130

(2) {µ(x), µ(y), µ(xy)} is a T -triangular triplet for all x, y ∈ G

Moreover, if T has an additive generator t, above assertions are equivalent to:

(3) {tµ(x), tµ(y), tµ(xy)} is a triangular triplet for all x, y ∈ G

Proposition 3.8. Let T and T ′ be two t-norms and t an additive generator of

T ′. If µ is a T -subgroup of a group G and f : [0, 1] −→ [0, 1] a function, then135

f ◦ µ is a T ′-subgroup of G if and only if:

f(1) = 1 and

f = t[−1] ◦ ϕ ◦ t : Im µ −→ [0, 1], where ϕ : Im (t ◦ µ) −→ [0, t(0)] and

{ϕ ◦ t(µ(x)), ϕ ◦ t(µ(y)), ϕ ◦ t(µ(xy))}

is a triangular triplet for all x, y ∈ G.
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Below, different ways to obtain T ′-subgroups from other T -subgroups with T

and T ′ not necessarily equal will be provided. Interesting is the case where the140

two t-norms are isomorphic. Also when T = T ′, it will be shown that the powers

of given T -subgroup are similar T -subgroups accordingly to the definition in this

section. We provide several examples to illustrate our results.

Definition 3.9 ([9]). Given a t-norm T and x ∈ [0, 1], we define x
(n)
T recur-

sively:

x
(1)
T = x and x

(n)
T = T (x

(n−1)
T , x)

In some contexts beyond this work, if the t-norm is clear x
(n)
T is denoted by

x(n), but we always denote it by the first.145

Definition 3.10 ([9]). Given a continuous t-norm T and x ∈ [0, 1], the n-th

root x
( 1
n )

T of x with respect to T is defined by

x
( 1
n )

T = sup{z ∈ [0, 1] | z(n)T ≤ x}

and for m,n ∈ N, x
(mn )

T = (x
( 1
n )

T )(m).

Lemma 3.11. If k,m, n ∈ N, k, n 6= 0 then x
( kmkn )

T = x
(mn )

T .

Assuming continuity for the t-norm T , the powers x
(mn )

T can be extended to150

irrational exponents in a straightforward way.

Definition 3.12 ([9]). If r ∈ R+ is a positive real number, let (an)n∈N be a

sequence of rational numbers with limn→∞ an = r. For any x ∈ [0, 1], the power

x
(r)
T is

x(r) = lim
n→∞

x(an).

Usual continuity assures the existence of this limit and independence of the

sequence (an)n∈N.

Proposition 3.13 ([9]). Let T be a continuous Archimedean t-norm with ad-

ditive generator t, x ∈ [0, 1] and r ∈ R+. Then

x
(r)
T = t[−1](rt(x)).
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Given a t-norm T and a T -subgroup µ of a group G, µ
(n)
T is defined by

µ
(n)
T (x) = µ(x)

(n)
T .

Proposition 3.14. If µ is a T -subgroup of a group G, T a continuous t-norm,

and r ∈ R+, then µ
(r)
T is a T -subgroup of G.155

Proof.

(G1) µ
(r)
T (e) = 1 because 1

(r)
T = 1.

(G2) µ
(r)
T (x) = µ(x)

(r)
T = µ(x−1)

(r)
T = µ

(r)
T (x−1).

(G3) Consider first the case r = 1
n with n ∈ N. If µ

( 1
n )

T = ν, then ν
(n)
T = µ.

T (ν(x), ν(y))
(n)
T = T (ν

(n)
T (x), ν

(n)
T (y)) ≤ ν(n)T (xy)

because µ is a T -subgroup of G. Hence

(T (ν(x), ν(y))
(n)
T )

( 1
n )

T ≤ (ν
(n)
T (xy))

( 1
n )

T

and thanks to Lemma 3.11,

T (ν(x), ν(y)) ≤ ν(xy)

this is,

T (µ
( 1
n )

T (x), µ
( 1
n )

T (y)) ≤ µ( 1
n )

T (xy).

Now, take r = m
n with m,n ∈ N. Remark that µ

(mn )

T = (µ
1
n

T )(m), since

µ
( 1
n )

T is T -subgroup,

T (µ
( 1
n )

T (x), µ
( 1
n )

T (y)) ≤ µ( 1
n )

T (xy).

for all x, y ∈ [0, 1]. This implies that

(T (µ
( 1
n )

T (x), µ
( 1
n )

T (y)))(m) ≤ µ( 1
n )

T (xy)(m)

this is,

T (µ
( 1
n )

T (x)(m), µ
( 1
n )

T (y)(m)) ≤ µ( 1
n )

T (xy)(m)
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and by Definition 3.10, we conclude that

T (µ
(mn )

T (x), µ
(mn )

T (y)) ≤ µ(mn )

T (xy)

From continuity for all r > 0 the result is also valid.

160

Proposition 3.15. Let T and T ′ be continuous Archimedean t-norms with

additive generators t and s respectively. If µ is a T -subgroup of a group G,

then µ′ = s[−1] ◦ t ◦ µ is a T ′-subgroup of G.

Proof. It is trivial to prove that µ′(e) = 1 and that µ′(x) = µ′(x−1).

Let us prove T ′(µ′(x), µ′(y)) ≤ µ′(xy). It is equivalent to prove that165

s(µ′(x)) + s(µ′(y)) ≥ s(µ(xy)).

• If t(µ(x)) ≤ s(0) and t(µ(y)) ≤ s(0), then

s(µ′(x)) + s(µ′(y)) = s(s[−1](t(µ(x)))) + s(s[−1](t(µ(y))))

= s(s−1(t(µ(x)))) + s(s−1(t(µ(y))))

= t(µ(x)) + t(µ(y))

≥ t(µ(xy))

≥ s(s[−1](t(µ(xy)))

• If t(µ(x)) ≥ s(0), then µ′(x) = 0 and T ′(µ′(x), µ′(y)) ≤ µ′(xy) is satisfied.

• If t(µ(y)) ≥ s(0) is similar to the previous case.

170

Example 3.16. Let T be the  Lukasiewicz t-norm and µ a T -subgroup of a group

G. Then eµ−1 is a T ′-subgroup of G where T ′ is the Product t-norm and eµ−1

is defined by eµ−1(x) = eµ(x)−1.

The way µ′ is obtained is not canonical, but depends on the additive gener-

ators of T and T ′.175
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Proposition 3.17. Let t and t′ be additive generators of a continuous t-norm

T such that t′ = αt with α > 0 and µ a T -subgroup of a group G. Then

t′[−1] ◦ t ◦ µ = µ
( 1
α )

T .

Proof. Using Proposition 3.13, we obtain for each x ∈ G,

t′[−1] ◦ t ◦ µ(x) = t[−1](
1

α
t(µ(x))) = µ(x)

( 1
α )

T = µ
( 1
α )

T (x)

Please note that this is an alternative proof of Proposition 3.14.180

Definition 3.18 ([8]). Two continuous t-norms T, T ′ are isomorphic if and only

if there exists a bijective map f : [0, 1]→ [0, 1] such that f ◦ T = T ′ ◦ (f × f).

• Isomorphisms f are continuous and increasing maps.

• It is well known ([8]) that all strict continuous Archimedean t-norms are

isomorphic. In particular, they are isomorphic to the Product t-norm.185

• Also, all non-strict continuous Archimedean t-norms are isomorphic ([8]).

In particular, they are isomorphic to the  Lukasiewicz t-norm.

The next proposition relates the isomorphisms of continuous Archimedean

t-norms with their additive generators.

Proposition 3.19. Let f be a bijective map f : [0, 1]→ [0, 1], T , T ′ two contin-190

uous Archimedean t-norms and t, t′ additive generators of T and T ′ respectively.

f is an isomorphism between T and T ′ if and only if there exists α ∈ (0, 1] such

that f = t′[−1](αt).

Proof. ∀x, y ∈ [0, 1], f(T (x, y)) = T ′(f(x), f(y))

is equivalent to195

f ◦ t[−1](t(x) + t(y)) = t′[−1]((t′ ◦ f)(x) + (t′ ◦ f)(y))

t[−1](t(x) + t(y)) = (f−1 ◦ t′[−1])((t′ ◦ f)(x) + (t′ ◦ f)(y)
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which means that f is an isomorphism between T and T ′ if and only if

t′ ◦ f is an additive generator of T . Since two additive generators of a t-norm

differ only by a multiplicative positive constant, t = k(t′ ◦ f) with k > 0 and

putting α = 1/k, we have t = k(t′ ◦ f) is equivalent to αt = t′ ◦ f . Using that

t′[−1] ◦ t′(z) = z for all z ∈ [0, 1], we conclude that200

f = t′[−1]αt.

Example 3.20.

• The only automorphism of the  Lukasiewicz t-norm is the identity map.

Indeed, taking t(x) = 1−x, then f(x) = 1−α+α x and the only bijective

linear map in [0,1] is the identity.205

• The automorphisms of the Product t-norm are f(x) = xα with α > 0.

More general,

• The only automorphism of a non-strict Archimedean t-norm is the identity

map

• For strict t-norms, every α > 0 produces an isomorphism fα with fα 6= fβ210

if α 6= β.

The next proposition shows that t-norm isomorphisms preserve indistin-

guishability operators.

Proposition 3.21 ([7]). If E is a T -indistinguishability operator on a set X

for a given t-norm T and f is a continuous, increasing and bijective map f :215

[0, 1] −→ [0, 1], then f ◦ E is a T ′-indistinguishability operator with respect to

the t-norm T ′ = f ◦ T ◦ (f−1 × f−1).

Note that if f is an increasing and bijective map, then f is a continuous

map.
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Corollary 3.22. Let G be a group, µ a T -subgroup of G for a given t-norm220

T and f an increasing and bijective map f : [0, 1] → [0, 1]. Then f ◦ µ is a

T ′-subgroup of G where T ′ = f ◦ T ◦ (f−1 × f−1).

Proof. Since µ is a T -subgroup, we have Eµ is a right invariant T -indistinghis-

hability. By Proposition 3.21, f ◦Eµ is a T ′-indistinguishability operator on G

and by Proposition 2.10, f ◦ Eµ = Ef◦µ. Hence, by Proposition 2.9, f ◦ µ is a225

T ′-subgroup.

Below is shown several interesting examples.

Example 3.23. Let µ be a T -subgroup of a group G with respect to a t-norm

T and fα(x) = xα for some α > 0. Then fα ◦ µ is a Tα-subgroup of G with

Tα(x, y) =
(
T
(
x

1
α , y

1
α

))α
.

If T is the  Lukasiewicz t-norm, then (Tα)α>0 is the Schweizer-Sklar family

of t-norms

Tα(x, y) =
(

max
(
x

1
α + y

1
α − 1, 0

))α
Therefore, given a member Tα of this family and a Tα-subgroup µα, it is easy

to find a similar Tβ-subgroup µβ of G.

Example 3.24. Let µ be a T -subgroup of a group G with respect to a non-strict

continuous Archimedean t-norm T with normalized additive generator t, this

means t(0) = 1. Taking f(x) = 1− (t(x))α, α > 0, then

f ◦ µ(x) = 1− (t(µ(x)))α

is a Tα-subgroup of G where Tα is the non-strict Archimedean t-norm

Tα(x, y) = 1−min((1− x 1
α ) + (1− y)

1
α , 1)α.

Let us observe that, in this case, the family {Tα}α>0, known as Yager family,230

is independent from the original t-norm T , more precisely, from the generator

t.

In particular, for α = 1, Tα is the  Lukasiewicz t-norm, and the fuzzy set

µ1 = 1− t(µ) is a T1-subgroup.
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Please also note that thanks to Proposition 3.17 the powers of a T -subgroup235

are similar.

The following results show some ways to obtain min-subgroups from a given

one.

Corollary 3.25. Let µ be a min-subgroup of a group (G, ◦), ϕ a strong negation

and t an additive generator of a continuous Archimedean t-norm. Then t[−1] ◦240

ϕ ◦ µ is a min-subgroup of G.

Proof. t[−1] and ϕ are strict decreasing bijections; so their composition is a non

increasing function f with f(1) = 1. Using Corollary 3.2, we conclude the

proof.

For example, if µ is a min-subgroup of G, then taking the additive generator245

t(x) = − lnx of the Product t-norm and ϕ(x) = 1 − x, then eµ−1 is a min-

subgroup of G.

Taking t(x) = α(1−x), α > 0 and ϕ(x) = 1−x, we get that max(0, α−1+µα )

is a min-subgroup of G.

Corollary 3.26. Let µ be a min-subgroup of G and ϕ, ψ two strong negations.250

The fuzzy subset ν of G defined by ν = ϕ ◦ ψ ◦ µ is a min-subgroup of G.

Proof. ϕ and ψ are strict decreasing bijections; so their composition is a non

increasing function f with f(1) = 1. Using Corollary 3.2, we conclude the

proof.

4. On the relationship between the fuzzy subgroup sets of two t-255

norms

Given two t-norms T and T ′ and a group G, the aim of this section is to find

a relationship between GT and GT ′ . More concretely, we characterize the fact

GT ⊂ GT ′ under certain conditions on T and T ′. Remember that GT = {µ ∈

[0, 1]G | µ is a T -subgroup of G} andGT ′ = {µ ∈ [0, 1]G | µ is a T ′-subgroup of G}260
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Lemma 4.1. Given a t-norm T ,a T -subgroup µ of a group G and k ∈ N, we

have

µ(xk) ≥ x(k)T

Proof. If k = 1, µ(x) = µ(x)
(1)
T . Suppose it is true for k − 1, this is, µ(xk−1) ≥

µ(x)
(k−1)
T . For k, using the hypothesis and µ is a T -subgroup, we have:

µ(xk) ≥ T (µ(xk−1), µ(x)) ≥ T (µ(x)
(k−1)
T , µ(x)) = µ(x)

(k)
T

Lemma 4.2. Given a t-norm T and m ∈ N greater than or equal to 2, we have

a
(m)
T ≥ T (a

(n1)
T , a

(n2)
T )

with n1 + n2 = m for all a ∈ [0, 1].

Proof. Let a be in [0, 1]. For m = 2, we have that n1 = n2 = 1, a
(2)
T =

T (a, a) = T (a
(1)
T , a

(1)
T ). For induction, suppose it is true for m − 1, this is,

a
(m−1)
T ≥ T (a

(m1)
T , a

(m2)
T ) for all m1,m2 such that m1 +m2 = m− 1. Consider

n1, n2 arbitrary numbers such that n1 + n2 = m, then

a
(m)
T = T (a

(m−1)
T , a) ≥ T (T (a

(n1)
T , a

(n2)
T ), a) =

= T (a
(n1)
T , T (a

(n2−1)
T , a)) = T (a

(n1)
T , a

(n2)
T )

Lemma 4.3. Given a t-norm T and n ∈ N greater than or equal to 2, we have

a
(n)
T ≥ T (a

(n1)
T , a

(n2)
T )

with n1 + n2 ≥ n for all a ∈ [0, 1].

Proof. If m = n1 + n2, by Lemma 4.2, a
(m)
T ≥ T (a

(n1)
T , a

(n2)
T ) for all a ∈ [0, 1].

Since a
(n)
T ≥ a(m)

T because n ≤ m, we conclude

a
(m)
T ≥ T (a

(n1)
T , a

(n2)
T )

265
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Lemma 4.4. Let T and T ′ two t-norms and G a group, if T ′(x, y) ≤ T (x, y)

for all x, y ∈ [0, 1], then every T -subgroup is a T ′-subgroup.

Proof. Straightforward.

As TM ≥ T ≥ TD for any t-norm T where TD denotes a drastic t-norm, we

conclude that

GTM ⊂ GT ⊂ GTD

for any t-norm T .

Lemma 4.5. Let G the cyclic group of order 2 or 3. Then a fuzzy set µ of G

is a T -subgroup for any t-norm T if and only if µ is built as follows:

µ(t) =

 1 if t = e

z otherwise

for some element z ∈ [0, 1].270

Proof. If µ is a T -subgroup for each t-norm T , µ(e) = 1. If G = Z3, by (G2),

µ(a) = µ(a2) = z for some z ∈ [0, 1]. Reciprocally, if µ is defined as

µ(t) =

 1 if t = e

z otherwise

then µ satisfies (G1), (G2) and (G3).

Lemma 4.6. Let T and T ′ two t-norms and G the cyclic group of p elements,

where p is a prime greater than or equal to 7. If there is x ∈ [0, 1] such that

T ′(x, x) > T (x, x), then there exists a T -subgroup µ of G such that µ is not a

T ′-subgroup.275

Proof. We define the next T -subgroup:

µ(t) =


1 if t = e

x if t ∈ {a, ap−1}

T (x, x) otherwise

17



(G1) and (G2) are satisfied by µ. We check (G3) for the t-norm T , this is:

µ(rs) ≥ T (µ(r), µ(s)) for all r, s ∈ G

If r = e or s = e, it is straightforward. In other case, we have that

T (µ(r), µ(s)) ∈ {T (x, x), T (x, T (x, x), T (T (x, x), T (x, x))}

Since µ(rs) ∈ {x, T (x, x)}, we conclude that µ(rs) ≥ T (µ(r), µ(s))

The next theorem determines when GT ⊂ GT ′ for any group G and t-norms

T and T ′.

Theorem 4.7. Let T and T ′ t-norms and G a group.

(1) If G is a cyclic group of two or three elements, then GT ⊂ GT ′ .280

(2) If G is a cyclic group of four or five elements, then GT ⊂ GT ′ if and only

if T ′(x, x) ≤ T (x, x) for all x ∈ [0, 1].

(3) If G is a cyclic group of p elements, where p is a prime greater than 5, then

GT ⊂ GT ′ if and only if for all x, y ∈ [0, 1] such that T (x, y) < T ′(x, y)

with x ≥ y, the inequality y < x
( p−1

2 )

T is satisfied.285

(4) If G is a cyclic group which is not isomorphic to Zp for some prime number

p, G 6= Z4 or if G is not a cyclic group, then GT ⊂ GT ′ if and only if for

all x, y ∈ [0, 1], T ′(x, y) ≤ T (x, y).

Proof. (1) By Lemma 4.5, we have that every T -subgroup is T ′-subgroup. More

exactly, GT = GT ′ .290

(2) | =⇒ | Equivalently, we show that if there is x ∈ [0, 1] with T (x, x) <

T ′(x, x) then there exists a T -subgroup µ such that µ is not a T ′-subgroup.

Take x ∈ [0, 1] with T ′(x, x) > T (x, x). If G = Z4, we consider the fuzzy set µ

defined by:

µ(t) =


1 if t = e

x if t ∈ {a, a3}

T (x, x) if t = a2

18



and if G = Z5, we consider the fuzzy set µ defined by:

µ(t) =


1 if t = e

x if t ∈ {a, a4}

T (x, x) if t ∈ {a2, a3}

It is easy to prove that µ is T -subgroup of G, but µ is not a T ′-subgroup because

µ(a2) = T (x, x) < T ′(x, x) = T ′(µ(a), µ(a))

| ⇐= | Conversely, suppose that for all x ∈ [0, 1], T ′(x, x) ≤ T (x, x). By

reductio ad absurdum, suppose that there exists a T -subgroup µ such that µ is

not T ′-subgroup. Since µ satisfies (G1) and (G2), for G = Z4 we have µ is the

following fuzzy set:

µ(t) =


1 if t = e

z1 if t ∈ {a, a3}

z2 if t = a2

for some z1, z2 ∈ [0, 1]. And for G = Z5, we have µ is the following fuzzy set:

µ(t) =


1 if t = e

z1 if t ∈ {a, a4}

z2 if t ∈ {a2, a3}

for some z1, z2 ∈ [0, 1]. Now, we show that µ is (G3) for T ′: µ(rs) ≥ T (µ(r), µ(s))

for all r, s ∈ G. Take r, s ∈ G, if r = e or s = e, then µ(rs) ≥ T (µ(r), µ(s))

is true. Suppose r 6= e and s 6= e. If µ(r) = µ(s) by hypothesis we have

T ′(µ(r), µ(s)) ≤ T (µ(r), µ(s)) ≤ µ(rs). If µ(r) 6= µ(s), using Im µ ∈ {z1, z2, 1}

we have T ′(µ(r), µ(s)) = T ′(z1, z2) ≤ min{z1, z2} ≤ µ(rs). Hence µ is a T ′-295

subgroup of G. This is a contradiction.

(3) Equivalently, we show that there are x, y ∈ [0, 1] with T (x, y) < T ′(x, y)

with x ≥ y and y ≥ x
(k)
T for some k ∈ {1, ..., p−12 } if and only if there exists a

T -subgroup µ such that µ is not a T ′-subgroup.

Since G is the cyclic group (Zp,+) for p ≥ 7 with p a prime number, we use

the additive notation in the proof and the neutral element will be the number

0. | =⇒ | Suppose that µ is a T -subgroup of G but it is not a T ′-subgroup.
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Then, there are a, b ∈ G such that µ(a + b) < T ′(µ(a), µ(b)). Since µ(0) = 1,

because µ is a T -subgroup, we have that a 6= 0 and b 6= 0. Without loss of

generality, suppose µ(a) ≥ µ(b) and consider x = µ(a) and y = µ(b). We have

that x, y ∈ [0, 1] with x ≥ y. Moreover,

T (x, y) = T (µ(a), µ(b)) ≤ µ(a+ b) < T ′(µ(a), µ(b)) = T ′(x, y).

Since a 6= 0 and G is cyclic, G = 〈a〉. We have b = na with n ∈ {1, ..., p}. Using300

that µ satisfies (G2), we obtain that µ(b) = µ(na) = µ((p−n)a). We distinguish

two cases: (1.) n ≤ p−n or (2.) p−n ≤ n. If (1.), then n ∈ {1, ..., p−12 }. If (2.),

p− n ≤ n⇒ p− n ≤ p
2 ⇒ p− n ∈ {1, ..., p−12 }.

Take k = n if (1) or k = p− n if (2), using Lemma 4.1, we conclude

y = µ(b) = µ(ka) ≥ µ(a)
(k)
T = x

(k)
T

with k ∈ {1, ..., p−12 }.

| ⇐= | Our hypothesis is that there exist x, y ∈ [0, 1] satisfying T (x, y) <305

T ′(x, y), x ≥ y and y ≥ x
(k)
T for some k ∈ {1, ..., p−12 }. If x = y, using Lemma

4.6, the proof is completed. For this observation, in the rest of the proof we

suppose x > y. Consider m = min{s ∈ {1, ..., p−12 } | x
(s)
T ≤ y}, note that

{s ∈ {1, ..., p−12 } | x
(s)
T ≤ y} is a non-empty finite set, so we can ensure the

existence of m. Moreover, x
(s)
T > y if and only if s < m. Now, we are going to310

show that m ≥ 2: If m = 1, x
(1)
T ≤ y ⇒ x ≤ y, but x > y. Hence, m ≥ 2. We

define the fuzzy set µ as follows:

µ(0) = 1

µ(n) = µ(p− n) = x
(n)
T when n ∈ {1, ...,m− 1}

µ(m) = µ(p−m) = y315

µ(n) = µ(p− n) = T (x, y) when n ∈ {m+ 1, ..., p−12 }

We would like to remark that T (x, y) ≥ x(k)T for all k ≥ m+ 1, this fact will

be used in some parts of the proof. By construction, µ fulfills (G1) and (G2).

Moreover,

T (x, y) < y < x < 1
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because T (x, y) < T ′(x, y) ≤ y and if x = 1, then y = T (1, y) = T (x, y) <

T ′(x, y) = T ′(1, y) = y. For (G3), we need to prove µ(a+ b) ≥ T (µ(a), µ(b)) for

all a, b ∈ G. It is easy to check that if a = 0, b = 0 or a+ b = 0 the condition is

straightforward. We suppose a 6= 0, b 6= 0 and a+ b 6= 0 and consider five cases:320

(1.) a+ b = n with n ∈ {1, ...,m− 1}

(2.) a+ b = n with n ∈ {p− (m− 1), ..., p− 1}

(3.) a+ b = n with n ∈ {m+ 1, ..., p− (m+ 1)}

(4.) a+ b = m

(5.) a+ b = p−m325

(1.) If a+ b = n with n ∈ {1, ...,m−1}, consider n1, n2 ∈ {1, ..., p−1} which

are representative elements of the class of a and the class of b respectively,

then n1 + n2 = n (mod p) and µ(n) = x
(n)
T . We have two possibilities: (1.1)

n1 + n2 = n or (1.2) n1 + n2 = n + p. If (1.1) happens, n1 < n and n2 < n,

hence µ(n1) = x
(n1)
T and µ(n2) = x

(n2)
T . We conclude using Lemma 4.3 that

µ(n) = x
(n)
T ≥ T (x

(n1)
T , x

(n2)
T ) = T (µ(n1), µ(n2))

If (1.2) happens, n1 ≥ p−1
2 or n2 ≥ p−1

2 . Without loss of generality, n2 ≥ p−1
2 ,

then µ(n2) = x
(p−n2)
T . If n1 ∈ {1, ..., p−12 }, since

n1 + n2 = n+ p⇔ p− n2 = n1 − n

and p− n2 > 0, n1 − n > 0. We have that

µ(n) = x
(n)
T ≥ x(n1)

T ≥ T (x
(n1)
T , x

(p−n2)
T ) = T (µ(n1), µ(n2))

If n1 ∈ {p+1
2 , ..., p− 1}, we have that µ(n1) = x

(p−n1)
T and since

n1 + n2 = n+ p⇔ −n = p− n1 − n2 ⇔ p− n = p− n1 + p− n2

we obtain that n ≤ p−n = p−n1+p−n2. Using again Lemma 4.3, we conclude

that

µ(n) = x
(n)
T ≥ T (x

(p−n1)
T , x

(p−n2)
T ) = T (µ(n1), µ(n2)).

(2.) If a+ b = n with n ∈ {p− (m− 1), ..., p− 1}, the procedure is the same

described in (1) due to the observation µ(n) = µ(p− n).
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(3.) If a+b = n with n ∈ {m+1, ..., p−(m+1)}, consider n1, n2 ∈ {1, ..., p−1}

which are representative elements of the class of a and the class of b respectively,

then n1 + n2 = n (mod p) and µ(n) = T (x, y). We have two possibilities: (3.1)

n1 + n2 = n or (3.2) n1 + n2 = n + p. Suppose (3.1), then 0 6= n1 < n and

0 6= n2 < n. If n1 > m or n2 > m, T (µ(n1), µ(n2)) = T (T (x, y), T (x, y)) ≤

T (x, y) = µ(n). If n1 = m, since µ(n2) ≤ x because µ(t) ≤ x for all t 6= 0,

we conclude µ(n) = T (x, y) ≥ T (µ(n2), y) = T (µ(n2), µ(n1)). If n2 = m the

procedure is the same. Finally, if n1 < m and n2 < m, using that T (x, y) ≥ x(n)T

because n ≥ m+ 1 and Lemma 4.3, we obtain that

µ(n) = T (x, y) ≥ x(n)T ≥ T (x
(n1)
T , x

(n2)
T ) = T (µ(n1), µ(n2))

Finally, if n1 > m or n2 > m, since n1 < n and n2 < n we have that µ(n) ≥

T (µ(n1), µ(n2)). Suppose (3.2), since n1 + n2 = p + n ⇔ n1 − n = p − n2 ⇔

n2 − n = p − n1 and p − ni > 0 we obtain that n1 > n and n2 > n. This

implies that for each i ∈ {1, 2}, µ(ni) ∈ {T (x, y), y, x
(p−ni)
T }. If µ(n2) = T (x, y)

or µ(n2) = y we have that

µ(n) = T (x, y) ≥ T (x, µ(n2)) ≥ T (µ(n1), µ(n2))

Similarly, if µ(n1) = T (x, y) or µ(n1) = y. Therefore, suppose that µ(n1) =

x
(p−n1)
T and µ(n2) = x

(p−n2)
T . Since p− n = p− n1 + p− n2, using Lemma 4.3

we conclude that

µ(n) = T (x, y) ≥ x(p−n)T ≥ T (x
(p−n1)
T , x

(p−n2)
T ) = T (µ(n1), µ(n2))

(4.) If a+b = m, consider n1, n2 ∈ {1, ..., p−1} which are representative elements

of the class of a and the class of b respectively, then n1 + n2 = m (mod p) and

µ(n) = y. We have two possibilities: (4.1) n1+n2 = m or (4.2) n1+n2 = m+p.

If (4.1) happens, by construction of m, y ≥ x
(m)
T and if we apply Lemma 4.3,

we obtain that

µ(m) = y ≥ x(m)
T ≥ T (x

(n1)
T , x

(n2)
T ) = T (µ(n1), µ(n2)).

Suppose (4.2), since n1 + n2 = p + m ⇔ n1 −m = p − n2 ⇔ n2 −m = p − n1
and p− ni > 0 we obtain that n1 > m and n2 > m. This implies that for each
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i ∈ {1, 2}, µ(ni) ∈ {T (x, y), y, x
(p−ni)
T }. Using the similar procedure described

in (3.2), if µ(n2) = T (x, y) or µ(n2) = y we have that

µ(m) = y ≥ T (x, y) ≥ T (x, µ(n2)) ≥ T (µ(n1), µ(n2))

and the same if µ(n1) = T (x, y) or µ(n1) = y. Finally, suppose that µ(n1) =

x
(p−n1)
T and µ(n2) = x

(p−n2)
T . Since p−m = p− n1 + p− n2, using Lemma 4.3,

we obtain that

µ(m) = y ≥ x(m)
T ≥ T (x

(p−n1)
T , x

(p−n2)
T ) = T (µ(n1), µ(n2)).

If µ(n2) = x
(n2)
T , then n2 < m by construction of µ, but n2 > m because

n1 + n2 = p+m⇔ n2 −m = p− n1 > 0.

(5.), If a+ b = p−m the procedure is the same one described in (4) due to330

the observation µ(m) = µ(p−m).

Therefore, µ satisfies (G3), hence µ is a T -subgroup. Now, we will check µ

is not a T ′-subgroup:

µ(1 +m) = T (x, y) < T ′(x, y) = T (µ(1), µ(m)).

Hence µ is not a T ′-subgroup.

(4) | ⇐= | Lemma 4.4

| =⇒ | Equivalently, we show that if there are x, y ∈ [0, 1] with T (x, y) <

T ′(x, y), then there exists a T -subgroup µ such that µ is not a T ′-subgroup.335

Suppose without loss of generality that x ≤ y, we divide the proof in two

blocks:

(1.) G has an element with infinite order.

(2.) G has not elements with infinite order.

If (1.) happens, there is a ∈ G with infinite order. Take b = a2 and the fuzzy

set µ defined as follows:

µ(t) =



1 if t = e

x if t ∈ {a, a−1}

y if t ∈ 〈b〉 − {e}

T (x, y) otherwise
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Observe that a, a−1 /∈ 〈b〉 − {e}.340

If (2.) happens, there is an element b ∈ G with o(b) = p, where p is some

prime number. Since G 6= Zq for all prime q, there exists a ∈ G satisfying

a /∈ 〈b〉. Consider the following fuzzy set µ

µ(t) =



1 if t = e

x if t ∈ {a, a−1}

y if t ∈ 〈b〉 − {e}

T (x, y) otherwise

In both cases, we have that µ(ab) = T (x, y) because a /∈ 〈b〉 and µ satisfies

(G1) and (G2) by construction. To prove (G3) we need to check that µ(rs) ≥

T (µ(r), µ(s)) for all r, s ∈ G. If r = e or s = e, it is straightforward. In other

cases, we have that

T (µ(r), µ(s)) ∈ {T (x, x), T (x, y), T (x, T (x, y)), T (y, y), T (y, T (x, y)), T (T (x, y), T (x, y))}

Note that µ(rs) is greater than or equal to T (x, y), so if

T (µ(r), µ(s)) ∈ {T (x, x), T (x, y), T (x, T (x, y)), T (y, T (x, y)), T (T (x, y), T (x, y))}

we conclude that T (µ(r), µ(s)) ≤ T (x, y) ≤ µ(rs). If T (µ(r), µ(s)) = T (y, y)

and

T (y, y) ∈ {T (x, x), T (x, y), T (x, T (x, y)), T (y, T (x, y)), T (T (x, y), T (x, y))}

(G3) would be true. Therefore, suppose that T (µ(r), µ(s)) = T (y, y) is different

to each element of the previous set. This means that r ∈ 〈b〉 − {e} and s ∈345

〈b〉 − {e}, hence rs ∈ 〈b〉. If rs = e, µ(rs) = 1 and if rs ∈ 〈b〉 − {e}, µ(rs) = y.

In both cases, using the monotony of T , µ(rs) ≥ T (y, y) = T (µ(r), µ(s)), hence

µ satisfies (G3) for the t-norm T . But µ is not a T ′-subgroup because µ(ab) =

T (x, y) < T ′(x, y) = T ′(µ(a), µ(b)).

350

Due to the close relation between T -subgroup notion and right (right) invari-

ant under translation T -indistinguishability operator, we obtain the following

result.
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Corollary 4.8. Let T and T ′ t-norms be and G a group.

(1) If G is a cyclic group of two or three elements, then every right (left)355

invariant T -indistinguishability operator of G is a right (left) invariant

T ′-indistinguishability operator.

(2) If G is a cyclic group of four or five elements, then every right (left)

invariant T -indistinguishability operator of G is a right (left) invariant

T ′-indistinguishability operator if and only if T ′(x, x) ≤ T (x, x) for all360

x ∈ [0, 1].

(3) If G is a cyclic group of p elements, where p is a prime greater than or

equal to 7, then every right (left) invariant T -indistinguishability operator

of G is a right (left) invariant T ′-indistinguishability operator if and only if

for all a, b ∈ [0, 1] such that T (a, b) < T ′(a, b) with a ≥ b satisfy b < a
p−1
2

T .365

(4) If G is a cyclic group of n elements where n is not a prime integer

and n > 5 or if G is not a cyclic group, then every right (left) invari-

ant T -indistinguishability operator of G is a right (left) invariant T ′-

indistinguishability operator if and only if for all x, y ∈ [0, 1], T ′(x, y) ≤

T (x, y).370
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