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Abstract

Small changes in the entries of a matrix pencil may lead to important changes in its
Kronecker normal form. Studies about the effect of small perturbations have been made
when considering the stratification associated with the strict equivalence between matrix
pencils. In this work, we consider a partition in the space of pairs of matrices associated to
regular matrix pencils, which will be proved to be a finite stratification of the space of such
matrix pencils, called D-stratification. Matrix pencils in the same strata are those having
some prescribed Segre indices. We study the effect of perturbations which lead to changes
in the Kronecker canonical form, preserving the order of the nilpotent part. Our goal is to
determine which D-strata can be reached. In the cases where the order of the matrix pencils
is 2 or 3, we obtain the corresponding hierarchy graphs, illustrating the D-strata that can be
reached when applying some small perturbations.

1. Introduction

Jordan normal form of a square matrix A is not stable under small perturbations, small changes in its entries may change the Jordan normal
form of the matrix. In [1, 2], V. I. Arnold identified nearby canonical structures using miniversal deformations. H. den Boer and G. Ph. A.
Thijsse, A. S. Markus and E. E. Parilis (see [3, 4]) found Jordan normal form of matrices which could be obtained from a given Jordan
matrix by arbitrary small perturbations. The changes in the normal form of a matrix when only elements in some concrete positions can be
changed are studied by different authors for example, (see [5, 6]).
An informal introduction to perturbations of matrices up to different equivalence relations is given in [7]. Changes of the canonical form for
order two and three matrices under congruence were given in [8].
V. I. Arnold introduced the sets of matrices having the same Segre characteristics (and differing only in the continuous invariants) as bundles
of matrices. Gibson proved in [9] that this partition is actually a Whitney stratification, the closure of each stratum being the union of strata
(of strictly lower dimension).
In [10], [11] a different stratification of the space of square matrices is considered, being the matrices in the same stratum those having the
same Drazin inverse (see [12] for this relation between matrices).
The stratification of the space of pairs of matrices related to linear control systems can be found in [13], where a proof of this stratification
being Whitney regular in a particular case is included (the general case is an open problem). Bifurcation diagrams were obtained in [14].
Later, the same author proved that the partition of the space of quadruples of matrices according to the set of discrete structural invariants is a
stratification (see [15]). All possible Kronecker canonical forms of matrix pencils in a neighbourhood of any given pencil were described by
Pokrzywa in [16].
Stratifications can be represented by hierarchy graphs, the nodes being the strata and the edges the covering relations; that is to say, the
possible paths from one bundle to another one.
The closure of a stratum consists of all those strata which can be reached applying a small perturbation. Closure relations for matrices under
conjugation and matrix pencils under strict equivalence were studied in [17, 18]. In [19] Hasse diagrams for the closure ordening for order
two matrices under *congruece were constructed. E. Elmroth, P. Johansson and B. Kågström presented in [18] Stratigraph, a Java-based tool
for the computation and visualization of canonical information and stratification hierarchies for matrices and matrix pencils.
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Closure relations for matrix pencils under strict equivalence were studied in [20] and [14]. All possible Kronecker canonical forms of matrix
pencils in a neighbourhood of any given matrix pencil were described by Pokrzywa in [16].
As usual, we will denote by Mn(C) the set of square matrices of order n with coefficients in C and by Gln(C) the set of all invertible matrices
of order n.

2. Motivation

Let us consider a linear control dynamical system

Eẋ(t) = Ax(t)+Bu(t) (2.1)

with E,A square matrices of order n.
In the case where E is an invertible matrix, we can pre-multiply the equation above by E−1, thus obtaining:

ẋ(t) = A1x(t)+B1u(t)

If E is not invertible, and assuming that the matrix pencil λE +A is regular (to ensure the system has a unique solution) the system splits into
a slow and fast subsystems, according to the response’s speed to the changes in the control input. These subsystems can be obtained using the
Kronecker normal form of the matrix pencil (or its Weierstraß normal form, since we only consider regular matrix pencils). It can be found,
for example, in [21]. Let us recall it, we have assumed the matrix pencil λE +A to be regular, there exist invertible matrices P, Q such that

Q(λE +A)P = λ

(
In0 0
0 NE

)
+

(
G 0
0 In−n0

)
with NE a nilpotent matrix, G ∈Mn0(C) a matrix in Jordan reduced form,

G =

(
J

NG

)
where det(J) 6= 0 and NG is a nilpotent matrix.
The Kronecker reduced form of the matrix pencil λE +A, or Weierstraß form, is:

λEc +Ac = λ

(
In0 0
0 NE

)
+

(
G 0
0 In−n0

)

= λ

Iν 0 0
0 In0−ν 0
0 0 NE

+

J 0 0
0 NG 0
0 0 In−n0


Applying suitable basis change and pre-multiplication to the systems’ equation (2.1)

Eẋ(t) = Ax(t)+Bu(t)

the system splits into two subsystems:(
Iν 0
0 In0−ν

)
ẋ1(t) =

(
J 0
0 NG

)
x1(t)+

(
B1

1
B2

1

)
u(t)

NE ẋ2(t) = x2(t)+B2u(t)


The first system is referred to as the slow subsystem and the second one as the fast subsystem. We will denote them by ΣS and ΣF ,
respectively. The solution of the fast subsystem is well-known (see [22], 1989). Obviously, if E is an invertible matrix, the fast subsystem
does not appear (n0 = n).
In turn, the slow subsystem ΣS splits into two subsystems:

ΣJ ẏ(t) = Jy(t)+B1
1u(t)

ΣNG ż(t) = NGz(t)+B2
1u(t)


That is to say, the initial system can be divided into three independent subsystems:

ΣJ ẏ(t) = Jy(t)+B1
1u(t)

ΣNG ż(t) = NGz(t)+B2
1u(t)

ΣF NE ẋ2(t) = x2(t)+B2u(t)





16 Universal Journal of Mathematics and Applications

The solutions to the subsystems above are:

y(t) = eJty0 +
∫ t

0 eJ(t−τ)B1
1u(τ)dτ,

z(t) = eNGtz0 +
∫ t

0 eN(t−τ)B2
1u(τ)dτ

= ∑
n0−ν−1
i=0

1
i!

Ni
Gt iz0 +∑

n0−ν−1
i=0

1
i!
∫ t

0 Ni
Gt iB2

1u(τ)dτ,

x2 =−∑
n−n0−1
i=1 N iBu(i)(t)

and while the solution of the first subsystem, ΣJ is a matrix series, the solution of the second and third ones, ΣNG and ΣF are polynomial
matrices. The first one depends on the integral of control function and the second one on the derivatives of this function. This supposes an
important difference when computing solutions (recall that the different methods and algorithms to compute the exponential of a matrix J are
not absolutely satisfactory). On the other hand, the formula to compute the exponential of the matrix is the same independently of the exact
value of the eigenvalues and relies only on the Segre characteristics of the matrix.
This suggests to considering a partition in the space of regular matrix pencils, which will be called D-stratification, where strata will consist
of matrix pencils having the same Segre characteristics in matrix J (and not taking into account the Segre characteristics of matrices NG and
NE ).

3. D-Partition of the space of pairs of matrices associated to regular matrix pencils

We will denote by X the set of regular matrix pencils λE +A, with E,A ∈Mn(C) (which is an open subset of the space of pencils of
matrices identified with the space of pair of matrices Mn(C)×Mn(C), thus a differentiable manifold).
We define an equivalence relation in X according to the Segre characteristic of matrix J in the Kronecker reduced form of the matrix pencil
λE +A.

Definition 3.1. Given two regular matrix pencils λE +A ∈X ,λE ′+A′ ∈X with Kronecker reduced forms

λEc +Ac = λ

Iν 0 0
0 In0−ν 0
0 0 NE

+

J 0 0
0 NG 0
0 0 In−n0



λE ′c +A′c = λ

Iν ′ 0 0
0 In′0−ν ′ 0
0 0 N ′

E

+

J′ 0 0
0 N′G′ 0
0 0 In−n′0


they will be said to be D-equivalent if ν = ν ′, n0 = n′0 and J and J′ have the same Segre characteristics.

Note that equivalent pencils in the same orbit under classical equivalent relation of matrix pencils (see [23]) are equivalent under D-
equivalence relation considered. Therefore equivalent classes are the union of orbits. But matrix pencils in the same stratum of the
stratification induced for classical equivalence relation are not necessarily in the same orbit under D-equivalence.

Example 3.2. The following matrix pencils

λE1 +A1 =

1
1

0

+

2
3

1



λE2 +A2 =

1
1

0

+

2
0

1


are in the same stratum when considering the stratification induced for classical equivalence (strict equivalence) relation but they are not in
the same orbit under D-equivalence.

Equivalent classes under D-equivalence relation can be obtained dividing classical strata.

Example 3.3. Let S be the classical stratum consisting of matrix pencils with canonical reduced form

λ


1

. . .
1

NE

+


λ1

. . .
λn0

In−n0


where λi 6= λ j if i 6= j, 1≤ i, j ≤ n.
This stratum splits into the following D-equivalence classes:
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λ


1

. . .
1

NE

+


λ1

. . .
λn0

In−n0

 , λi 6= 0, λi 6= λ j if i 6= j

λ


1

. . .
1

1
NE

+


λ1

. . .
λn0−1

0
In−n0

 , λi 6= 0, λi 6= λ j if i 6= j

In order to obtain all the strata, we can proceed as follows. First of all we divide each stratum on the finite classical stratification into a finite
number of equivalent classes, separating the orbits in the stratum having some zero-eigenvalue Jordan block and then we joint the sets having
the same Segre characteristic correspoding to non-singular part of the Jordan matrix.

Example 3.4. Let us consider the classical strata corresponding to

λE1 +A1 = λ


1

1
1

0 1
1

+


λ1

λ2 1
λ2

1
1

 , λ1 6= λ2

λE2 +A2 = λ


1

1
1

0
0

+


λ1

λ2 1
λ2

1
1

 , λ1 6= λ2

The stratum corresponding to λE1 +A1 may be divided into

λE1
1 +A1

1 = λ


1

1
1

0 1
0

+


λ1

0 1
0

1
1

 , λ1 6= 0

λE2
1 +A2

1 = λ


1

1
1

0 1
1

+


λ1 1

λ1
0

1
1

 , λ1 6= 0

The stratum corresponding to λE2 +A2 may be divided into

λE1
2 +A1

2 = λ


1

1
1

0
0

+


λ1

0 1
0

1
1

 , λ1 6= 0

λE2
2 +A2

2 = λ


1

1
1

0
0

+


λ1 1

λ1
0

1
1

 , λ1 6= 0

Then, we joint

(λE1
1 +A1

1)∪ (λE1
2 +A1

2), (λE2
1 +A2

1)∪ (λE2
2 +A2

2)

That is to say, λE1
1 +A1

1 and λE1
2 +A1

2 are in the same stratum (and all D-equivalent to both pencils) and λE2
1 +A2

1 and λE2
2 +A2

2 are in
the same stratum (and all D-equivalent to both pencils).
Observe that the equivalent classes of λE i

2 +Ai
2 (i = 1,2) is in the frontier (or boundary) of the equivalent classes of λE i

1 +Ai
1 (i = 1,2):
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lim
ε→0

λ


1

1
1

0 ε

0

+


λ1

0 1
0

1
1

=

λ


1

1
1

0
0

+


λ1

0 1
0

1
1



lim
ε→0

λ


1

1
1

0 ε

0

+


λ1 1

λ1
0

1
1

=

λ


1

1
1

0
0

+


λ1 1

λ1
0

1
1


Proposition 3.5. The partition of X into D-equivalence classes is a finite partition.

We will denote D-equivalence classes as D(ν ,n0,σ), referring to the orders of matrices J, G and the Segre characteristics of J. A deeper
study of these sets is made below.

Proposition 3.6. Let J(σ) the stratum in Glν (C) under similarity and let N il(n− n0) and let N il(n0− ν) be the smooth manifolds
of nilpotent matrices of size n−n0 and n0−ν respectively. Then, there is a smooth monomorphism from the set J(σ)×N il(n−n0)×
N il(n0−ν) to Mn(C)×Mn(C),

ϕ : J(σ)×N il(n−n0)×N il(n0−ν) −→Mn(C)×Mn(C)

(A,N ,N) −→

((
Iν

In0
N

)
,

(
A

N
Inn0

))

Proof. It is straightforward that ϕ is injective and differentiable.

Corollary 3.7. For each N ∈N il(n−n0), the map

ϕN : J(σ)×N il(n0−ν) −→Mn(C)×Mn(C)

(A,N ,N) −→

((
Iν

In0−ν

N

)
,

(
A

N
In−n0

))
is a smooth monomorphism.

Remark 3.8. The D-equivalent class D(ν ,n0,σ) is the set of equivalent pairs to ϕ(J(σ)×N iln−n0 ×N iln0−ν )

D(ν ,n0,σ) =
{(A,B) = Qϕ(A,N ,N)P |(A,N ,N) ∈ J(σ)×N iln−n0 ×N iln0−ν ,P,Q ∈ Gln(C)}

and each D-equivalence class D(ν ,n0,σ) is a disjoint union of the sets of equivalent pairs to ϕN (J(σ)×N ×N iln0−ν ). Therefore, as a
consequence of [10], D(ν ,n0,σ) is a disjoint union of differentiable manifolds.

In the following section we will show that D(ν ,n0,σ) are, actually, differentiable manifolds.

4. Regularity of strata

First of all we reasoning that the orbits configuring the strata are complex differentiable submanifolds of the set of matrix pencils
Mn(C)×Mn(C).
Since orbits under classical equivalent relation of matrix pencils are orbits under the action of the Lie group G = {(P,Q) ∈ Gl(n;C)×
Gl(n;C)} under the αλE+A action:

αλE+A : G ×Mn(C) −→Mn(C)×Mn(C)
(P,Q) −→ λPEQ+PAQ
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Proposition 4.1. The orbits of matrix pencils under classical equivalent relation are complex differentiable submanifolds of Mn(C)×Mn(C)

Proof. Taking into account that αλE+A is a rational map and G is obviously a constructible set, Chevalley’s theorem (see for example [24])
states that αλE+A(G = O(λE +A) is also constructible. Then O(λE +A) has a nonsingular point. Taking into account that given any two
points on the orbit there is a diffeomorphism of Mn(C)×Mn(C) preserving the orbit and mapping one onto the other, it follows that every
point on the orbit is nonsingular. Hence O(λE +A) is a complex differentiable manifold.

The orbits can be parameterized by

α1 : V −→ O(λE +A)
(P,Q) −→ α1(P,Q) = αλE+A(P,Q)

where V is a submanifold of G minitransversal to the stabilizer defined as Stab(λE +A) = {(P,Q) | αλE+A(P,Q) = λE +A}.
From α1 we can construct a local diffeomorphism at (λE +A,λE +A ∈ Γ×O(λE +A) which preserves the orbits as follows

β : Γ×O(λE +A) −→Mn(C)×Mn(C)
((λE +A)+(λX +Y ),(λE ′+A′) −→ α(λE+A)+(λX+Y )(α

−1
1 (λE ′+A′))

where Γ is a variety transversal to the orbit under strict equivalence of matrix pencils.
To study the regularity of strata, we first reduce the problem to the intersection with a variety Γ transversal to the orbits of any element of the
D-equivalence class. The variety considered in this paper is the miniversal deformation obtained in [23]:
Γ = (λE +A)+{λX +Y}, that has the following form for regular matrix pencils in canonical reduced form:(

λ

(
I

N

)
+

(
J

I

))
+

(
λ

(
0

XN

)
+

(
YJ

0

))
where N +XN and J+YJ are miniversal deformations of square matrices under similarity (for instance, given in [1]).

Remark 4.2. J+YJ =

(
J1

J(0)

)
+

(
YJ1

YJ(0)

)
.

Proposition 4.3. For this particular variety Γ considered above,

a) If λX +Y 6= λ0+0 then (λE +A)+(λX +Y ) /∈ O(λE +A).
b) (λE +A)+ (λX +Y ) ∈ D(ν ,n0,σ) if and only if J1 +YJ1 has the same Segre symbol than J1, and J(0)+YJ(0) and N +YN are

nilpotent.

Lemma 4.4. Let λE +A be a matrix pencil in Mn(C)×Mn(C), O(λE +A) its orbit, D(ν ,n0,σ) its stratum and Γ the variety transversal
to the orbit defined in [23]. Then, in a neighborhood of λE +A, D(ν ,n0,σ) is a complex differentiable submanifold of X if and only if
D(ν ,n0,σ)∩Γ is

Proof. Assume that D(ν ,n0,σ) is regular at λE +A. Taking into account that Γ is transversal to the orbit it is also transversal to D(ν ,n0,σ).
Hence D(ν ,n0,σ)∩Γ is regular at λE +A.
Conversely, assume that D(ν ,n0,σ)∩Γ is regular at λE +A. Considering the local diffeormorphism β we have

D(ν ,n0,σ) = β (D(ν ,n0,σ)∪Γ)×O(λE +A)

locally at λE +A. Therefore D(ν ,n0,σ) is regular at λE +A.

Then we can conclude the following result.

Theorem 4.5. The sets of the from D(ν ,n0,σ) are differentiable submanifolds of X .

Proof. Let λE +A be a regular pencil, O(λE +A) its orbit and D(ν ,n0,σ) its stratum. We must prove that D(ν ,n0,σ) is regular at λE +A.
Taking into account (as we said before) that given any two points in the orbit there is a diffeomorphism of Mn(C)×Mn(C) preserving the
orbit and mapping one onto the other. We consider the pencil in its reduced form.
By 4.4 it suffices to prove that D(ν ,n0,σ)∩Γ is regular at λE +A, for that we consider the following map

φ : Mν (C)×Mn−n0(C)×Mn0−ν (C) −→Mn(C)×Mn(C)

(A,B,C) −→ λ

I
I

B

+

A
B

I


that is, clearly, a diffeomorphim such that

φ(Ss(J(σ))∩Γs(J)×Ss(NE)∩Γs(NE)∩N iln−n0 ×Ss(NG)∩Γs(NG)∩N iln0−ν ) = D(ν ,n0,σ)∩Γ

(where Ss(J(σ)), Ss(NE), Ss(NG) are the Segre strata of the square matrices J(σ), NE and NG under similarity and Γs(J(σ)), Γs(NE) and
Γs(NG) are linear varieties transversal to the Segre orbit of J(σ), NE an NG respectively and hence also transversal to Ss(J(σ)), Ss(NE)
and Ss(NG) at J(σ), NE and NG respectively)
Following [9], Segre strata are regular so, Ss(J(σ))∩Γs(J(σ)), Ss(NE)∩Γs(NE) and Ss(NG)∩Γs(NG) are regular at J(σ), NE and NG
respectively, and the proof is completed.
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Proposition 4.6. D-equivalence classes verify the frontier condition. That is to say, each frontier of strata consists of strata of strictly lower
dimension.

Corollary 4.7. The partition of X into sets of the form D(ν ,n0,σ) constitutes a (finite) stratification of X , which will be called D-
stratification.

5. Hierarchy diagrams

Given a non-standard regular pencil, not all small perturbations but some of them lead to a standard pencil with all the non-zero eigenvalues
being different from each other.

Example 5.1. Let us consider

λE +A = λ


1

1
0 1

0

+


1

0
1

1


The small perturbation

(λE +A)(ε) = λ


1

1
ε1 1

ε2

+


1

ε3
1

1

 , ∀εi 6= 0, i = 1,2,3,

is equivalent to

(λEc +Ac)(ε) = λ


1

1
1

1

+


1

ε3
1
ε1

1
ε2

 .

But between the initial pencil and the more generic one which was obtained, we can find other matrix pencils as, for example,

(λE +A)(ε) = λ


1

1
ε 1

0

+


1

0
1

1

 , ∀ε 6= 0

that is equivalent to

(λEc +Ac)(ε) = λ


1

1
1

0

+


1

1
ε

0
1

 .

Therefore we are interested in finding all possible types of pencils that we can find in a neighbourhood of a given pencil and in what
hierarchic position.
The construction of a hierarchy diagram is based upon two facts. First, the order of matrices NE and NG in the reduced form can be the same
or smaller than the original one when applying a small perturbation. The hierarchy diagram in the case the order of these matrices are the
same can be deduced from the hierarchy diagrams in the case where square matrices under similarity are considered.
Taking into account the construction of each stratum we can deduce the hierarchic structure from the stratification induced by classical
equivalence, by means of breaking joining equivalent strata and replacing them in the closure hierarchic.
We present the hierarchic closure for n = 2.
First of all, we show the list of all equivalent classes with a representant of each class.

D(ν ,n0,σ) λA+B
D(0,0,−) λ

(
0

0
)
+
(
1

1
)

D(0,1,−) λ
(
1

0
)
+
(
0

1
)

D(1,1,(1)) λ
(
1

0
)
+
(

λ1
1

)
D(0,2,−) λ

(
1

1
)
+
(
0

0
)

D(1,2,(1)) λ
(
1

1
)
+
(

λ1
0

)
D(2,2,(2)) λ

(
1

1
)
+
(

λ1
1 λ1

)
D(2,2,(1,1)) λ

(
1

1
)
+
(

λ1
λ1

)
D(2,2,((1);(1))) λ

(
1

1
)
+
(

λ1
λ2

)



Universal Journal of Mathematics and Applications 21

D(2,2,((1);(1)))

D(2,2,(2))

D(2,2,(1,1))

D(1,2,(1))                                            D(1,1,(1))

D(0,2,-)

D(0,1,-)

D(0,0,-)

Figure 5.1: Hierarchic closure for n = 2

Then, the hierarchic closure is given as Figure 5.1.

Notation D(ν ,n0,σ)→ D(ν ′,n′0,σ
′) indicates that D(ν ,n0,σ)⊂ D(ν ′,n′0,σ

′) where D(ν ′,n′0,σ
′) is the closure of D(ν ′,n′0,σ

′).

Now we present the case n = 3.

As in the case n = 2 we present the list of all equivalence classes

D(ν ,n0,σ) λA+B

D(0,0,−) λ

(0
0

0

)
+
(1

1
1

)
D(0,1,−) λ

(1
0

0

)
+
(0

1
1

)
D(1,1,(1)) λ

(1
0

0

)
+

(
λ1

1
1

)
D(2,2,((1);(1))) λ

(1
1

0

)
+

(
λ1

λ2
1

)
D(2,2,(2)) λ

(1
1

0

)
+

(
λ 1

λ
1

)
D(2,2,(1,1)) λ

(1
1

0

)
+

(
λ1

λ1
1

)
D(1,2,(1)) λ

(1
1

0

)
+

(
λ1

0
1

)
D(0,2,−) λ

(1
1

0

)
+
(0

0
1

)
D(3,3,((1);(1);(1))) λ

(1
1

1

)
+

(
λ1

λ2
λ3

)
D(3,3,((2);(1))) λ

(1
1

1

)
+

(
λ1 1

λ1
λ2

)
D(3,3,(3)) λ

(1
1

1

)
+

(
λ1 1

λ1 1
λ1

)
D(3,3,(2,1)) λ

(1
1

1

)
+

(
λ1 1

λ1
λ1

)
D(3,3,((1,1);(1)) λ

(1
1

1

)
+

(
λ1

λ1
λ2

)
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D(3,3,((1);(1);(1)) λ

(1
1

1

)
+

(
λ

λ

λ

)
D(2,3,((1);(1)) λ

(1
1

1

)
+

(
λ1

λ2
0

)
D(2,3,(2)) λ

(1
1

1

)
+

(
λ1 1

λ1
0

)
D(2,3,(1,1)) λ

(1
1

1

)
+

(
λ1

λ1
0

)
D(1,3,(1)) λ

(1
1

1

)
+

(
λ1

0
0

)
D(0,3,−) λ

(1
1

1

)
+
(0

0
0

)
Then, the hierarchic closure is given in figure 5.2.

D(0,0,-)

D(3,3,((1);(1);(1))) 

D(3,3,((2);(1))) D(2,3,((1);(1)))

D(3,3,(3))

D(3,3,(2,1))

D(3,3,((1),(1);(1))) D(2,3,(2))

D(2,2,((1);(1)))

D(3,3,(1,1,1))

D(0,3,-)

D(1,1,(1))

D(1,2,(1))

D(0,1,-)

D(0,2,-)

D(1,3,(1))D(2,2,(2))

D(2,2,(1,1))

D(2,3,(1,1))

Figure 5.2: Hierarchic closure for n = 3

Notation D(ν ,n0,σ)→ D(ν ′,n′0,σ
′) indicates that D(ν ,n0,σ)⊂ D(ν ′,n′0,σ

′)

where D(ν ′,n′0,σ
′) is the closure of D(ν ′,n′0,σ

′).

6. Conclusion

In this work, a partition called D-stratification, in the space of pairs of matrices associated to regular matrix pencils preserving the order of
the nilpotent parts has been considered and it was proved to be is a finite stratification of the space of such matrix pencils. This study shows
the effect of perturbations over the Kronecker canonical form of a prescribed pencil. We present the D-strata that can be reached in the cases
where the order of the matrix pencils is 2 or 3 and obtain the corresponding hierarchy graphs, thus illustrating the D-strata that is possible to
reach when applying small perturbations.
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