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A B S T R A C T

Under 5G use case scenarios latency is a main challenge that must be addressed, since mission critical envi-
ronments are mostly delay sensitive. To achieve this goal, the service infrastructure placement optimization is
needed in the interest of minimizing the delays in the service access layer. To solve this problem, this paper
mathematically models the placement problem in a Fog Computing/NFV environment as a Mixed-Integer Linear
Programming problem and proposes a heuristic-based solution considering 5G mobile network requirements. As
a practical result, an application was developed to achieve usability and flexibility while ensuring operational
applicability of the proposed methods.

1. Introduction

Albeit some remaining skepticism related to whether identified 5G
requirements could be satisfied for all use case scenarios, an upcom-
ing communication revolution based on 5G is a foreseeable future. In
fact, the 5G roadmap envisions the first operational networks by 2021
(Rodriguez, 2015). Under these circumstances, technologies such as
Network Function Virtualization (NFV), Fog Computing (FC) and Soft-
ware Defined Networking (SDN) will most likely converge as pillars to
answer underlying technological challenges.

In 5G usage scenarios, latency is certainly one of the main diffi-
culties to overcome. The scenario classification devised by the Inter-
national Telecommunications Union-Radiocommunication Sector (ITU-
R), shows mission-critical services depending on strong latency con-
straints (Xiang et al., 2017). Specifically, these latency constraints are
expected to reach less than 1 ms in extremely demanding use cases such
as autonomous driving (Xiang et al., 2017). Given this situation, latency
control and latency-aware planning become mandatory.

A first solution approach to this problem, is to minimize the delay
in the service location-end user location channel by placing the service
infrastructure at the network edge and optimizing the placement strate-
gies. This target could be achieved through NFV and FC convergence
supported by a high performance and carefully designed network (pre-
sumably an SDN solution). Therefore, deploying small-sized infrastruc-
ture containers (fog nodes in this context) over the service area would
lead to a significant reduction in service access delay values.
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Despite the existence of a pointer towards the right direction, cap-
ital and operational expenditures (CAPEX and OPEX) remain signifi-
cant challenges operators have to face in 5G networking. Infrastructure
capacities, for instance, will certainly become a trade-off to rethink,
since 5G requirements will pose a complex challenge to cost-efficiency
and the avoidance of under-utilization will remain a critical issue.
In addition, as there are few studies and none working knowledge
in the deployment and operation of infrastructure/services over 5G
ecosystems, there is no cost-effective general method to translate use
case demands into infrastructure capacities. Thus, reducing CAPEX and
OPEX in the context of this paper, is targeted through the minimization
of the fog nodes number and their capacities.

Mobile network planning studies and facility location research have
exhaustively addressed similar problems (Wang et al., 2015; Barbati,
2013; Zhou et al., 2015; Carlsson et al., 2016; Wang and Ran, 2016).
Nevertheless, the present research is an ongoing work targeting the par-
ticular ecosystem merging 5G, NFV, FC and, in the future, SDN. Further-
more, it aims to reduce deployment costs by minimizing both the num-
ber of facilities deployed, and the location-dependent expenses such as
building costs and operating costs.

For these reasons, the following considerations were made:

• Initial facility coordinates are co-locations of identified traffic gener-
ators (TG).

• The fog node (FN) coverage area is determined as a function of an
assumed latency value according to 5G requirements.
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Although FC has been thoroughly studied and remains under active
research, to the best of our knowledge there is very little or no avail-
able literature targeting the FN placement problem (FNPP). Authors
in (Intharawijitr et al., 2016) proposed a mathematical formulation
analyzing FC communication concerns regarding latency and workload
intensity. The proposal covers a scenario where both communication
delay and processing latency are considered, while the main goal is to
find a suitable FN set complying with the specified restrictions. At this
point, a predefined policy set allows the system to select an appropriate
FN to process a given workload. In general, this article does not tackle
the FN site selection problem, where a main issue is the communica-
tion delay between the data sources and the FNs. On the other hand,
the bipartite graph representation proposed does not accurately match
future FC scenarios, as in such environment, service tasks are to be
shared and cooperatively executed among both the FN set and the end-
user smart devices. In (Balevi and Gitlin, 1801) the optimum number of
FNs is using stochastic geometry analysis by representing user demands
through Binomial Point Process. The idea is to select, from a deployed
network of nodes, which of them are going to be upgraded to FN based
on a certain probability. The overall aim is to reduce the total number of
upgraded nodes since this yields better signal-to-interference-plus-noise
ratio (SINR), average data rate and transmission delay.

In (Yannuzziet al, 2017) the vendor-specific infrastructure deploy-
ment at the edge of the network is studied and the lack of flexibility of
such scenario (for next generation networks) is pointed out. FC is then
considered as a solution to the defined problem and street cabinets are
proposed as suitable locations to deploy the FNs for a particular case
(the city of Barcelona). This site selection is extended to the notion of
points-of-presence in more general deployments. From such proposal, a
first approach to the FNPP could be extrapolated, as the intention is to
find suitable locations to place the service infrastructure close enough
to the data sources.

As of the crucial relevance of latency in fog scenarios, from (Byers,
2017), 7 of the 12 presented use cases (only considering IoT-related ver-
tical sectors), are said to be latency-constrained. Similarly, in a broader
scope analysis, thus including 5G scenarios (Blancoet al, 2017), and
(Elayoubiet al, 2016) offer clear evidence of the critical role played by
latency control and optimization.

There are other relevant studies targeting FC-based configurations
where latency is a main concern. Regarding resource allocation and
capacity sizing in the context under analysis (Basta et al., 2017),
presents a cost optimization model where the network load is proposed
as optimization target and defined as the bandwidth-latency product.
Likewise, in (Brogi and Forti, 2017), the resource allocation problem
in FC is solved considering bandwidth and latency as core parameters.
In this article, although an operational and thus already deployed FC
infrastructure is considered known data (implicitly the FNPP is pre-
viously solved and its solution assumed as input), a novel approach
presented is to model the allocation problem considering the possible
interconnecting and interaction methods in a fairly realistic architec-
ture. Gravalos et al. (2016) formulate the problem of deploying IoT
gateways as an Integer Linear Programming (ILP). They aim to reduce
the costs of the IoT network under a strict latency constraint. Their for-
mulation achieves interesting cost reduction results, although the num-
ber of nodes used in the simulations is to low to represent a real-life
scenario. What is more, such formulation is limited by the exponential
complexity derived from scaling the number of devices and gateways
required.

From (Zhang et al., 2017) a first solution to the node site selec-
tion problem under FC is solved. The problem presented is the loca-
tion selection to place micro datacenters and diverse components of a
long-reach passive optical network such that the total cost of deploy-
ment is reduced. The problem is formulated as an ILP and solved using
an in-house developed heuristic. A limitation of this study is the iso-
lated nature of the deployed micro datacenters. The proposed model
prohibits micro datacenters collaboration for service execution. Con-

sequently, the solutions found could be under sized, as in a shared
and cooperative environment more datacenters should be deployed. In
addition, future FN or even (broadening the scope) edge nodes (when
considering other technologies such as Mobile Edge Computing and
Cloudlets (Dolui and Datta, 2017)) are most likely to converge a wide
range of interconnecting technologies merging highly dense service
areas (from pico to macro-cells).

The so-called location selection problem, has also been extensively
researched and is commonly denoted Facility Location Problem (FLP).
Usually, FLPs deal with selecting the placement of a facility or a set
of facilities (often from a list of feasible locations) to best meet the
demanded constraints and user requirements. Their solution is quite
useful when planning the placement of public service facilities such
as hospitals, fire fighter stations or commercial facilities such as ware-
houses. In (Arabani and Farahani, 2012) an extensive survey about this
topic can be found.

Traditional FLP formulations cannot be directly applied to the
FNPP mainly because the FNPP treated here, do not converge into
a particular problem type. As seen in (Farahani et al., 2010), FLPs
are mostly formulated following the guidelines of an operational
research family: Weber, median, covering, constrained, uncapacitated,
location–allocation, location-routing, dynamic, competitive, network
and undesirable location problems. Therefore, they all converge into
a particular problem type such as coverage or Weber, while the FNPP
mixes more than one problem family. Moreover, another difference
with the FNPP is that FLPs do not consider non-technical restrictions
in the location selection process. Our proposal is to consider the FNPP
as a capacity and latency constrained location selection problem.

This formulation converges to a covering problem where the added
capacitated approach introduces additional complexity and prohibits
the use of the models and solution methods found in the reviewed lit-
erature. In particular, the limited capacity and latency restrictions pre-
vented us from using traditional local search techniques (Krivitski et
al., 2005). This is firstly because any “move” made to generate a new
feasible solution could lead to a worse overall cost, thus forcing us to
escape local optima. What is more, deselecting a location usually forces
an adjustment procedure in the whole deployment to ensure that all
TGs are covered.

In the context mentioned before, latency-aware planning becomes
vital for the FN efficient deployment and user demand satisfaction
in current and 5G envisioned scenarios. Therefore, the objective of
this paper is to propose a cost-effective latency-aware strategy to the
FN placement in 5G environments. To this aim, in this document we
present the mathematical modeling of the problem, merging both a
capacitated and a coverage facility location approach (Arabani and
Farahani, 2012; Ulukan and Demircioglu, 2015), along with a solution
strategy, where the main contributions are:

• A mathematical formulation (as a linear optimization problem) of
the service infrastructure placement problem at the network edge
(fog nodes).

• A heuristic approach called Hybrid Simulated Annealing to solve
optimization problem, based on the location of the traffic generators.

• A desktop application including both solution approaches, in which
the following data can be obtained: the FN locations and capacities,
the TG covered by each FN, and the number of deployed FNs.

2. Formulation as a MILP problem

In order to model the above mentioned problem, we first assume
that the service users distributed over a given area could be modeled as
traffic generators (TG) (Wang et al., 2015; Wang and Ran, 2016). Such
simplification is made considering that the last-mile access infrastruc-
ture is envisioned to be wireless for most 5G usage scenarios. Thus, the
aggregated cell structure composed by mobile base stations, wireless
access points, etc. (macro cells, micro cells, femto cells), is used as base
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entry data and these aggregation points are defined as traffic generators.
As the major objective is to reduce costs by minimizing the number of
FNs while considering a limited capacity for each FN, the optimization
problem is then formulated as follows:

Minimize:
∑

∀f∈FN
vf (1)

s. t.:
∑

∀f∈FN
utf ≥ 1 ∀t ∈ TG (2)

utf = vf if loc(t) = loc(f) ∀t ∈ TG, ∀f ∈ FN (3)

utf ≤ vf if loc(t) ≠ loc(f) ∀t ∈ TG, ∀f ∈ FN (4)

∑
∀f∈FN

dtf = tdt ∀t ∈ TG (5)

dtf ≤ tdt · utf ∀t ∈ TG,∀f ∈ FN (6)

∑
∀t∈TG

dtf ≤ c( f ) ∀f ∈ FN (7)

c( f ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if
∑

∀t∈TG
dtf = 0

A if 0 <
∑

∀t∈TG
dtf < A

B if A ≤
∑

∀t∈TG
dtf < B

C if B ≤
∑

∀t∈TG
dtf ≤ C

∀f ∈ FN (8)

if utf = 1 ⇒ distance(t, f ) ≤ Dmax ∀f ∈ FN,∀f ∈ FN (9)

if utf = 0 ⇔ dtf = 0 ∀t ∈ TG,∀f ∈ FN (10)

if vf = 0 ⇔
∑

∀t∈TG
dtf = 0 ∀f ∈ FN (11)

utf , vf binary ∀t ∈ TG,∀f ∈ FN (12)

dtf ≥ 0 ∈ ℝ ∀t ∈ TG,∀f ∈ FN. (13)

Having that:

utf : 1 if TG t is served by FN f , 0 otherwise
vf : 1 if FN f is deployed, 0 otherwise
c( f ): FN f capacity
dtf : part of TG t demand served by FN f
tdt : total demand of TG t
Dmax: maximum allowed distance between a TG and its serving FN
loc(t) or loc( f ): location of TG t or FN f

The objective function in Eq. (1), seeks to minimize the number
of FNs (vf ). The global aim is to select “good” FN locations in terms
of delay, capacity and service load. Furthermore, by adjusting the FN
capacity to the covered area demands, we also pursue a low-cost solu-
tion.

The first set of restrictions (2) specifies that any given TG t should be
covered by one or more FNs. The constraint set (3), refer to the case of
FN f co-located at TG t position, while (4) ensures that no FN is placed
unless there is a TG to cover. In (5), TG t demand should be entirely
covered by its serving FN f . On the other hand, (6) defines the part of
TG t demand served by FN f , in case the association between t and f
exists.

From (7), the summation of the covered TG demands under an FN,
should not exceed the FN capacity, which is defined in (8). The lin-
earization of the FN capacities as a piecewise constant function is shown
in Subsection 2.1.

To fulfill latency-awareness, the parameter Dmax is introduced in (9).
This parameter is set as the maximum distance allowed between a TG

t and its serving FN, such that a given latency value is not exceeded
by the placement strategy. As a consequence, any FN location complies
with the particular latency requirements imposed to the planning algo-
rithm. The distance between any pair TG-FN was assumed to be the
Euclidean distance, therefore, these implication have been linearized as
shown in Subsection 2.2.

The set of restrictions (10) relates the part of the TG t demand served
by FN f to the binary variable utf , which determines if this relationship
exists indeed. The same idea is applied on (11), guaranteeing that only
deployed FNs cover the corresponding part of TGs demand that are
associated to them. Both set of constraints are linearized in Subsection
2.3.

Finally, (12) and (13) are variable-type or domain constraints that
specify the type of values the decision variables can take.

2.1. Modeling FN capacities

The capacity of each FN is modeled as a piecewise-constant function
of P pieces or sections (with P = 4), as shown in (8) (see Fig. 1).

In order to linearize such function, the binary variable 𝛿if∀i ∈ P, f ∈
FN (a 𝛿 value per function section), is introduced to determine which
capacity should be selected depending on the sum of the demands cov-
ered by FN f . The value of 𝛿if is 1 at the ith section and 0 otherwise.
As result, the constraints (14)–(19) are added to the model, where A, B
and C are the available FN capacities, being C the maximum and A the
minimum value. To obtain the inequalities in (15) and (16), as required
in the linearization procedures, the value 𝜖 is defined as an arbitrary
small value.∑
∀t∈TG

dtf ≤ C · (1 − 𝛿1f ) ∀f ∈ FN (14)

∑
∀t∈TG

dtf ≤ C · (1 − 𝛿2f ) + 𝛿2f · (A − 𝜖) ∀f ∈ FN (15)

∑
∀t∈TG

dtf ≤ C · (1 − 𝛿3f ) + 𝛿3f · (B − 𝜖) ∀f ∈ FN (16)

∑
∀t∈TG

dtf ≥ A · 𝛿3f ∀f ∈ FN (17)

∑
∀t∈TG

dtf ≥ B · 𝛿4f ∀f ∈ FN (18)

∑
∀t∈TG

dtf ≤ C ∀f ∈ FN (19)

Moreover, variable 𝛿if , ∀i ∈ {1, …, P}, P = 4 should comply the follow-
ing condition:∑
∀i∈{1,…,P}

𝛿if = 1 P = 4, ∀f ∈ FN. (20)

Fig. 1. Fog node capacity function.
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Finally, the capacity of each FN is defined as:

c( f ) = 𝛿1f · 0 + 𝛿2f · A + 𝛿3f · B + 𝛿4f · C ∀f ∈ FN. (21)

Overall, restrictions (14) to (21) replace the set of constraints (8),
used in the model to determine the capacity value for each FN f , such
that it will always be higher than the covered demand (otherwise,
another FN is selected to cover the unsatisfied service requirements).

2.2. Linearization of the euclidean norm

In this subsection, the linearization procedure for (9) is shown. The
proposal of (Camino et al., 2016) is followed to linearize the compu-
tation of the Euclidean distance for continuous points in ℝ2. The basis
is to discretize the directions of the Euclidean plane, which is charac-
terized by the continuous domain [0,2𝜋], by nd directions of size 2𝜋

nd
.

Thus, the ith discretized direction is the following unit vector Ui:

Ui =
[
cos

(
2(i − 1)𝜋

nd

)
, sin

(
2(i − 1)𝜋

nd

)]T
∀i ∈ {1,… , nd},

being ‖Ui‖ = 1

To verify whether two points pA = (xA, yA) and pB = (xB, yB) are
closer than a given distance dTFmax, we check that all the projections of
the pA–pB vector on these directions are lower than dTFmax · cos(𝜃max),
being 𝜃max =

𝜋

nd
.

(xA − xB) · cos
(

2(i − 1)𝜋
nd

)
+ ( yA − yB) · sin

(
2(i − 1)𝜋

nd

)
≤ dTFmax · cos(𝜃max) ∀i ∈ nd, ∀t ∈ TG, ∀f ∈ FN.

(22)

Moreover, we have to linearize the following proposition:

If utf = 1 ⇒ distance(t, f) ≤ dTFmax is TRUE, (23)

which is equivalent to:

distance(t, f ) − MaxD · (1 − utf ) ≤ utf · dTFmax, (24)

being MaxD the maximum distance between two locations.
Thus, from inequalities 22 and 24, the following constraint is

obtained:

(xA − xB) · cos
(

2(i − 1)𝜋
nd

)
+ ( yA − yB) · sin

(
2(i − 1)𝜋

nd

)
− MaxD · (1 − utf ) ≤ utf · dTFmax · cos(𝜃max).

(25)

2.3. Linearization of the TG-FN assignments

The constraint set in (10) relates the part of TG t demand served
by a FN with the binary variable utf , which determines if this relation
really exists. Thus, (10) involves the following implications:

if utf = 0 ⇒ dtf = 0 ∀t ∈ TG,∀f ∈ FN (26)

if utf = 1 ⇒ dtf > 0 ∀t ∈ TG,∀f ∈ FN (27)

which are equivalent to the following constraints, being 𝜖 an arbitrary
small value:

dtf ≤ C · utf ∀t ∈ TG,∀f ∈ FN (28)

dtf ≥ 𝜖 · utf ∀t ∈ TG,∀f ∈ FN (29)

Repeating the same procedure for 11, the following must be linearized:

if vf = 0 ⇒
∑

∀t∈TG
dtf = 0 ∀f ∈ FN (30)

if vf = 1 ⇒
∑

∀t∈TG
dtf > 0 ∀f ∈ FN (31)

consequently equivalent to the restrictions below:∑
∀t∈TG

dtf ≤ C · vtf ∀f ∈ FN (32)

∑
∀t∈TG

dtf ≥ 𝜖 · vf ∀f ∈ FN (33)

Therefore, (10) has to be replaced by restrictions (28) and (29),
while (11) have to be replaced by constraints (32) and (33).

3. Placement algorithm: Hybrid Simulated Annealing

Capacitated FLPs are considered part of the NP-hard problem set
(Silva and la Figuera, 2007; Qin et al., 2015; Farahani et al., 2012;
Wu et al., 2006; Zhu et al., 2010). The FNPP tackled in this paper,
being a combination of two FLPs problem types could be derived to be
NP-hard. In a nutshell, it implies the analysis of all the possible FN-TG
combinations in order to find the minimum cost solution. What is more,
given the latency constraints and the need to satisfy all TG demands in
a capacity-dependent cost model, the combinations cannot be split to
reduce computation time.

On the other hand, there is still an absence of working knowledge
and operational data regarding 5G user behavior, future traffic patterns
and service trends, in a FC, NFV, 5G ecosystem. Therefore, predicting
the number of FNs for a given service area is a nearly impossible task.
What is certain, is that ultra-dense networking and 5G stringent require-
ments will push the amount of FNs to thousands in just a city. Although
the MILP formulation makes the FNPP solvable by any available solver
(e.g. GLPK), for those scalability requirements the problem difficulty
increases abruptly and so does the execution times and required com-
putational resources. Taking this into consideration, a heuristic method
based on the simulated annealing (SA) algorithm was developed for the
placement strategy: Hybrid Simulated Annealing (Hybrid-SA).

SA has been already used to solve FLPs (Qin et al., 2012, 2015;
Ho and Wu, 2012). Overall, selecting SA as a solution was a decision
based on its flexibility to solve combinatorial problems when com-
pared to other solutions such as the Lagrangian method and branch
and bound algorithms. In addition, SA has been already tested and
compared to other heuristics when solving FLPs, showing excellent
results in both performance and solution quality when compared to
best known or heuristic-generated values (Qin et al., 2015; Ho and Wu,
2012; Arostegui et al., 2006; Goiri et al., 2011; Delmaire et al.,).

In spite of its benefits, SA showed a non-convergent behavior during
our experiments. The obtained solutions were widely diverse in terms of
cost and number of FNs despite varying the cooling parameters and iter-
ation counters. To solve this problem and improve the obtained results,
we decide to develop an SA-based strategy mixing some of the core
ideas behind efficient methods such as Tabu Search (TS). The idea was
to inherit the flexibility of SA and combine it with the use of memory
structures as done in TS (Glover and Kochenberger, 2003), and local
search techniques. The indicated method allowed us to improve our
experimental results when compared to the traditional SA implementa-
tion (see Section 4). Further details about the Hybrid-SA method devel-
oped are described in Section 3.1.

3.1. Heuristic description

With the purpose of reducing computation time without loss of gen-
erality and accuracy, the algorithm starts by finding the isolated TGs.
Isolation occurs when a TG has no other TG closer than Dmax, which
means that it should necessarily be upgraded to FN.

This concept was extended to Pre-Optimized TG Areas (PTAs) which
resulted in a significant reduction of the solution search space. A PTA
is defined as any TG group where regardless of the TG upgraded to
FN there is no impact on the solution quality. The reason is that every
TG is within the coverage area of any other TG while remaining iso-
lated to other TGs outside the PTA. Since our deployment strategy was
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Fig. 2. Hybrid Simulated Annealing flow diagram.

thought for the FNs to be placed in both rural and urban areas where
the TG density is expected to be lower, dealing with isolated TGs and
PTAs in advance improves the overall performance of the proposed
heuristic.

The pseudo-code of the proposed algorithm is showed in Fig. 2. The
first critical step is to create a good enough initial solution. For this pur-
pose we develop a greedy strategy where random TGs are upgraded to
FNs, taking into account capacity and latency limitations and ensuring
that no FN is assigned unneeded capacity. Secondly, a set of neighbor
solutions (called individuals) based on this initial step is obtained. The
neighbor set contains a predefined number of individuals and is divided
in a subset of solutions based on good, bad and randomly generated
solutions. The overall idea was to widely explore the search space in
each iteration.

Generating new solutions based on good previous individuals
ensures the convergence of the algorithm into the best placement loca-
tions found (in terms of overall cost and number of FNs). For this pur-
pose, it is crucial to ensure that a new individual resembles the previous
obtained one. This is performed by selecting the TGs to be upgraded
to FNs within the vicinity of the old selected FNs. Additionally, as a
diversification strategy (as in Tabu Search techniques), random and
bad solutions are generated to visit unexplored areas of the solution
space. As the system “cools down”, the number of neighbors generated
in each iteration changes as part of the intensification process. As a
result, less bad and random solutions are created while the number of
good solutions is increased as long as there are cost improvements. If
after an iteration cycle for a given temperature, the cost is better than

the best cost ever recorded (short-term memory structure part of the
intensification process), a penalty function based on a random proba-
bility decreases the number of neighbors, and the speed of tempera-
ture reduction. The function probability gets higher as the temperature
declines. Consequently, the system “cools down” quickly when there are
continuous cost improvements and convergence to the global optima,
while, otherwise, it slowly changes the temperature and aggressively
finds more solutions.

To evaluate each solution, a scoring method was developed. Both
the cost and the number of FNs had to be taken into account, but their
values were in different orders of magnitudes. The solution was to nor-
malize the values using logarithms and then estimate the distance from
both values, as a coordinate pair, to the coordinate origin (0, 0). The
obtained value was then use to evaluate the solutions found in each
iteration and score them accordingly.

To reduce computation times, facility locations are assumed to be
co-locations of existing TGs. This approach offers a near-optimal solu-
tion in acceptable running times without extreme usage of computing
resources for a fairly large number of TGs. Such assumption is sup-
ported by two main facts: capital and operational investments could
be minimized by reusing already existing infrastructure and site condi-
tions (space, networking and powering lines, etc.) on the high service
demand locations. Additionally, placing the infrastructure the closest
possible to the aggregation points on the service access layer, will sig-
nificantly decrease end-to-end latency.

The set of input parameters required is showed in Table 1. From
Eq. (1), Dmax calculation is of main relevance. As the aim is to
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Table 1
Input parameters for the placement algorithm.

Parameter Meaning

Dmax Maximum allowed distance between a TG and its serving FN
TG Set of TGs coordinates
FNcapacities Fog nodes capacities specified as small-sized, medium-sized and large-sized FNs
MapGrid Territory where TGs are located

reduce latency from the service infrastructure (FNs) to the cell traf-
fic aggregation points (TGs in this context), the delay was arbitrar-
ily selected to be 1 ms, 3 ms and 5 ms. These delay values com-
ply with the 5G latency requirements for a wide variety of use case
scenarios.

Fig. 3 illustrates a simulated territory of interest (10,000 km2). TGs
are distributed in three cities and randomly in rural areas, consequently
emulating a reasonably realistic distribution of demand points, where
urban areas present higher traffic density.

3.2. Complexity analysis

Since the core of our heuristic is the SA method, the traditional
implementation goes through t temperature steps where the related
complexity is O(log t). For each t the search is executed a fixed number
of iterations and generates O(n) neighbor solutions. The solution gen-
eration method populates the neighbor set. For this function the worst
case are the “solution-based individuals”, as they loop through previous
generated solutions, FN by FN (O(f ), being f the number of FNs in the
baseline solution), in search for random candidates (TGs suitable to be
upgraded to FNs) within each FN coverage area. This iterative process is
directly linked to the maximum number of TGs, conventionally called
M, to be found under the most populated coverage area. M is deter-
mined by running a greedy algorithm (see Section 4) while assigning to
each FN the maximum available capacity. It is easy to conclude that M
cannot be found beforehand and that the overall algorithm complexity
should be formulated based on it. Based on this analysis the complexity
can be specified as O(n · f · M · log t). The initial value of the number
of neighbor solutions is relatively small and it is reduced as the system
converges. Therefore, the overall algorithm complexity can be defined
as O(f · M · log t).

Fig. 3. Traffic generators randomly distributed in three cities.

Table 2
Input parameters values.

Dmax (km) TG number Cap. L-FN Cap. M-FN Cap. S-FN

3 100 40 30 21
200 59 41 32
300 80 51 40
400 105 74 58
500 150 101 78

9 100 74 51 38
200 138 94 71
300 209 146 102
400 291 205 153
500 348 238 179

15 100 75 52 41
200 154 101 79
300 240 157 119
400 326 214 160
500 392 268 193

4. Case study and results

In order to compare the performance of the placement strategy pro-
posed, a traditional SA implementation, the Hybrid-SA approach and
the MILP were run for three latency values: 1 ms, 3 ms and 5 ms. For
the case study of mobile Radio Access Networks (RANs) and a Cloud-
RAN (C-RAN) architecture, virtualized Baseband Units (BBUs) (Abdel-
wahab et al., 2016), are to be placed at the FNs. Consequently, from
(Musumeci et al.,; Chang et al., 2016) a backhaul transmission delay
for LTE networks is known to be around 250 μs Therefore, for 5G net-
works and the proposed latency values, Dmax was estimated to be 3 km,
9 km, 15 km (for transmission times of 31 μs, 93 μs, 156 μs). The input
list can be observed in Table 2.

A map grid of 100 km × 100 km was used with a set of TG ranging
from 100 to 500 TGs (with a 100 TGs increase step in each simulation).

Fig. 4. Solution obtained after running the algorithm.
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For the heuristic, the temperature ranged from 1.0 to 0.001 with a step
size for the fast temperature reduction of 𝛼 = 0.8 and 𝛼 = 0.9 for the
lower stepping process. The number of iterations per temperature was
set to 10 for the Hybrid-SA as several solutions are created and eval-
uated in each iteration (the number of neighbor individuals in each
iteration was set to 8). The iteration counter for the traditional SA was
set to 100. This value was empirically determined, aiming to ensure
a fairly similar number of iterations when compared to the Hybrid-
SA proposed (in fact 100 is a bit higher to compensate SA lack of
accuracy). All simulations were run in a computer with a 2.60 Hz 8-
core CPU (x64 architecture) and 32 GB RAM. Pyomo (Hartand et al.,
2011, 2017) was the python-based package selected to solve the opti-
mization model proposed in Section 2, along with GLPK as underlying
solver.

To obtain the FN capacities showed in Table 2, an additional greedy
algorithm was developed. It iteratively upgrades to FN the TG with the
most populated coverage area (given Dmax), and keeps on until no TG
remains uncovered. As a result, the allowed FN capacities are found for
any particular solution. Such greedy algorithm was run several times for
each simulation setting described above. Consequently, the final capac-
ity values for the heuristics and the mathematical model were obtained

through the statistical analysis of the results.
Fig. 4 displays a final solution after running the heuristic. It can

be observed how every TG is covered (FNs are depicted as × and the
surrounding circles are the coverage area of Dmax radius).

To validate the results, both the Hybrid-SA and the SA were run ten
times for every Dmax and TG combination. Meanwhile, for each Dmax
value, the number of TGs was increased as mentioned above, aiming
to calculate the execution time and the number of FNs of the optimal
solution found. The findings are presented in Figs. 5 and 6.

It can be noticed in Fig. 5 quite a difference in the running times of
both heuristics and the MILP model. Despite the steady surge in the first
stages for all cases (while increasing the number of TGs), the mathemat-
ical model has a nearly impossible task in obtaining the optimal solution
for Dmax = {9, 15} km and TG = 500 (see Fig. 5). Therefore, the exper-
imental results are just shown from 100 TGs to 400 TGs in both Figs. 5
and 6. In fact, the heuristics are able to found a near-optimal solution in
significantly less time and with a maximum of a few FNs gap as shown
in Fig. 6.

The MILP model execution time rapidly steeps to huge values after
reaching 400 TGs, due to the exponential growth in the number of feasi-
ble solutions. In contrast, both heuristics running delay climbs regularly

Fig. 5. Execution times for the SA, Hybrid-SA and MILP.
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Fig. 6. Number of FNs deployed by the SA, Hybrid-SA and the MILP model.

throughout the TGs experimentation set. Due to the latency constraint
variation, the number of FN decreases as Dmax rises. The reason is that
the FN coverage area becomes larger, thus less FNs are required to cover
existing TGs.

Regarding the performance of both heuristics compared to the exact
model when minimizing the number of FNs, the Hybrid-SA shows clear
improvements at the cost of an increase in the execution time. Since
the goal of our study is to place physical infrastructure, the placement
strategy is to be run during the planning phase of the deployment and
thus this is not considered an issue. However, we strongly believe that
the Hybrid-SA performance could be further improved. A recommenda-
tion on this matter is to add a distance parameter when searching for
the FN candidates in the solution generation method. Since currently it
searches for a random TG to upgrade to FN in the vicinity of the old
FN, such vicinity could be restricted by a distance parameter iteratively
reduced depending on the system temperature. This way, with each
search cycle the solution moves faster towards the best TG candidates.
This will also impact the number of neighbors generated as the overall
systems will increment the frequency of finding better solutions.

The Hybrid-SA performance regarding the number of FN deployed
is quite promising. From Fig. 6, the difference between the number of
FNs placed by the MILP and the Hybrid-SA approach never surpassed

a threshold of even less than 5 FNs. Based on this result, we consider
that a thorough analysis of next generation network data about traffic
patterns and services, can reduce the gap and improve the efficiency of
the Hybrid-SA.

5. Conclusions

In future 5G networks merging Fog Computing and other enabling
technologies, the devised number of FNs considering Internet of Things
(IoT) scenarios, for instance, will probably scale up to thousands of
nodes. This forces strict mathematical formulations as the MILP model
aforementioned, to be dropped as possible placement mechanisms. As
a result, more flexible methods, such as the proposed heuristic, become
the right approach to solve the problem.

It is worth noticing that working knowledge of 5G service infras-
tructure sizing will ensure optimal results when applying the proposed
heuristic. Additionally, since FN capacities will not be arbitrarily calcu-
lated but conditioned by available solutions in the market, the obtained
results will consequently become of quite practical interest. An added
value of the heuristic, is that it could be used initially to find the
required capacities for a real distributed demand scenario, thus help-
ing with the infrastructure sizing problem.
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Finally, in spite of the promising results presented for our heuristic
when compared to the traditional SA implementation and the MILP
model, further research is still necessary. Future work should care-
fully target a more comprehensive set of placement parameters such
as location dependent cost and additional candidate sites such as Cen-
tral Offices and Internet Service Provider infrastructures. Furthermore,
given the complexity of the envisioned 5G ecosystem the interdepen-
dence with other technologies should be analyzed. Certainly, a thor-
ough analysis of NFV, SDN and Edge Computing implementations will
lead to a turning point in the problem formulation, presumably towards
a multi-objective and multi-criteria optimization problem.
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