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Abstract 14 

Monitoring vegetation carbon in tropical regions is essential to the global carbon assessment and to 15 

evaluate the actions oriented to the reduction of forest degradation. Mainly, satellite optical 16 

vegetation indices and LiDAR data have been used to this purpose. These two techniques are limited 17 

by cloud cover and are sensitive only to the top of vegetation. In addition, the vegetation attenuation 18 

to the soil microwave emission, represented by the vegetation optical depth (VOD), has been applied 19 

for biomass estimation using frequencies ranging from 4 to 30 GHz (C- to K-bands). Atmosphere is 20 

transparent to microwaves and their sensitivity to canopy layers depends on the frequency, with 21 

lower frequencies having greater penetration depths. In this regard, L-band VOD (1.4 GHz) is 22 

expected to enhance the ability to estimate carbon stocks. This study compares the sensitivity of 23 

different VOD products (from L, C, and X-bands) and an optical vegetation index (EVI) to the above-24 

ground carbon density (ACD). It quantifies the contribution of ACD and forest cover proportion to 25 

the VOD/EVI signals. The study is conducted in Peru, southern Colombia and Panama, where ACD 26 

maps have been derived from airborne LiDAR. Results confirm the enhanced sensitivity of L-band 27 

VOD to ACD when compared to higher frequency bands, and show that the sensitivity of all VOD 28 

bands decreases in the densest forests. ACD explains 34% and forest cover 30% of L-band VOD 29 

variance, and these proportions gradually decrease for EVI, C-, and X-band VOD, respectively. Results 30 

are consistent through different categories of altitude and carbon density. This pattern is found in 31 

most of the studied regions and in flooded forests. Results also show that C-, X-band VOD and EVI 32 

provide complementary information to L-band VOD, especially in flooded forests and in mountains, 33 

indicating that synergistic approaches could lead to improved retrievals in these regions. Although 34 

the assessment of vegetation carbon in the densest forests requires further research, results from 35 

this study support the use of new L-band VOD estimates for mapping the carbon of tropical forests. 36 

Keywords: Vegetation optical depth, carbon density, tropical forests, L-band, climate change. 37 
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1. Introduction 38 

Control and mitigation of climate change greatly depend on the carbon balance of land ecosystems, 39 

and in particular on the capacity of tropical forests to store large amounts of carbon. Intact tropical 40 

forests (i.e., not affected by human activities) are responsible of half of the carbon sequestration in 41 

woodlands across the world (Pan et al., 2011), but deforestation, forest degradation, and 42 

disturbances in tropical regions counteract this effect causing tropical forests to be a net carbon 43 

source (Pan et al., 2011; Liu et al., 2015; Baccini et al., 2017). Despite this fact, terrestrial ecosystems 44 

act as global and significant carbon sinks, although the sink strengths’ show large variability among 45 

years and its future dynamic is uncertain (Le Quéré et al., 2009 and 2016). In this context, monitoring 46 

the land carbon stocks at global scale is essential to assess the carbon budget, reduce uncertainties, 47 

gain precision on modelling future climate change scenarios, and ultimately contribute to the 48 

development of effective climate change mitigation strategies.  49 

Satellites are the only means to provide an efficient and cost-effective monitoring of 50 

vegetation biomass changes over large areas and over extended periods (Goetz et al., 2009). 51 

Previous research on biomass estimation from space observations has been frequently based on the 52 

combination of diverse remote sensing sources and on complementing satellite data with field plots. 53 

The most widely used technique for vegetation monitoring is based on visible-infrared (VIS/NIR) 54 

vegetation indices. These indices have been constructed to exploit the particular properties of green 55 

vegetation to strongly absorb red wavelengths and reflect in the near-infrared. Several studies have 56 

used such indices for biomass estimation. For example, data from the Moderate Resolution Imaging 57 

Spectroradiometer (MODIS) have been applied to map carbon density in tropical regions (Baccini et 58 

al., 2008; Baccini et al., 2017) and in China (Sun et al., 2015). Spectral vegetation indices, such as the 59 

Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), have also 60 

been combined with field measurements to estimate forest biomass (e.g., Myneni et al., 2001; Dong 61 
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et al., 2003; González-Alonso et al., 2006; Blackard et al., 2008; Yuan et al., 2016). Despite their 62 

importance on vegetation studies, VIS/NIR vegetation indices have serious limitation for monitoring 63 

carbon stocks because they (i) are masked by clouds, (ii) can only monitor the top of the vegetation 64 

canopy, thus saturating at moderate and high levels of vegetation densities, and (iii) are poorly 65 

related to aboveground biomass. 66 

Differently from –and complementarily to- the VIS/NIR datasets, optical remote sensing 67 

based on the emission of laser pulses (i.e., light detection and ranging; LiDAR) presents the unique 68 

advantage of capturing the vertical structure of vegetation. It can be used to map the forest height 69 

and architecture in detail. The application of LiDAR enhances the capacity to capture vegetation 70 

biomass at different spatial scales. In that sense, new estimations of biomass and carbon fluxes 71 

throughout the Earth tropical regions have been obtained merging LiDAR satellite data with MODIS 72 

information and/or microwave datasets (Saatchi et al., 2011; Baccini et al., 2012 and 2017). At 73 

present, LiDAR surveys of forest biomass are limited to airborne platforms, although the Ice, Cloud, 74 

and land Elevation Satellite (ICESat) provided LiDAR measurements between 2003 and 2009. ICESat 75 

data was used for mapping forest canopy height (Simard et al., 2011), and future satellite missions 76 

like the ICESat-2 and the Global Ecosystem Dynamics Investigation mission (GEDI) will produce LiDAR 77 

retrievals of canopy structure from space. Importantly for the scope of this work, airborne LiDAR 78 

from the Carnegie Airborne Observatory (CAO) –in combination with field and modelled datasets- 79 

has been used to produce above-ground carbon density (ACD) maps at regional scales in Peru, 80 

southern Colombia and Panama (Asner et al., 2012, 2013 and 2014). 81 

 Microwave remote sensing, either from active or passive sensors (i.e., radars or radiometers, 82 

respectively), provides an alternative technique that has a double advantage: it is insensitive to cloud 83 

cover, and it is able to sense the vegetation (at different layers and depths depending on the 84 

frequency). Microwave sensors are responsive to the water content of soils and vegetation (i.e., soil 85 
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moisture and vegetation water content, respectively). This is due to the fact that water changes the 86 

dielectric properties of land covers as well as the attenuation, emission and reflection of vegetation 87 

layers and soils at microwave frequencies. In order to derive biomass estimates, it is assumed that 88 

the vegetation water content (VWC) to which microwaves are sensitive is tightly linked to the 89 

biomass of the plant. The relationship between measurements from space-borne radars and 90 

biomass in tropical forests has been widely demonstrated (Luckman et al., 1997; Kuplich et al., 2010; 91 

Hamdan et al., 2011; Morel et al., 2011; Häme et al., 2013; Sinha et al., 2015; Viet Nguyen et al., 92 

2016). Radar data have been used to provide vegetation biomass estimates either in synergy with 93 

LiDAR and VIS/NIR data (Saatchi et al., 2007; Lucas et al., 2015) or as an independent data source 94 

(Thurner et al., 2014; Bouvet et al., 2018). The use of passive microwave measurements for biomass 95 

assessments relies on the estimation of a physical microwave parameter known as Vegetation 96 

Optical Depth (VOD). This variable represents the attenuation exerted by the vegetation over soil 97 

microwave emissions, which depends on the VWC (Ulaby et al., 1986, pp. 1551-1596; Jackson and 98 

Schmugge, 1991; Momen et al., 2017), and therefore is used as a proxy of biomass. Different VOD 99 

products have been applied to study forests conditions and biomass (Liu et al., 2013; Lucas et al., 100 

2015; van Marle et al., 2016; Brandt et al., 2017). In particular, trends in global terrestrial biomass 101 

have been estimated using long-term retrievals of VOD at C-, X- and K-bands (>4 GHz; Liu et al., 2011 102 

and 2015). In this regard, since the penetration depth of microwaves through the vegetation canopy 103 

is greater at lower frequencies, VOD at L-band (1 to 2 GHz) is representative of the amount of water 104 

within most of the above-ground vegetation canopy, and SM and VOD retrievals can be successfully 105 

performed under denser vegetation conditions than those sensed by higher frequency bands. 106 

Hence, L-band is expected to enhance the capacity to derive information on vegetation for a wide 107 

range of applications. 108 
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At present, there are two L-band passive microwave satellite missions in orbit. The ESA’s Soil 109 

Moisture and Ocean Salinity (SMOS) mission (launched in November 2009) has on-board a synthetic 110 

aperture interferometric radiometer providing full-polarimetric measurements at different 111 

incidence angles (Kerr et al., 2010). The NASA’s Soil Moisture Active Passive (SMAP) satellite 112 

(launched in January 2015) has a single-look angle radiometer and a synthetic aperture radar on-113 

board (Entekhabi et al., 2010). The SMAP’s radar aimed at providing higher resolution soil moisture 114 

estimates, but it failed after three months of operations. At present, the SMOS VOD datasets include 115 

L2 and L3 products (Kerr et al., 2012; Al-Bitar et al., 2017) as well as the SMOS-INRA-CESBIO dataset 116 

(SMOS-IC; Fernández-Moran et al., 2017). The SMAP VOD products derive from the dual-channel 117 

baseline algorithm (SMAP DCA) and from the Multi-temporal Dual Channel Algorithm (SMAP MT-118 

DCA; Konings et al., 2016).   119 

L-band VOD datasets have been used in vegetation research to study Gross Primary 120 

Production (GPP; Teubner et al., 2018) and crop yields (Chaparro et al., 2018). L-band VOD has shown 121 

good agreement with vegetation biomass and forest height (Vittucci et al., 2016a and 2016b; 122 

Konings, Piles, et al., 2017). Brandt et al. (2018) have demonstrated its applicability to monitor 123 

carbon dynamics associated to weather trends in African drylands, and have shown reduced 124 

saturation for L-band VOD at high values of vegetation biomass compared to higher frequency 125 

(shorter wavelength) microwaves. Vittucci et al. (2016b) have reported that in July 2015 L-band VOD 126 

showed stronger relationship with biomass and forest height than C-band VOD in tropical forests of 127 

South America and Africa. However, they have found low relationship of L- and C-bands VOD with 128 

biomass in Indonesian forests, with similar performance for biomass estimation at both frequencies. 129 

In this context, further work is needed to quantify and compare the relationship between above-130 

ground carbon stocks and VOD at different frequencies and for different forest types. At present it is 131 
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still unclear to what extent L-band VOD shows higher sensitivity to capture carbon patterns than 132 

other frequency bands and vegetation indices.  133 

The main goal of this study is to assess and compare the sensitivity of VOD (at L-, C- and X-134 

bands) to above-ground carbon density (ACD), as well as to compare it with EVI. The study is 135 

conducted with a principal focus on tropical forests in Peru, southern Colombia and Panama, and is 136 

structured in two parts. Firstly, the relationship between satellite VOD and ACD derived from 137 

airborne LiDAR surveys is established and analysed. This shows the effect of vegetation density on 138 

the L-band VOD signal and compares it to the different microwave frequencies. A relationship 139 

between the VOD-ACD regression residuals and different geographical features in the region is also 140 

presented. Secondly, the relative contribution of ACD and forest cover (FC) fraction to the VOD signal 141 

is studied. This allows understanding to what extent the VOD could depend on the changing forest 142 

cover within a region rather than on the carbon density variability per se. In this second part, the EVI 143 

is included to complement the study. Its dependence on ACD and FC is also presented and compared 144 

to VOD. The analyses are specifically reproduced for the Andes Mountains and for the flooded 145 

forests found in the study area, which exhibit distinct VOD-ACD relationships and vegetation 146 

patterns. 147 

 148 

 149 

2. Materials and methods 150 

2.1. Study area 151 

The limits of the study area (Figure 1) are based on the availability of ACD maps. It encompasses 152 

Peru (~1.3 million km2), Panama (~75,000 km2) and part of the Colombian Amazon (~165,000 km2). 153 
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Peru and southern Colombia contain the Amazon basin, crossed by the Amazon River and its 154 

tributaries. In western Peru, the Andes Mountains reach altitudes above 6,500 m.  155 

 The evergreen tropical rainforests in the region are the main target of this study. Near some 156 

rivers edges, and particularly in north-central Peru, these forests are flooded forests (Figure 1a). The 157 

Amazonian forests constitute one of the main land carbon reservoirs on Earth. Other land covers are 158 

found in the Andes, where a transition from dense forests to shrublands, grasslands, and bare soils 159 

is found successively with increasing altitudes. Also, croplands, shrublands and grasslands are 160 

present in the north of the studied area of Colombia and in western Panama (Figure 1a). 161 

 162 

2.2. Datasets 163 

2.2.1. Above-ground Carbon Density (ACD) 164 

The Above-ground Carbon Density (ACD) maps produced by the Carnegie Airborne Observatory 165 

(CAO; Asner et al., 2012, 2013 and 2014) are used as a benchmark to assess the sensitivity of remote 166 

sensing datasets to the variability of carbon stocks. The ACD dataset is based on intensive airborne 167 

LiDAR sampling carried out between years 2011 and 2012. LiDAR measurements are converted to 168 

top-of-canopy height (TCH) information which, in turn, is transformed to ACD data (100 m resolution) 169 

using calibration against field plots and information on topography, vegetation and precipitation. 170 

ACD ranges between 0 and 140 TC/ha in the study area. The degree of uncertainty at the original 171 

ACD resolution reaches up to 28.3% in Colombia and 23% in Panama. This is computed in terms of 172 

error relative to the mean. In the case of Peru, the uncertainty in the vast majority of the tropical 173 

forest area is below 10%. It may increase in flooded forests and river areas ranging from <5% to 50% 174 

in most of these regions. Errors around 80% are found in the Andes, but this is largely due to the fact 175 

that the mean ACD values per pixel are close to zero in this area, causing large relative uncertainties 176 
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with low ACD absolute errors. More details on the ACD dataset are provided in Asner et al. 2012 177 

(Colombia), 2013 (Panama), and 2014 (Peru). In this work, the ACD dataset is aggregated to 25 km 178 

scale to match the spatial scale of other data layers, and is shown in Figure 1b.  179 

 180 

2.2.2. Vegetation Optical Depth 181 

 The L-band (1.4 GHz) VOD is derived from the NASA’s Soil Moisture Active-Passive (SMAP) 182 

satellite, which has a revisit time of 3 days and a native resolution of approximately 36 km. The SMAP 183 

single-look incidence angle configuration limits the capability to extract VOD information with just 184 

one acquisition (Konings et al., 2015 and 2016). Therefore, the Multi-Temporal Dual-Channel 185 

Algorithm (MT-DCA) is proposed to estimate soil moisture and VOD from single look-angle 186 

observations using two consecutive overpasses and no ancillary information on vegetation (Konings 187 

et al., 2016). SMAP VOD datasets retrieved using MT-DCA have shown good agreement with 188 

vegetation and land cover patterns at global scale (Konings, Piles, et al.,  2017). Here, the first year 189 

of SMAP VOD data (April 2015 - March 2016) is used. This dataset is retrieved from SMAP Backus-190 

Gilbert enhanced brightness temperatures using the MT-DCA and is provided in the 9 km EASE 2.0 191 

grid (NSIDC, 2017). It has been aggregated to 25 km (obtained using bilinear interpolation; Figure 192 

1c) for comparison with the higher frequency VOD bands at their available grid scale (see below), 193 

and with EVI. 194 
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 195 

Figure 1. The study area includes Panama, southern Colombia, and Peru. a) Land Cover mode 196 

for the year 2015 (ESA-CCI, 2017); b) Above-ground Carbon Density (TC/ha); c) Mean L-band 197 

VOD (1.4 GHz; SMAP); d) Mean C1-band VOD (6.9 GHz; AMSR2); e) Mean C2-band VOD (7.3 GHz; 198 

AMSR2); f) Mean X-band VOD (10.7 GHz; AMSR2). VOD is dimensionless and time-averaged for 199 

period April 2015-March 2016. Areas with insufficient VOD and/or ACD data (e.g. rivers edges 200 

and coastlines) are not plotted. Spatial scale: 25 km. 201 
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 The VOD at C-bands (6.9 and 7.3 GHz, hereafter named C1 and C2, respectively) and X-202 

band (10.7 GHz) are derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2), on 203 

board the Japan Aerospace Exploration Agency’s (JAXA) Global Change Observation Mission-1st 204 

Water (GCOM-W1) satellite. The ground resolutions of these bands are 35 x 62 km (C-band) and 205 

24 x 42 km (X-band). VOD is retrieved with the Land Parameter Retrieval Model (LPRM; Owe et 206 

al., 2008), which uses an analytical relationship to predict VOD based on the Microwave 207 

Polarization Difference Index (MPDI; Meesters et al., 2005), emissivity and vegetation scattering 208 

albedo. The dataset is provided on a 25 km grid (Vrije Universiteit Amsterdam and NASA GSFC, 209 

2014), and is adapted to the EASE 2.0 grid at the same scale using bilinear interpolation. The 210 

yearly averages are computed for each frequency band and are shown in Figures 1d, e and f. 211 

 212 

2.2.3. Enhanced Vegetation Index (EVI) 213 

The Enhanced Vegetation Index (EVI) is a VIS/NIR index used as a proxy of vegetation condition, 214 

photosynthetic activity, and biomass (Huete et al., 2002). Here it is used to provide comparison 215 

with the microwave datasets when their sensitivity to ACD and FC is studied. The EVI dataset is 216 

derived from MODIS. Original EVI data is the 16-day MODIS/Terra MOD13C1 v.6 product, on a 217 

0.05° latitude/longitude global grid. EVI is converted to the EASE 2.0 grid at 25 km scale using 218 

bilinear interpolation. 219 

 220 

2.2.4. Forest cover maps  221 

The European Space Agency – Climate Change Initiative (ESA-CCI) 2015 Land Cover map (ESA-222 

CCI, 2017; 300 m resolution) is used in this work to produce a binary forest mask and to obtain 223 

maps of forest cover percentages and flooded forest proportion. The land cover categories 224 

considered as forests in this research are tree covers as well as vegetation mosaics with (tree + 225 
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shrub) or (tree + shrub + herbaceous) covers occupying >50% of surface. Pixels at the study scales 226 

are classified as forests when this grouped category is dominant (modal class). Also, the forest 227 

cover (FC) variable is computed as the percentage of forests in the pixel and its contribution to 228 

the VOD is studied. Likewise, the proportion of flooded forests is also computed. 229 

 230 

2.2.5. Digital Elevation Model (DEM) 231 

 To take into account the impact of increasing altitudes on ACD and VOD (mainly in the 232 

Andes) the ETOPO1 Global Relief Model (Amante and Eakins, 2009) is used. The ETOPO 1 233 

provides global land elevation and ocean bathymetry at 1 arc-minute resolution. It is supplied by 234 

the National Oceanic and Atmospheric Administration (NOAA; NOAA, 2017). This dataset is 235 

aggregated at the studied spatial scale (25 km). 236 

 237 

2.2.6. Data screening 238 

Only pixels containing >95% of ACD high resolution information are considered, in order 239 

to guarantee a highly representative sample of the carbon dataset. Regions without VOD data 240 

are also excluded. The overall studied area is of ~1.3 million km2, containing ~900,000 km2 of 241 

forests. More specific details are reported in Table S1. 242 

 243 

 244 

2.3. Statistical methods 245 

2.3.1. Analysis of the VOD-ACD relationship 246 

VOD and ACD datasets are compared and their relationship is analysed for the entire study area. 247 

The spatial cross-correlation between VOD at each band and ACD is calculated and compared 248 
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using the Lee’s Index, which is a bivariate spatial association method (Lee, 2001). This index is 249 

computed using the function ‘lee’ of the ‘spdep’ R package (Bivand et al., 2013; Bivand and Piras, 250 

2015) at 25 km scale and for increasing distances from 25 km to 1,250 km. This computation 251 

allows capturing spatial association among observations in terms of their point-to-point 252 

relationships across the spatial patterns (Lee, 2001), and serves in this study to quantify and 253 

compare the sensitivity of each VOD band to spatial patterns of carbon density. Also, regressions 254 

of each VOD product as functions of ACD are estimated using Generalized Additive Models 255 

(GAM; Hastie and Tibshirani, 1990). GAMs have been previously used to explore the 256 

relationships between remote sensing data and biomass (Baccini et al., 2004) and forest 257 

structural attributes (Frescino et al., 2001).  The ‘gam’ R package (Hastie, 2018) is used to 258 

compute these regressions using cubic spline smoothing classes.  259 

 The main focus of this work is on forests, which represent approximately 70% of the 260 

study region. Linear regressions of VOD as a function of ACD are computed for the entire forested 261 

area as: 262 

𝑉𝑂𝐷 = 𝑎 + 𝑏 · 𝐴𝐶𝐷          (1) 

where VOD and ACD stand for vegetation optical depth at each band and above-ground carbon 263 

density, respectively, and a and b are constant terms. Linear functions have been chosen upon 264 

exploratory analyses of VOD-ACD scatter plots (see Section 3.1), and after discarding exponential 265 

and quadratic functions which did not improve the fitting (results not shown). In addition, Eq. 266 

(1) is specifically applied in the densest forests, where the penetration capacity of microwaves 267 

through vegetation could be reduced. Two categories of dense forests are studied: ≥80 TC/ha 268 

and ≥100 TC/ha. 269 

 Residuals for the L-band VOD – ACD regression in Eq. (1), computed as predicted minus 270 

observed VOD, are mapped to assess the impact of different geographical features on the VOD-271 

ACD relationship in forests. The map of residuals is compared to maps of flooded forest 272 
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proportion and altitude. Also, the VOD-ACD residuals and the VOD values are plotted against 273 

altitude, flooded forest proportion, and ACD data.  274 

Distinct VOD-ACD relationships are found at different altitudes, as well as in flooded 275 

forests, according to the analysis of residuals (see Section 3.1). For this reason, the analysis 276 

described in Eq. (1) is reproduced specifically for three different altitude groups (1,000 to 2,000 277 

m; 2,000 to 3,000 m; and >3,000 m) and for two groups of flooded forest proportion (5 to 50%; 278 

and 50 to 100%). These categories are chosen due to their geographical location (mountain or 279 

flooded forest regions), their positive or negative residuals with respect to the VOD-ACD 280 

regression model in Eq. (1), and their differences in terms of carbon density. T-tests are used to 281 

check that these criteria are accomplished for the different groups. In particular, T-tests are 282 

applied to study whether the proposed categories presented residuals significantly different 283 

from 0, and to compare the proposed categories with the remaining regions (i.e., altitude <1,000 284 

m and flooded forest <5%) in terms of ACD. These regions contained the vast majority of pixels 285 

and are considered as reference groups. Significance for t-tests is established at p<0.05. 286 

 287 

2.3.2. Relative contribution of carbon density and forest cover to VOD and EVI 288 

The spatial variability of VOD may be affected not only by ACD but also by spatial variations in 289 

forest cover (FC). Furthermore, both of these variables can change markedly through different 290 

altitudes, as altitude strongly conditions vegetation characteristics. In this case, the relationships 291 

are studied for VOD and for EVI (plotting both variables against ACD, FC and altitude), in order 292 

to compare the information provided by microwave and optical-infrared data. 293 

To understand to what extent the VOD and EVI variability could depend on forest cover 294 

changes rather than on the inherent carbon density of forests, VOD and EVI datasets are studied 295 

as a function of ACD and FC using multiple regression: 296 
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         𝑉𝑂𝐷 𝑜𝑟 𝐸𝑉𝐼 =  𝑎 + 𝑏 · 𝐴𝐶𝐷 + 𝑐 · 𝐹𝐶 (2) 

where the response variables are 𝑉𝑂𝐷 (i.e., the VOD at each band) or 𝐸𝑉𝐼 (i.e., the Enhanced 297 

Vegetation Index), the explanatory variables are 𝐴𝐶𝐷 and 𝐹𝐶, which stand for above-ground 298 

carbon density and forest cover, respectively, and 𝑎, 𝑏 and 𝑐 are constant terms. Note that the 299 

equation terms will change for each band. This analysis is carried out in order to obtain the 300 

relative importance of ACD and FC on the VOD and EVI signals. The ‘lmg’ function of the 301 

‘relaimpo’ R package (Grömping, 2006) has been used to this objective. This function provides 302 

the relative contribution of each variable in a linear regression (independently of correlations 303 

among the regressors) and is based on the averaging sequential sums of squares over all 304 

orderings of regressors (Lindeman et al., 1980, p. 119). This procedure is replicated for the 305 

altitude and flooded forest groups detailed in Section 2.3.1, in order to provide specific analysis 306 

in the Andes and in flooded regions, which have shown different patterns for the VOD-ACD 307 

relationship. Additionally, Eq. (2) is applied separately for different areas, providing a 308 

geographical division in six regions including Panama (A), Colombia and northern Peru (B), and 309 

four latitudinal strips in Peru: north-central Peru (C), central Peru (D), south-central Peru (E) and 310 

southern Peru (F). A map with this division is shown in Figure S1.  311 

 312 

 313 

3. Results 314 

3.1. VOD-ACD relationship 315 

VOD and ACD maps are shown in Figure 1. The highest VOD and ACD values are found in the 316 

evergreen forests of Peru and Colombia, while both variables decrease in non-forested areas 317 

(especially in the Andes). At L-band, VOD is lower in the river edges and in flooded regions, 318 

partially reproducing reduced ACD in these areas. This qualitative pattern is less clear at C- and 319 

X-bands (Figure 1). L-band shows the highest spatial cross-correlation (Lee’s index) with ACD for 320 



16 
 

approximately 0 to 300 km distance. Both L- and C-bands show better spatial cross-correlation 321 

with ACD than X-band, independently of the distance analysed (Figure 2). Note that the decrease 322 

on the Lee’s index with distance (Figure 2) might be also due to the uncertainty of ACD estimates, 323 

which is not accounted for here. This is further discussed in Section 4.1. 324 

 325 

Figure 2. Spatial cross-correlation (Lee’s Index) between ACD and each of the mean VOD 326 

datasets studied: L-band (green), C1-band (black), C2-band (red) and X-band (blue). Note that 327 

C1- and C2-bands are overlapped. Lee’s Index is computed for each 25 km step to a maximum 328 

distance of 1,250 km. 329 

 330 

 Scatterplots in Figure 3 show the VOD-ACD relationships for the studied bands in the 331 

entire region. The sensitivity of VOD to ACD decreases according to the increasing frequencies 332 

studied (i.e., L-, C-, and X-band, respectively). In particular, results for GAM functions (Figure 3) 333 

show that the coefficients of determination (R2) are 0.83 for L-band, between 0.71 and 0.72 for 334 

C-bands, and 0.64 for X-band. Note that the term R2 must not be interpreted in this case as the 335 

VOD explained variance in the context of a linear regression. GAM curves change from a portion 336 

with very steep slopes (for ACD<10 TC/ha and VOD<0.5, which correspond to non-forested 337 

regions) to gradually smoother slopes (for VOD>0.5 approximately, in forest areas). This change 338 

is continuous at L-band, but irregular at the other studied frequencies (Figure 3).  339 
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 340 

Figure 3. Regressions of VOD as a function of ACD using Generalized Additive Models (GAM). (a) 341 

L-band (1.4 GHz; SMAP); (b) C1-band (6.9 GHz; AMSR2); (c) C2-band (7.3 GHz; AMSR2); and (d) 342 

X-band (10.7 GHz; AMSR2). Models are fitted on the basis of a cubic spline function. Note that 343 

dark areas in the figure are due to a high density of points, while light grey represents isolated 344 

pixels in the regression. All regressions are significant (p<0.0001). 345 

 346 

Linear regressions (Eq. 1) in forest areas are shown in Figure 4. The percentages of VOD 347 

variance explained by ACD are 57% (L-band), 30 to 32% (C-band), and 1% (X-band). Importantly, 348 

note that the shape of the VOD-ACD scatterplots suggests that the relationship between both 349 

variables in forests is not exactly linear (Figure 4). In that sense, it must be taken into account 350 
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that VOD shows decreased sensitivity to ACD changes in the densest forests (Table S2). Still, 351 

linear regression has shown similar or improved fitting in comparison to exponential and 352 

quadratic functions (see Section 2.3.1). 353 

 354 

 355 

 356 

Figure 4. Linear regressions of VOD as a function of ACD (Eq. (1)) in forest areas. (a) L-band (1.4 357 

GHz; SMAP); (b) C1-band (6.9 GHz; AMSR2); (c) C2-band (7.3 GHz; AMSR2); and (d) X-band (10.7 358 

GHz; AMSR2). All regressions are significant (p<0.001). Grey dots show pixels without forest 359 

dominant cover and are excluded from the regressions. 360 

 361 

The analysis of residuals for the linear VOD-ACD relationship (Eq. 1) at L-band shows 362 

how positive residuals are associated with decreasing ACD and increasing altitudes in the Andes 363 

Mountains (Figures 5, S2a and S3). The sign of residuals changes above 3,000 m matching a 364 
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decrease on VOD values (Figures 5, S2a and b, and S3). Negative residuals of VOD at L-band are 365 

found in river edges and in flooded forest regions, where ACD and VOD are low for pixels with 366 

dominant flooded forest cover (Figures 5, S2c and d, and S3). Importantly, the relationship 367 

between the residuals and the fitted VOD values is shown in Figure S4. The observed patterns 368 

confirm that the VOD-ACD relationship is not completely linear. The geographical patterns for 369 

VOD residuals shown in Figure 6a might be also influenced by this fact. 370 

 371 

 372 

Figure 5. (a) Residuals for the L-band VOD-ACD regression (Eq. (1); note that residuals equal to 373 

0 are plotted in grey color); (b) Percentage of flooded forest (grey=0%); (c) Altitude (m). Areas 374 

without dominant forest cover and areas with insufficient VOD and/or ACD data are not plotted.  375 

 376 

Following the patterns described, T-tests for the different categories of altitude and 377 

flooded forest proportion (see Section 2.3.1) report that VOD residuals are significantly different 378 

from 0, and/or that ACD shows significant differences with reference groups, for all the studied 379 
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categories (Figure S3). This confirms that providing particular analyses for the proposed 380 

categories permits to study the VOD-ACD relationship in forests of different biomass, and in 381 

regions where the VOD, as a function of ACD, is overestimated or underestimated. 382 

Figure 6 (a, b and c) shows regressions of L-band VOD as a function of ACD (Eq. (1)) at 383 

the three studied altitude ranges. It can be seen that the regression slopes increase with altitude, 384 

with R2 ranging from 0.51 to 0.61. Figure 6 (d and e) shows regressions (Eq. (1)) for flooded forest 385 

categories (5-50% cover: R2 = 0.65; 50-100% cover: R2 = 0.72).  386 

 387 

 388 

 389 

Figure 6. Regression of VOD as a function of ACD (Eq. (1); blue line) for different categories (red 390 

dots): (a) altitude (1,000 to 2,000 m); (b) altitude (2,000 to 3,000 m); (c) altitude (>3,000 m); (d) 391 

proportion of flooded forest (5 to 50%); (e) proportion of flooded forest (>50%). Grey dots 392 

represent the VOD-ACD data for all the forest pixels in the region. 393 

 394 

 395 
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3.2. Contribution of carbon density and forest cover to VOD and EVI 396 

Figure 7 shows the relationship of L-band VOD and EVI with ACD and FC, as well as the 397 

VOD-EVI and ACD-FC scatterplots. Note that the EVI is included here to provide comparison 398 

between microwave and visible-infrared datasets in forested areas. Altitude is shown as a third 399 

variable in each subplot. In Figures 7a and b it is reported that L-band VOD is more sensitive to 400 

ACD (R2 = 0.57) than EVI (R2 = 0.48). In turn, EVI is more sensitive to ACD than VOD at C- and X-401 

bands (see Figure 7b, and compare it to Figure 4). Also, it is shown that VOD, EVI and ACD 402 

decrease for increasing altitudes. This effect is more evident for EVI than for VOD. Figure 7c 403 

shows VOD ranging from 0.5 to 1.25 in completely forested pixels, while its maximum decreases 404 

to 0.8 in pixels with less than 50% of forests. In the case of EVI, it is higher at low altitudes 405 

(especially <1,000 m), and its maximum also diminishes at low forest proportions. The latter 406 

pattern is clearer for higher altitudes, where EVI can drop below 0.2 (Figure 7d). Figure 7e shows 407 

a positive association between VOD and EVI in forests above 1,000 m. Note that ACD decreases 408 

with increasing altitude and decreasing forest cover proportion (Figure 7f).  409 

 The relative contribution of ACD and FC to the VOD and the EVI variances is provided in 410 

Figure 8. ACD explains 34.2% of L-band VOD variability, while this percentage decreases for EVI 411 

(26.9%), C-band (18% and 19.4% for C1 and C2, respectively), and X-band (negative coefficient). 412 

FC explains similar proportions of EVI (32.5%) and L-band VOD (30%). This proportion is lower at 413 

C- and X-bands (17.3% for C1, 15.9% for C2, and 9.1% for X-band). Overall, the relative 414 

contributions of ACD and FC are consistent for most of the studied regions, although the absolute 415 

percentages change (Figure S1). Additionally, in the southernmost region of Peru, EVI shows 416 

higher sensitivity to ACD and FC than any VOD band (Figure S1).  417 

 Figures 9a, b and c show how the ACD relative importance for L-band is higher than the 418 

ACD contribution to C- and X-bands and EVI in all cases. For L-band VOD, the ACD relative 419 

importance is similar regardless of the altitude group (30.6% to 34.4%). For VOD at C1- and X- 420 



22 
 

bands, the relative importance of ACD is higher above 2,000 m than at lower altitudes. In C2-421 

band and EVI the ACD contribution is higher for the 2,000 – 3,000 m category. In Figures 9d and 422 

e the sensitivity of VOD to ACD in flooded regions is higher than the sensitivity found in the 423 

overall models shown in Figure 8, regardless of the frequency band. The relative contribution of 424 

ACD is higher than the relative contribution of FC in these regions. L-band VOD shows the highest 425 

sensitivity to ACD (relative importance from 51% to 62.8%), followed by C-bands (39.7% to 426 

42.9%), and by X-band (29.3% to 32.6%), in this order. In contrast, ACD and FC show low and not 427 

significant contribution to EVI in flooded forests. EVI has a very low variability in these areas 428 

(from 0.45 to 0.49). This illustrates the added value of using microwave over optical remote 429 

sensing in flooded forests.  430 
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 431 

Figure 7. Relationships between: (a) ACD and L-band VOD (Eq. (1)), (b) ACD and EVI, (c) forest 432 

cover and L-band VOD, (d) forest cover and EVI, (e) EVI and L-band VOD, and (f) forest cover and 433 

ACD. In (a) and (b), linear regressions are significant (p<0.0001). Only forest pixels are plotted. 434 

Colour shows the altitude. 435 
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 436 

 437 

 438 

 439 

 440 

 441 

Figure 8. Relative importance of ACD and FC as predictors of VOD and EVI in Eq. (2). All effects 442 

are significant (p<0.0001). All effects are positive, except for the effect of ACD on X-band VOD 443 

which is negative (-).  Numbers represent relative importance (%) of each variable. All results are 444 

significant (p<0.0001). 445 

 446 

 447 

 448 

 449 

 450 
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 451 

 452 

Figure 9. Relative importance of ACD and FC as predictors of VOD and EVI (Eq. (2)). Sign and 453 

significance for each variable are plotted if at least p<0.05. If no sign is plotted, this means not 454 

significance at 95% confidence level (i.e., p≥0.05). Results in top row show altitudinal ranges: (a) 455 

1000 to 2000 m; (b) 2000 to 3000 m;  (c) >3000 m. Results in the bottom row show flooded 456 

forest categories: (d) 5 to 50%; (e) 50 to 100%. Letter n refers to the sample. 457 

 458 

 459 



26 
 

4. Discussion 460 

4.1. L-band VOD shows enhanced sensitivity to carbon stocks 461 

The ability of remote sensing techniques to capture vegetation carbon density largely depends 462 

on the sensitivity of the studied signal to biomass. The VOD-ACD relationship shows the existing 463 

link between wet, green and woody biomass in nature, as the ability of VOD to capture ACD 464 

depends on its sensitivity to the VWC and on its capacity of penetration through the canopy. 465 

Both characteristics should be a function of the microwave frequency used for the VOD retrieval. 466 

The results presented in this work confirm this fact, as VOD shows a greater sensitivity to ACD 467 

up to higher canopy densities with decreasing frequencies. Results are also consistent with the 468 

no saturation of L-band VOD at the highest carbon densities (as reported also in Brandt et al., 469 

2018) in contrast to VOD from higher frequencies (Figures 3 and 4). According to theory, X-band 470 

VOD is only sensitive to the top of the canopy and displays the lowest values (see Figures 3 and 471 

4). The greatest sensitivity of L-band in dense vegetation conditions stresses the advantage of 472 

using L-band VOD for mapping carbon stocks at local and regional scales (up to ~300 km; Figure 473 

2). Additionally, note that the coarser ground resolution of the C-band channel might 474 

overestimate its spatial cross-correlation (comparatively to the other bands), suggesting that (i) 475 

L-band VOD applicability even at scales beyond 300 km could be advisable, and (ii) differences 476 

in Lee’s index between C- and X-bands could be lower than those reported (in case that both 477 

products had similar ground resolutions).  478 

 GAM functions have captured the VOD-ACD patterns for both forest and non-forest 479 

regions, and the continuity on the L-band GAM curve in the transition zone suggests that this 480 

microwave frequency could be the most appropriate to capture biomass on vegetation 481 

transitions to forests (see Section 3.1 and Figure 3). The GAM functions fits (i) confirm the 482 

enhanced sensitivity of L-band VOD to ACD, (ii) show that the scarce frequency difference 483 

between C1 and C2 bands is not relevant to detect ACD changes, and (iii) confirm the lower 484 
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sensitivity of the X-band to carbon variability. Nevertheless, it should be noted that GAM 485 

functions are a statistical method more appropriate for exploratory analysis than for predictive 486 

purposes (Hastie and Tibshirani, 1990; Frescino et al., 2001; Baccini et al., 2004) and therefore 487 

other statistical tools would be preferable for predicting carbon stocks from satellite data. 488 

 In forest areas, results are also in agreement with the fact that the sensitivity of VOD to 489 

carbon density increases with decreasing microwave frequencies. Still, further work is needed 490 

to establish a more accurate VOD-ACD relationship in very dense forests. In that sense, (i) 491 

applying a mutual information analysis (Konings et al., 2015) would disentangle the VOD and 492 

ACD contributions and would provide a more robust estimate of their relationship; and (ii) 493 

complementarity among VOD bands, as well as among different datasets (e.g., EVI, LiDAR, or 494 

radar data) would increase the capacity to establish an accurate relationship (see Section 4.3). 495 

In addition, ACD estimates from VOD data would benefit from multi-year observations. In other 496 

studies this has allowed to provide estimates of carbon trends using VOD either at L-band (Brandt 497 

et al., 2018) or at C- and X-bands (Liu et al, 2015). 498 

In the Andes Mountains, decreasing carbon density should be related to vegetation 499 

transitions through altitude. Positive residuals in this area (up to 3,000 m) can be explained by a 500 

different response to other vegetation types in the mountains and by uncertainties in the carbon 501 

density map (Asner et al., 2012). In contrast, negative residuals in regions above 3,000 m are 502 

consistent with low VOD values linked to complex topography (Konings, Piles, et al., 2017) and 503 

to low carbon density. Modelling carbon stocks in the Andean forests would need calibration 504 

considering different elevation (or different vegetation types linked to elevation), as slopes for 505 

the VOD-ACD regression increase with decreasing ACD at different heights (Figures 6a, b and c).  506 

Concerning flooded forests and river edges, these regions can be flooded up to ten 507 

months a year (WWF, 2018). The presence of standing water in vegetation drastically reduces 508 

VOD and thus could explain the negative residuals observed in the VOD-ACD relationship in these 509 
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regions. This effect has been previously observed in C-band VOD over flood plains of large rivers 510 

(e.g., the Zambezi, the Mekong or the Ganges; Jones et al., 2011) and in L-band VOD over rice 511 

fields in Thailand (Piles et al., 2017). In these cases, VOD decreased while vegetation grew in 512 

inundated regions. It is suggested that VOD dampens under flood conditions because (i) a higher 513 

dielectric constant of standing water leads to lower emissivity on horizontal polarization (eh), (ii) 514 

vegetation such as grasses or reeds (i.e., vertically oriented), which may emerge in flooded areas, 515 

might maintain the emissivity in vertical polarization (ev; which would be expected to decrease 516 

in flooded conditions), and (iii) the fact that water masks the soil emissions (Jones et al., 2011; 517 

Piles et al., 2017). Finally, note that the slope for the VOD-ACD regression in flooded regions is 518 

similar for the two categories of flooded forest proportion (Figures 6d and e), suggesting that a 519 

single relationship can be derived in this forest type.  520 

Additionally, it should be stressed that vegetation mosaics (southern Panama and 521 

northern of the Colombian study region) show negative residuals because the VOD-ACD 522 

regression is dominated by evergreen forests. These present larger ACD and VOD values if 523 

compared to those from vegetation mosaics. Further work is needed to provide specific analyses 524 

in these regions. 525 

Finally, note that the VOD residuals may respond partially to other factors which should 526 

also be mentioned. Firstly, the distribution of the residuals values shows that the VOD-ACD 527 

relationship is not completely linear (Figure S4). This may lead to overestimations and 528 

underestimations of VOD. Nevertheless, other fitting functions studied did not report different 529 

results (see Section 2.3.1; results not shown). Secondly, note that the sources of VOD data 530 

contain inherent variability which depends on the sensors (i.e. SMAP/AMRS2), on the algorithm 531 

used (i.e. MT-DCA/LPRM) and on the version of these algorithms (e.g., different versions of the 532 

LPRM are available). This might also partially contribute to the variability on the VOD-ACD 533 

relationship. Thirdly, the uncertainty of ACD estimates may be a source of spatial variability 534 
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which must be considered to calibrate carbon stock models. The main sources of uncertainty are 535 

(i) the validity of the relationship between the LiDAR tree height measures and the ACD values, 536 

(ii) the extrapolation of LiDAR ACD estimates to regional scales (Asner et al., 2012), and (iii) the 537 

fact that ACD and VOD datasets have been acquired in different time periods. Concerning to the 538 

latter, recent research shows steady carbon trends in most of the region, or small changes (<10% 539 

of the total ACD values) in some specific regions of Peru and Colombia (see Figure 3 in Liu et al., 540 

2015). Hence, the effect of these differences is probably limited to an additional source of spatial 541 

variability with low impact in the VOD-ACD relationships in terms of comparison among the 542 

different frequencies. 543 

 544 

4.2. Carbon density and forest cover contributions to VOD and EVI  545 

VOD changes can be explained by a combined effect of carbon stocks and forest cover (the latter 546 

limits the variability of VOD and ACD; Figure 7). Interestingly, the VOD variance explained by ACD 547 

in Eq. (2) is also decreasing with increasing microwave frequencies (Figure 8). This is consistent 548 

with the discussion provided in Section 4.1. Furthermore, ACD and FC show similar contribution 549 

to the VOD variability at the studied bands (Figure 8), and the addition of the FC variable (see 550 

Eq. (2)) to the VOD-ACD regression shown in Eq. (1) does not result in an important increase of 551 

the explained VOD variance (only between 3% and 8% depending on the VOD frequency). 552 

Consequently, approximately half of the VOD variance initially explained by ACD (see Section 3.1) 553 

is due to the spatial variability in forest cover. Nevertheless, the relative importance of the ACD 554 

and FC variables changes among regions (Section 3.2), possibly due to different variability of ACD 555 

or to different vegetation patterns (e.g., evergreen forest in Peru contrasts with vegetation 556 

mosaics in Panama; Figure 1a).  557 

 To explore the complementarity and differences between VOD and VIS/NIR indices, 558 

MODIS-derived EVI has been included in the study. L-band is the only VOD dataset showing 559 
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greater sensitivity to ACD than EVI. Nevertheless, forest cover has greater relative importance 560 

than ACD on the EVI signal, which is coherent to the low canopy penetration of VIS/NIR indices. 561 

In addition, it should be noted that (i) EVI shows no association with L-band VOD in forests below 562 

1,000 m, and (ii) EVI equals or enhances the sensitivity to ACD in regions D and F with respect to 563 

L-band VOD (see Section 3.2). In general, the results presented are in agreement with other 564 

studies reporting that -at the global scale- L-band VOD shows lower correlation with VIS/NIR 565 

indices than VOD at higher frequencies. This is consistent with the deeper penetration capacity 566 

of L-band microwaves, and suggests that L-band VOD and optical indices can complement each 567 

other because they provide information from different layers within the vegetation canopy 568 

(Jones et al., 2011; Grant et al., 2016). 569 

Results show that the higher sensitivity of L-band VOD to ACD is consistent and similar 570 

across different altitude classes (i.e., among groups with different ACD; Figures 9 and S3). In the 571 

studied altitude groups, the joint ACD + FC contribution to the VOD at C- and X-bands and to the 572 

EVI signal is higher than the observed in the entire study area (Figure 9). This effect is not 573 

consistently increasing with altitude, nor significant in some cases, but in general it is consistent 574 

to the fact that higher VOD frequencies and EVI have a greater sensitivity to changes in canopy 575 

and biomass in less dense forests. Dividing altitude into three separate groups enables a more 576 

detailed analysis, but it also limits the ranges of the studied variables and thus reduces their 577 

resulting relative importance. This can explain why only the 2,000 – 3,000 m category reports a 578 

high weight of ACD on EVI (Figure 9b), when positive EVI-ACD and EVI-VOD trends are found 579 

above 1,000 m (Figures 7b and 7e). These trends are in agreement with the results in Todd et al. 580 

(1998), which show that NDVI can be considered an accurate proxy of biomass in areas of low 581 

vegetation density.  582 

 Consistently with previous results, in flooded forests the VOD at L-band shows higher 583 

sensitivity to ACD than the VOD at higher frequencies. Interestingly, ACD in flooded forests 584 
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explains an important proportion of VOD also at C- and X-bands (Figures 9d and e). Flooded 585 

forests are complex ecosystems which include several vegetation stages (grasses, shrubs, and 586 

early and late successional forests; Daly and Mitchell, 2000; WWF, 2018). This causes a complex 587 

structure in terms of vegetation distribution, height, and biomass, as well as lower ACD, which 588 

can explain the better response of VOD to carbon. In contrast, EVI has reached saturation and 589 

therefore shows very low variability in this area, and forest cover contribution  to the studied 590 

variables is marginal, as the forest proportion is high and homogenous (95% of flooded forest 591 

pixels present >90% of forest proportion). Hence, VOD could potentially contribute to the study 592 

of carbon balance in flooded forests, which remains poorly known and hard to investigate with 593 

classical spectral indexes (Davidson et al., 2012). This analysis should be extended to river edges 594 

of the Amazon and its tributaries, which are flooded seasonally (and present accordingly 595 

negative residuals). Nevertheless, it must be noted that the moderate uncertainty of the ACD 596 

dataset in these regions (see Section 2.2.1) would difficult the calibration of VOD-ACD models, 597 

thus diminishing the accuracy of carbon estimates from satellite sources in these areas. 598 

 599 

4.3. Synergy of L-band VOD with multiple remote sensing sources to enhance carbon estimates 600 

The SMAP-derived L-band VOD information is sensitive to carbon density through most of the 601 

study area, and could improve the capacity of EVI and VOD at higher frequencies to estimate 602 

carbon stocks. Nevertheless, the sensitivity of VOD is decreased at high vegetation densities (≥80 603 

TC/ha). This represents approximately 60% of forests in the studied region. In this regard, future 604 

missions operating at lower frequency bands and therefore with greater penetration capacity 605 

through vegetation would probably be beneficial complementing current VOD estimates. This is 606 

the case of the BIOMASS mission (expected in 2020), specifically designed to measure forests 607 

and their biomass with a P-band (435 MHz) synthetic aperture radar. The combined use of L- and 608 
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P-band sensors should provide improved assessments of carbon density in very dense 609 

vegetation. 610 

 Remote sensing sources can be blended for more accurate carbon estimates, as the 611 

synergy among different remote sensing techniques can overcome the limitations from each 612 

data source (Goetz et al., 2009). In this study, it has been shown how EVI information could 613 

complement L-band VOD, especially in southern Peru and in montane forests. The L-band VOD-614 

EVI joint application for mapping carbon stocks should be a matter of future work. The synergetic 615 

use of VOD at different frequencies (at least L-, C- and X-bands) and EVI would be particularly 616 

appropriate for biomass studies in vegetation transitions of the tropical montane forests. In the 617 

case of flooded forests, VOD data at different bands could have great potential for biomass 618 

estimation when used in a synergistic fashion. In this forest type, the combined application of 619 

VOD and LiDAR should also be investigated, as flooded forests are complex in terms of vegetation 620 

height variability, and LiDAR presents the unique capacity of capturing the vertical structure of 621 

vegetation. In that sense, the upcoming GEDI mission is expected to provide high resolution 622 

information of the forest canopy. Additionally, EVI has shown limited sensitivity to carbon 623 

changes in flooded forests, and SAR leads to biomass overestimation in flooded areas (Lucas et 624 

al., 2015). 625 

 It is worth saying that recent research has provided carbon trend estimates at 626 

continental and global scales using VOD data at L-band (Brandt et al., 2018) and at C- and X-627 

bands (Liu et al., 2015). Importantly, the application of C- and X-bands VOD, LiDAR, and VIS/NIR 628 

indices, has led to new global biomass datasets (Liu et al., 2011; Saatchi et al., 2011; Avitabile et 629 

al., 2016; Baccini et al., 2017). Hence, the synergy between L-band VOD and other remote 630 

sensing sources can contribute to enhance carbon mapping and reduce its uncertainties. 631 

 632 

 633 

 634 
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5. Conclusions 635 

This research provides a comparison of SMAP-derived L-band VOD with other VOD 636 

products from higher frequencies (from AMSR2 C- and X-bands) and with MODIS-EVI, in terms 637 

of their sensitivity to vegetation carbon stocks in Peru, Panama and southern Colombia. To this 638 

purpose, the remote sensing variables have been analysed as a function of Above-ground 639 

Carbon Density (ACD) data obtained by airborne LiDAR. L-band VOD has a higher sensitivity to 640 

carbon up to higher densities, and this sensitivity decreases in order with C- and X-bands, 641 

consistently with their increasing frequencies. Therefore, results confirm a fundamental physical 642 

phenomenon: lower frequency bands allow capturing the attenuation of soil emissivity due to 643 

vegetation as it passes through the whole vegetation canopy. A spatial cross-correlation analysis 644 

has shown that the capacity to reproduce carbon spatial patterns at local and regional scales 645 

decreases following increasing frequencies. Generalized Additive Models (GAM) and linear 646 

regressions of VOD as a function of ACD have confirmed the enhanced sensitivity of L-band VOD 647 

to carbon variability. The combined effect of the ACD and the forest cover proportion (FC) on 648 

the VOD and the EVI signals has been disentangled and quantified analysing the relative 649 

importance of each variable in bilinear regressions. At L-band, ACD and FC explain 34% and 30% 650 

of VOD variance in tropical forests of the region, respectively.  651 

The study has been stratified by altitude and regions, and a particular analysis has been 652 

conducted in flooded forests. Results confirm that L-band VOD presents the strongest 653 

relationship to ACD regardless of altitude, vegetation covers and carbon density. These results 654 

are also consistent through the studied regions, except in southern Peru, where EVI shows 655 

higher sensitivity to ACD than L-band VOD. Also, it has to be noted that (i) ACD and FC partially 656 

represent an important contribution to EVI and VOD at C- and X-bands when lower density 657 

forests are studied in the Andes, (ii) VOD at all bands shows significant, positive, and strong 658 

relationship with ACD and FC in flooded forests, and (iii) an important proportion of evergreen 659 

forests in the region (those with the highest carbon densities) should be further analysed to 660 
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establish a more accurate VOD-ACD relationship. Hence, it is suggested that the complementary 661 

use of L-band VOD with VOD at other frequencies and with different remote sensing sources 662 

would be needed. In particular, (i) the future BIOMASS mission, with a P-band SAR on board (Le 663 

Toan et al., 2011; ESA, 2018), would have higher penetration to canopy layers and therefore 664 

would improve or complement the present VOD estimates on dense evergreen forests; (ii) the 665 

combined application of L-band VOD and the future GEDI LiDAR measurements could provide 666 

accurate ACD estimates in flooded forests; and (iii) the synergetic application of VIS/NIR indices 667 

and L-band VOD could enhance biomass estimates in forests with lower carbon density, such as 668 

montane ones. This study presents evidence that L-band VOD is a promising ecological indicator 669 

that could help enhancing present global biomass estimates, thus providing a new step forward 670 

on understanding the Earth carbon budget.  671 
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SUPPLEMENTARY FIGURES 923 

 924 

 925 

Figure S1. Relative importance of ACD and FC as 

predictors of VOD and EVI (Eq. (2)). Sign and 

significance for each variable are plotted if at 

least p<0.05. Results are reported for regions (A) 

Panama, (B) Colombia and northern Peru, (C) 

north-central Peru, (D) central Peru, (E) south-

central Peru and (F) southern Peru. Letter n 

refers to the sample. 
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 926 

 927 

Figure S2. Left column: relationship between residuals for the L-band VOD – ACD regression in 928 

Eq. (1) and: (a) altitude and (c) percentage of flooded forest. Dashed red lines show residuals 929 

equal to 0. Right column: relationship between L-band VOD and: (b) altitude and (d) percentage 930 

of flooded forest.  931 
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 932 

Figure S3. Residuals for model in Eq. (1) (top row) and ACD (bottom row) for different categories 933 

of altitude (left) and flooded forest proportion (right). It is tested if residuals are different from 934 

zero (top row), and if ACD for each group is different from the reference group (REF). 935 

Significance: REF (reference; not evaluated), ns (p>0.05), * (p<0.05), ** (p<0.01), *** (p<0.001). 936 

Numbers above the graph show the sample for each group. 937 

 938 

 939 
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 940 

Figure S4. Fitted VOD values and residuals of VOD for the VOD-ACD linear regression.  941 

  942 
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SUPPLEMENTARY TABLES 943 

Table S1. Sample studied. 944 

 Peru Colombia Panama Total 

All 
dataset 

1,730 209 39 1,978 

Only 
forests 

1,152 198 36 1,386 

 945 

 946 

Table S2. Results (R2 and significance) for the VOD-ACD regression in Eq. (1), applied to dense 947 

forests. Significance is shown as follows: p<0.001 (***), p<0.01 (**), p<0.05 (*), p≥0.05 (n.s.). 948 

Band 
ACD category 

≥80 TC/ha ≥100 TC/ha 

L (1.4 GHz) 0.12 (***) 0.05 (***) 

C1 (6.9 GHz) 0.04 (***) n.s. 

C2 (7.3 GHz) 0.05 (***) n.s. 

X (10.7 GHz) n.s. n.s. 

 949 


