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ABSTRACT 10 

The use of high strength materials allows flexural members to resist the design loads or to cover 11 

long spans with a reduced depth. However, the strict cross section dimensions and reinforcement 12 

amount required in ULS are often insufficient to satisfy the serviceability limit states. Due to the 13 

complexity associated to a rigorous computation of deflections and cracks width in cracked RC 14 

members along their service life, an effective way to ensure the satisfaction of the SLS is to limit 15 

the slenderness ratio l/d of the element. In the present study, the slenderness limit concept, 16 

previously used for deflection control, is generalized to incorporate the crack width limitations in 17 

the framework of structural performance-based design. Equations for slenderness limits 18 

incorporating the main parameters influencing the service behaviour of RC members are derived. 19 

Cracking and long-term effects are accounted for through simplified coefficients derived from 20 

structural concrete mechanics and experimental observations. The proposed slenderness limits are 21 

compared with those derived from a numerical non-linear time-dependent analysis for two case 22 

studies, and also with those obtained using the EC2 procedure for deflection calculation in terms of 23 

constant applied load and constant reinforcement strain. Very good results have been obtained in 24 

terms of low errors and scatter, showing that the proposed slenderness limits are a useful tool for 25 

performance-based design of RC structures. 26 
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 29 

1. INTRODUCTION 30 

Excessive deformations may cause damage to non-structural elements, as well as problems related 31 

to aesthetics or functionality on Reinforced Concrete (RC) structures. The use of high strength 32 

materials may allow reductions in the depth of flexural elements or increments of their span length 33 

for strength requirements but, at the same time, may drive to a considerable increment of 34 

deflections and cracks width. 35 

To avoid excessive deflections that affect the serviceability performance of the structural members, 36 

their allowable design value is limited to a fraction of their span l. For instance, a limit of l/250 is 37 

indicated in the Eurocode 2 [1] or in the fib Model Code for Concrete Structures 2010 [2] for the 38 

deflection due to quasi-permanent loads. Likewise, a limit of l/500 is applicable for the increment 39 

of deflection after construction of partitions or other elements susceptible to damage. Other limits 40 

may also be considered, according to the nature and sensitivity of the elements to be supported.  41 

Actual deflections may considerably differ from computed values due to the complex phenomena 42 

affecting the service behaviour of RC structures, mainly cracking, creep and shrinkage of concrete, 43 

and to the uncertainty associated with some governing parameters such as the concrete tensile 44 

strength. Furthermore, long-term deflections may be significant with respect to the instantaneous 45 

ones and are influenced by environmental conditions, element dimensions, concrete properties, 46 

reinforcement ratios, construction sequence, value and duration of sustained loading and age at 47 

loading. 48 

Due to the complexity associated with a rigorous calculation of deflections, there has been a 49 

concern in providing practical methods aimed at considering, in a simplified way, the influence of 50 

cracking and the long-term effects, which have been included in several codes and 51 

recommendations (ACI 318 [3], CEB manual on cracking and deformations 1985 [4], Eurocode 2 52 

[1], MC2010 [2]). Even so, there is an extensive literature about discussion, improvement, or 53 
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further simplification of such simplified methods (Gilbert [5], Bischoff and Scalon [6], Mari et al. 54 

[7], Gribniak et al. [8]).  55 

Due to the uncertainties existing in the estimation of deflections, one of the most practical and 56 

effective ways to control excessive deflections is to provide the element with sufficient stiffness, 57 

which can be achieved by limiting the slenderness ratio, l/d, of the element. Furthermore, a proper 58 

selection of l/d may help in providing an adequate sizing of the cross section from the first steps of 59 

the design process thus contributing to its simplification. 60 

Different proposals and studies about limit slenderness ratios to avoid excessive deflections have 61 

been previously carried out. Among them, Rangan [9] developed, in 1982, allowable span-to-depth 62 

ratios for RC beams and one-way slabs based on Branson’s method for computation of deflections 63 

(ACI 318-77 [10]) in which the main parameters were explicitly introduced to obtain an expression 64 

of l/d dependent on the applied loads. This proposal was adapted by Gilbert [11] to RC slabs with 65 

different construction and support conditions by introducing a coefficient based on an extensive 66 

series of parametric computer experiments. A similar expression was developed by Scanlon and 67 

Choi [12] as an alternative to values in ACI 318-95 [13]. A comparative study was carried out to 68 

assess the limitations of tabulated values in the code and provide a more general and explicit 69 

approach. Some other comparative studies were performed by Lee and Scanlon [14], who analyzed 70 

proposals from different codes (ACI 318-08 [15], BS 8110-1:1997 [16], Eurocode 2 [1], and AS 71 

3600-2001 [17]) and a more refined equation was proposed by Scanlon and Lee [18]. Although the 72 

study was focused on the performance of slenderness limits in ACI 318, it evidenced that proposals 73 

from different recognized codes did not always provide the same results, due to the combined 74 

effect of the assumptions made in the equations and the simplifications introduced for a more 75 

practical use of the slenderness ratios.  76 

Bischoff and Scanlon [19] developed slenderness limits equations to satisfy deflection and strength 77 

requirements for RC one-way slabs and beams, presented as a function of the reinforcement ratio 78 

and the deflection-to-span limit. Deflections based on Bischoff’s approach [20] for equivalent 79 

moment of inertia and a long-term deflection multiplier from ACI318 were considered. The 80 

maximum flexural capacity of the member was taken into account. A study to assess the effects of 81 
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the main parameters, as well as a comparative analysis with values given in ACI318 was carried 82 

out. Results showed that members satisfying the ACI minimum thickness requirements did not 83 

necessarily comply with the deflection limits prescribed by ACI 318. 84 

Pérez Caldentey et al. [21] proposed a simplified formulation for slenderness limits based on EC2 85 

approach for deflection calculation to improve the lack of physical basis for the slenderness limits 86 

provided in the current version of EC2 [1]. The formulation was based on maximum flexural 87 

capacity of the member and included the effect of live load to total load ratio, the possibility of 88 

using different limits of maximum deflection and a generalization of a factor accounting for 89 

different support conditions.  90 

Gardner [22] performed a comparative study among proposals of slenderness limits from different 91 

codes and authors. The influence of different parameters was discussed, such as the level of load 92 

assumed. Differences among methods were attributed to the effect of the different assumptions and 93 

simplifications made.  94 

Control of cracking is another important aspect related to serviceability behavior of RC structures. 95 

Different parameters may influence crack width, but it is widely accepted that it is directly related 96 

to the tensile reinforcement strain (EC2 [1], MC2010 [2], Balázs and Borosnyoi [23], Pérez-97 

Caldentey et al [24], Gergely and Lutz [25], Frosch [26]). Strains (or stresses) in the tensile 98 

reinforcement can be calculated from the flexural moment distribution and sectional mechanical 99 

properties, and slenderness limits (as it is seen in the paper) related to a maximum stress in the 100 

reinforcement can be obtained. As a consequence, limitations of deflections may be related to the 101 

limitations of the cracks width required for aesthetic and durability reasons. From the above 102 

considerations it can be said that it may be possible to find a domain of solutions in terms of l/d, 103 

reinforcement ratio and reinforcement stress or strain, which allow the simultaneous fulfilment of 104 

the SLS and the ULS of flexure.  105 

Barris et al. [27] studied the application of EC2 [1] formulation on SLS to Fiber Reinforced 106 

Polymer (FRP) RC flexural members, obtaining a formulation to determine the slenderness limits 107 

that comply with the deflection limitation, maximum crack width and stresses in materials, 108 
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considering the principles of equilibrium and strain compatibility (plane sections remaining plane 109 

after bending) and linear elastic behavior of materials. 110 

From the analysis of the existing literature, it is seen that although many relevant works have been 111 

carried out on the subject of slenderness limits for deflection control, so far there is not a unique 112 

accepted model to estimate the l/d ratio. It has been observed that some models do not allow to 113 

follow easily the rational basis for their application, others do not incorporate explicitly creep and 114 

shrinkage strains for estimating long-term deflections (for instance those based on the simplified 115 

approach of ACI 318), and others are based on the maximum flexural capacity of the member, thus 116 

initially providing more strict values than those needed for the actual loads. Furthermore, the 117 

simultaneous fulfilment of a limit of stress intended for control of cracking is not taken into 118 

consideration. 119 

In this study, the slenderness limit concept for deflection control is generalized to incorporate the 120 

crack width limitations in the framework of structural performance-based design. Based on the 121 

deflection calculation methodology proposed in EC2 [1] (MC2010 [2]), equations for slenderness 122 

limits incorporating the main influencing parameters are derived. Cracking and long-term effects 123 

are accounted for through simplified coefficients derived from the mechanical principles and 124 

experimental observations of RC sections. Slenderness limits obtained with the proposed procedure 125 

are compared in case studies with results from a numerical non-linear time-dependent analysis, as 126 

well as with slenderness ratios obtained using the EC2 [1] procedure for deflection calculation in 127 

terms of constant applied load and constant reinforcement strain. 128 

 129 

2. SLENDERNESS RATIO ASSOCIATED TO DEFLECTION LIMITS 130 

2.1. General 131 

Consider a beam subjected to a dead load (g) and live load (q), uniformly distributed along the span 132 

length, so that the total load is p = g + q. Being 2 the factor for the quasi-permanent load 133 

combination, the ratio between the quasi-permanent load and the total load, kg, is defined as:  134 

2
g

g q
k

g q





                        (1) 135 
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The long-term deflection (including instantaneous and time-dependent deflections) produced by the 136 

quasi-permanent load combination must be limited to a fraction of the span length (aqp< l/C) [1]: 137 

4

g t

qp b

c eff

k pl k l
a k

E I C
                         (2) 138 

where p is the total characteristic load (g + q); kg·p is the quasi-permanent load; kt is a factor that 139 

relates the time-dependent to the instantaneous deflection due to quasi-permanent loads; kb is a 140 

factor to account for the support conditions (i.e. kb = 5/384 for simply supported members); l is the 141 

span length; C is a constant that indicates the fraction of the length for limitation of deflections 142 

(i.e., C = 250 for the long-term deflection under the quasi-permanent load combination); Ieff is the 143 

effective moment of inertia, which takes into account concrete cracking and tension stiffening; and 144 

Ec is the modulus of elasticity of concrete. 145 

In the next sections, each term of Eq. (2) will be derived and a simplified expression for the 146 

deflection slenderness limit will be obtained. 147 

 148 

2.2. Effective moment of inertia Ieff and cracking factor kr 149 

In the present study, it is considered that the members are cracked under the quasi-permanent load 150 

combination, assuming that they could have been subject to the characteristic load, i.e. the 151 

maximum possible service load, since otherwise the deflections would be much lower than those 152 

associated to the limit state of deflection. However, parts of the members may be not cracked (near 153 

the zero bending moment regions) and, in addition, the concrete surrounding the reinforcement, 154 

placed between cracks contributes to the stiffness of the cracked regions. Therefore, an effective 155 

moment of inertia of the cracked section, Ieff, should be used for deflection calculations accounting 156 

for cracking and tension stiffening. Such effective moment of inertia can be derived from the 157 

bilinear interpolation method for calculation of instantaneous deflections, as provided by the 158 

MC2010 [2]: 159 

   1
1

I II II
eff

III II

I

I I I
I

II I

I

   

 
 

 

       (3) 160 
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where II and III are, respectively, the moments of inertia of the uncracked and the fully cracked 161 

sections and  is an interpolation coefficient, which depends on the type of load and level of 162 

cracking, given by: 163 

2 2

1 1sr cr

s a

M

M


  



   
      

   
         (4) 164 

where  is a coefficient accounting for the type of loading ( = 0.5 for repeated or sustained loads); 165 

sr is the stress in the tension reinforcement calculated on the basis of a cracked section under the 166 

bending moment Mcr that cause first cracking and s is the maximum attained stress in the tension 167 

reinforcement calculated on the basis of a cracked section under the load considered which 168 

produces a bending moment Ma in the section studied.  169 

The uncracked and fully cracked moments of inertia for a rectangular section of width b, effective 170 

depth d and total depth h can be obtained, neglecting the contribution of the compression 171 

reinforcement, by using the following equations:  172 

3

12
I g

bh
I I             (5) 173 

3 1 1
3

II

x x
I bd n

d d

  

    
  

          (6) 174 

where: 
 
is the tensile reinforcement ratio; 

 
is the modular ratio between 175 

reinforcement and concrete; x is the neutral axis depth of the fully cracked section which can be 176 

estimated, neglecting the contribution of the compression reinforcement, as follows: 177 

 
1

3
2

1 1 0.75
x

n n
d n

 


 
     

 
         (7) 178 

By substituting Eqs. (5) and (6) into Eq. (3) the following non-dimensional expression for the non-179 

dimensional effective moment of inertia krs = Ieff/bd3  is obtained: 180 

 
33

1 1
3

12 1 1 1
3

eff

rs

x x
n

I d d
k

bd d x x
n

h d d



  

  
   

   
    

       
    

      (8) 181 

 sA bd  s cn E E
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It can be seen that the non-dimensional effective moment of inertia depends on the homogenized 182 

reinforcement ratio n, on the ratio between the effective and the total depth of the section d/h and 183 

on the ratio between the cracking moment and the maximum applied moment at the considered 184 

section, Mcr/Ma. The influence of the concrete mechanical properties is incorporated through the 185 

modular ratio n = Es/Ec and through the cracking moment Mcr = bh2·fct,m/6.  186 

In order to derive a simplified expression for the effective moment of inertia, a parametric study 187 

has been performed aimed to determine the influence of the above-mentioned parameters on krs. 188 

The following ranges of the above parameters have been covered: reinforcement ratios from  = 189 

0.005 until  = 0.02, concrete strengths from 25 N/mm2 to 50 N/mm2 and steel stresses from 200 190 

N/mm2 to 300 N/mm2, so that the value of Mcr/Ma ranges from 0.10 to 0.90. The result of such 191 

study for a total of 215 valid cases (Mcr < M), is shown graphically in Figure 1 where the value of 192 

krs is plotted as a function of n. 193 

 194 

Figure 1 195 

 196 

It can be observed that krs depends almost linearly on n. The mean value of the ratio between the 197 

linear approach of krs deduced from Figure 1 and the theoretical value is 1.01, and the coefficient of 198 

variation is 0.036. The maximum errors take place for very low reinforcement ratios, where the 199 

tension stiffening is relevant. Except for two cases with Mcr/M > 0.87, the maximum error found is 200 

12%. Such good precision and low scatter indicate that the influence on krs of h/d, fc and Mcr/M, is 201 

very small. Then, the following expression for krs and for the effective moment of inertia will be 202 

adopted in this work: 203 

 0.0125 1 36rsk n           (9) 204 

 3 30.0125 1 36eff rsI k bd n bd                   (10) 205 

The above effective moment of inertia is associated to a section, however, when computing 206 

deflections in a beam, a member effective moment of inertia must be evaluated, so the longitudinal 207 
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distribution of the reinforcement and the section geometry must be considered. For this reason, a 208 

mean member effective moment of inertia is adopted as follows: 209 

, , , ,
a b c

eff m eff a eff b eff c

l l l
I I I I

l l l
                   (11) 210 

where Ieff,a, Ieff,b, and Ieff,c are the effective moments of inertia at the two member ends A, B and at 211 

the center span C, respectively, while la, lb and lc are the respective lengths, as indicated by Figure 212 

2. 213 

 214 

Figure 2 215 

 216 

In the case of simply supported beams, the effective moment of inertia of the center span section 217 

provides a good approximation of the member stiffness while, in the case of cantilevers, the 218 

effective moment of inertia of the fixed end section can be adopted. In both cases, the member is 219 

subjected to single curvature, without inversion of the bending moment sign. In continuous beams, 220 

however, the effective moment of inertia of both ends and center span affect the deflections and, 221 

therefore, la, lb and lc, must be adequately estimated. In absence of more accurate data, the 222 

following conservative values can be adopted: for members supported at one end and fixed at the 223 

other, and for end spans of continuous beams, la/l = 0.20 and lb/l = 0.80; For members with both 224 

ends fixed, la/l = lb/l = 0.10, and lc/l = 0.80 and for interior spans of continuous beams la/l = lb/l = 225 

0.15, and lc/l = 0.70. 226 

In addition, in continuous members a change of sign of the bending moment takes place. Thus, in 227 

beams with non-symmetric cross section with respect to the principal axis of inertia, as T-sections, 228 

a different width of the uncracked zone must be considered at member ends A, B and at the center 229 

span, C. 230 

In order to obtain a slenderness ratio, an equivalent member factor kr should be derived. For this 231 

reason the effective moments of inertia Ieff,a, Ieff,b, and Ieff,c are expressed in accordance to Eq. (10) 232 

and substituted in Eq. (11), providing the following expression for the global factor member kr: 233 
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, , ,
a a b b c

r rs a rs b rs c

c c

l b l b l
k k k k

l b l b l
                   (12) 234 

where krs,a, krs,b, and krs,c are obtained from Eq. (9), using their respective reinforcement ratios a, b 235 

and c, and ba, bb and bc are the width of the uncracked compressed concrete at sections A, B and 236 

C, respectively, so that when la = 0 and lb = 0, kr = krs,c. 237 

2.3 Time-dependent deflections factor kt 238 

In order to obtain the increment of deflections due to creep and shrinkage, a time-dependent 239 

analysis of a cracked section subjected to a sustained load must be done. Due to the constraint 240 

produced by the steel to the increment of concrete strains along the time, a relaxation of the 241 

maximum compressive stress in concrete and an increment of the neutral axis depth and of the 242 

stresses in the compressive reinforcement take place. Furthermore, according to experimental 243 

observations, the strain at the tensile reinforcement is almost constant along the time, so the section 244 

can be assumed to rotate around the reinforcement, see Fig. 3 (Clarke et al [28], Murcia [29], Marí 245 

et al. [7]). This fact allows a simplification of the time-dependent sectional analysis, with very 246 

small errors if the reinforcement strain is considered constant along the time. 247 

 248 

Figure 3 249 

 250 

Adopting the above assumption, a time-dependent sectional analysis has been performed, which is 251 

presented in Annex 1, in which the time-dependent increment of curvature  has been obtained. 252 

For this purpose, the equilibrium of forces in the section at any time has been set, compatibility of 253 

strain increments according to a planar deformation has been assumed, and the Age Adjusted 254 

Effective Modulus Method (AAEMM, Bazant [30]) has been used to account for ageing and obtain 255 

the creep produced under variable stresses. Thus, factor kt of Eq. (2) that incorporates the time 256 

dependent effects when calculating the deflections, is given by Eq (13): 257 

0.24 1000
1

1 12 '

cs
tk

n

 




 


                    (13) 258 

where  is the creep coefficient at time t  t0, cs is the shrinkage strain, and ’ = As’/bd is the 259 
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compression reinforcement ratio. For continuous beams, where the compression reinforcement 260 

ratio varies along the element length, the following mean factor kt is proposed: 261 

, , ,
a b c

t t a t b t c

l l l
k k k k

l l l
                     (14) 262 

 263 

2.3. Slenderness associated to deflection limitation 264 

Substituting Eq. (8) into Eq. (2), and after some arrangements, the following expression for the 265 

deflection slenderness limit, l/d, is derived:  266 

3

c r

b g t

E kl

pd
Ck k k

b

                    (15) 267 

where p is the characteristic uniformly distributed load per unit length; b is the beam width and p/b 268 

is the characteristic load applied by unit surface. Analyzing Eq. (15), some conclusions can be 269 

drawn: 1) the slenderness ratio l/d is lower for beams than for slabs because p/b is higher in the 270 

case of beams; 2) the higher the tensile and the compressive reinforcement ratios, the higher l/d, for 271 

the same load p/b, since kr monotonically increases with  and kt decreases when ’ increases; 3) 272 

the higher the support constraints, the higher l/d (i.e. for continuous beams or frames, coefficient kb 273 

is lower than for simply supported beams); 4) the higher the values of creep coefficient and 274 

shrinkage strain, the higher is kt, and the lower is l/d 5) the higher the concrete compressive 275 

strength, the higher l/d since, even though n and, consequently kr, is lower, Ec is higher and kt is 276 

lower. 277 

For a member with given dimensions, materials and reinforcement ratio (i.e. designed to resist at 278 

least the design loads at ULS of flexure), Eq. (15) may be used to check whether it is necessary or 279 

not to calculate deflections for the verification of its corresponding limit state. Alternatively, Eq. 280 

(15) can be used to obtain the reinforcement amount necessary to satisfy the deformation limit 281 

state, solving it for kr, which is directly related to n (see Eq. 9). 282 

 283 
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2.4. Slenderness associated simultaneously to deflection and reinforcement stress 284 

limitations  285 

In order to satisfy the serviceability limit state of cracking, the crack width needs to be limited. The 286 

crack width depends on many factors associated to concrete, steel and bond properties, the acting 287 

bending moment, the reinforcement ratio and the bars diameter, among others. In particular, the 288 

reinforcement stress is a major factor influencing the crack width, so the computation of the 289 

average crack width can be avoided if certain relations between the reinforcement stress and the 290 

diameter or the spacing of the bars are satisfied, as stated by Eurocode 2 [1] (section 7.3.3 “Control 291 

of cracking without direct calculation”) and MC2010 (section 7.6.4.6) [2]. For this reason, in this 292 

paper, slenderness associated to a maximum allowable reinforcement stress under the quasi-293 

permanent load combination, s,max, will be derived, as a way of limiting the crack width.  294 

The stress in the tension reinforcement, s, in a fully cracked section of rectangular shape or T-295 

shape (when the neutral axis depth is less than the flange depth, x < hf), subjected to a bending 296 

moment Mqp produced by the quasi-permanent load combination, can be formulated as: 297 

2

,max20.9 0.9

qp g g m

s s

s s

M k M k k pl

zA d A bd
 


                       (16) 298 

where smax is the limiting reinforcement stress to avoid excessive crack width; km is a factor 299 

relating the support conditions corresponding to the characteristic bending moment, M, with the 300 

characteristic load p (M = km·p·l2). The lever arm z = 0.9d has been adopted considering a neutral 301 

axis depth x = 0.3d, which corresponds to an average reinforcement ratio  = 1.0 %., so that z = d-302 

x/3  0.9d 303 

Solving Eq. (16) for l/d and substituting it into Eq. (15) a slenderness associated to deflections and 304 

reinforcement stress limits is obtained: 305 

,max0.9

c m r

s b t

E k kl

d C k k
                       (17) 306 

Figures 4a and 4b show the slenderness l/d associated to deflection, Eq (15), and reinforcement 307 

stress limits, Eq. (17), for different steel reinforcement ratios () and surface loads (p/b), for simply 308 
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supported beams (kb = 5/384) and for internal spans of continuous beams (kb = 1/185), respectively, 309 

adopting fck = 30 N/mm2,  = 2.5, cs = 0.0003, as concrete properties, deflection limitation C = 250 310 

and a ratio of quasi-permanent to total loads kg = 0.7. 311 

 312 

Figure 4a 313 

Figure 4b 314 

 315 

A particular case of interest is that associated to the amount of reinforcement strictly necessary for 316 

flexural strength (which is the basis for the adjustment of EC2 [1] and MC2010 [2] slenderness 317 

limits). In this case, the stress in the reinforcement, under the quasi-permanent load combination, 318 

may be estimated as:  319 

,

g yd

s qp

f

k f



                       (18) 320 

where f is the average loads factor, which can be adopted as 1.4 for usual ratios of permanent to 321 

live load. The slenderness limit associated to such stress in the reinforcement is, then: 322 

0.9

c f m r

yd b t

E k kl

d C f k k




                  (19) 323 

which is plotted in Figures 4.a and 4.b as “Strict” stress. 324 

Figure 4b, plotted for an internal span of a continuous beam, has been obtained without considering 325 

the possible redistribution of bending moments in continuous beams at service, due to cracking, 326 

which may affect the stresses and the deflections. For this reason, it is suggested that, in order to 327 

use the above slenderness limits without driving to excessive crack width or to excessively 328 

conservative values, limitations on the level of redistributions should be adopted in continuous 329 

members. The level of such limitations would require specific studies. 330 

 331 

3. VERIFICATION OF THE PROPOSED EQUATIONS WITH A NON-LINEAR 332 

TIME-DEPENDENT STRUCTURAL ANALYSIS  333 

3.1.  Description of the followed procedure 334 
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In order to verify the accuracy of Eqs. (15) and (17) proposed for slenderness limits, two structures 335 

have been studied by means of a non-linear time-dependent analysis developed by Marí [31]. The 336 

two analyzed structures are a simply supported and a continuous slab of three equal spans. The 337 

differences between them are, in addition to those related to boundary conditions, span length and 338 

reinforcement ratios. Because the slab is continuous, cracking and delayed deformations may 339 

produce time-dependent forces redistributions, thus affecting the deflections. In addition, different 340 

environmental relative humidities are considered in each case. 341 

While Eqs. (15) and (17) provide the slenderness ratios associated to limitations in the maximum 342 

deflection and stress in the reinforcement, the non-linear analysis is a verification procedure that 343 

provides the structural response (in terms of deflections, strains, stresses, internal forces, reactions, 344 

etc.) for given dimensions, materials, reinforcement, loads and support conditions. Therefore, the 345 

comparison of results is not straightforward, unless the structure analyzed provides exactly a 346 

deflection equal to the maximum allowed deflection (alim = l/250, C = 250). For this reason, a trial 347 

and error procedure has been implemented as follows:  348 

1) Given the geometry (b, h, d, L), boundary conditions of the structure, and the applied loads 349 

(g, q, 2), an approximate reinforcement ratio is computed for the ultimate limit state of 350 

flexure.  351 

2) A non-linear time-dependent analysis is performed, by first applying the total load (p = g + 352 

q), and subsequently removing the fraction (1-2) q, to keep the quasi-permanent load until 353 

the end of the period of time studied. 354 

3) If the computed maximum deflection, amax, is higher than the limit deflection for quasi-355 

permanent loads (alim = l/250), the reinforcement amount is increased and vice-versa. 356 

4) Steps 2 and 3 are repeated until the maximum deflection is sufficiently close to l/250.   357 

5) Once the reinforcement ratio is known, the deformation slenderness ratio is calculated by 358 

Eq. (15) and compared with that from the numerical analysis. 359 

6) The reinforcement stress associated to the above obtained slenderness ratio is calculated 360 

with Eq. (16) and compared with the stress obtained from the numerical analysis. 361 

 362 
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3.2.  Brief description of the nonlinear and time-dependent analysis model used 363 

The model, implemented in a computer program developed by Marí [32], called CONS, is based on 364 

the displacement formulation of the Finite Element Method (FEM), using a beam element with the 365 

cross section divided into fibers or filaments subjected to a uniaxial stress state (Figure 5). It is 366 

assumed that plane sections remain plane and the deformations due to shear strains are neglected. 367 

The materials nonlinearities due to cracking and yielding, and the structural effects of the delayed 368 

deformations are taken into account in the structural analysis under loads and imposed 369 

deformations.  370 

The total strain at a given time and point in the structure (t), is taken as the direct sum of 371 

mechanical strain m(t), and non-mechanical strain nm(t), consisting of creep strain cr(t), shrinkage 372 

strain cs(t), aging strain a(t), and thermal strain T(t).  373 

     m nmt t t                        (20) 374 

         nm

cr cs a Tt t t t t                                              (21) 375 

 376 

Figure 5 377 

 378 

The instantaneous nonlinear behavior of concrete in compression has been considered by means of 379 

a parabolic model with a post-peak descending branch and load reversal (Figure 6). A smeared 380 

crack approach is used and tension stiffening is considered in the tensile stress-strain branch of 381 

concrete, adopting for the softening branch the model proposed by Carreira and Chu [33], with a 382 

softening parameter  = 3. Such softening branch could be well approached by a linear descending 383 

branch with a slope m = - 0.25 Ec. The evolution of concrete mechanical properties due to aging 384 

with time have been considered according to the EC2 [1]. For reinforcing steel, a bilinear stress-385 

strain relationship is assumed with load reversals (Figure 7).  386 

 387 

Figure 6 388 

Figure 7 389 
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 390 

Creep strain cr(t) of concrete is evaluated by an age dependent integral formulation based on the 391 

principle of superposition. Thus, 392 

   
 

0
,

t

cr t c t d
 

   



 

                  (22) 393 

where c(t, t-) is the specific creep function, dependent on the age at loading , and () is the 394 

stress applied at instant . Numerical creep analysis may be performed by subdividing the total time 395 

interval of interest into time intervals t, separated by time steps. The integral (22) can then be 396 

approximated by a finite sum involving incremental stress change over the time steps. The adopted 397 

form for the specific creep function c(t, t-) is a Dirichlet series: 398 

     

1

, 1 i

m
t

i

i

c t a e
 

  
 



   
                    (23) 399 

where m, i, and ai(t) are coefficients to be determined through adjustment of experimental or 400 

empirical creep formulae, as recommended by international codes, by least squares fit. In this work, 401 

it is considered that sufficient accuracy is obtained using three terms of the series (m = 3), and 402 

adopting i = 10-i. The creep and shrinkage models used are those provided by the MC2010 [2]. 403 

The use of a Dirichlet series allows obtaining the creep strain increment at a given instant by a 404 

recurrent expression that only requires to store the stress and an internal variable of the last time 405 

step, thus avoiding the need to store the entire stress history.  406 

The structural analysis strategy consists of a time step-by-step procedure, in which the time domain 407 

is divided into a discrete number of time intervals. A time step forward integration is performed in 408 

which increments of displacements, strains and other structural quantities are successively added to 409 

the previous totals as we march forward in the time domain. At each time step, the structure is 410 

analyzed under the external applied loads and under the imposed deformations, such as creep, 411 

originated during the previous time interval and geometry.  412 

Iterative procedures such as Newton-Raphson and Modified Newton or displacement control, 413 

combined with incremental analyses are used to trace the structural response along the structure 414 

service life throughout the elastic, cracked and ultimate load levels.  415 
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Nodal displacements, element internal forces, stresses and strains in each concrete and steel 416 

filament, curvature and elongation of each section, support reactions and other response parameters 417 

are provided by the model, after convergence is reached. The described model was experimentally 418 

checked by Marí and Valdés [34], and has been widely used for the non-linear time-dependent 419 

analysis of bridges decks, slender columns and cracked sections by Marí and Hellesland [35]. 420 

 421 

 422 

 423 

3.3.  Case study 1: Simply supported one-way solid slab. 424 

A simply supported one-way RC solid slab of 6m span and total height of 300 mm (Figure 8) is 425 

subjected to a characteristic uniformly distributed load value p = 20 kN/m2, of which g = 12 kN/m2 426 

is permanent and q = 8 kN/m2 corresponds to live load. The quasi-permanent load combination 427 

factor is 2 = 0.2 and it is assumed that all loads are applied at 28 days. The slab is reinforced with 428 

5 steel ribbed bars of 20 mm diameter per 1 m width (1570.8 mm2/m), and the effective depth is 429 

250 mm. Concrete characteristic compressive strength at 28 days is fck = 30 N/mm2 (fcm = 38 430 

N/mm2, Ec = 32836 N/mm2, fctm = 2.89 N/mm2). The environmental relative humidity is RH = 75%, 431 

the concrete creep coefficient is  (28,) = 1.8, and the shrinkage strain is cs = 0.0003. The 432 

reinforcing steel yield strength is fyk = 500 N/mm2 and the modulus of elasticity is Es = 200000 433 

N/mm2. 434 

 435 

Figure 8 436 

 437 

For the non-linear analysis, 20 equal 1D finite elements of 300 mm length, width b = 1.0 m and 438 

total height h = 300 mm, have been used. The cross-section is vertically divided into 30 horizontal 439 

layers, each 10 mm thick. At 28 days, the total load p = 20 kN/m is applied, in order to produce a 440 

cracking level corresponding to the characteristic load, and subsequently, 80% of the live load (6.4 441 

kN/m) is removed, so that the quasi-permanent load p + 2q = 12+0.2·8 = 13.6 kN/m is maintained 442 
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for 10000 days. A step-by-step non-linear time-dependent analysis is performed using 21 time steps 443 

spaced by intervals of increasing length, according to a geometric series. Results of the analysis in 444 

terms of deflection, reinforcement and concrete strains and reinforcement stresses are shown in 445 

Figures 9, 10 and 11, respectively. 446 

 447 

Figure 9  448 

 449 

It can be observed that the long-term deflection at mid-span under the quasi-permanent load is 24.1 450 

mm, which is very close to a typical deflection limit given amax = l/C = l/250 = 24 mm (being C = 451 

250, see Eq. (2). Therefore, it can be considered that the slab slenderness (l/d = 6000/250 = 24) is 452 

the deflection limit slenderness. 453 

Figure 10 shows the strains in the reinforcement and at the most compressed concrete fiber along 454 

time under the quasi-permanent load.  455 

 456 

Figure 10 457 

 458 

It can be observed that, while the absolute value of the concrete compressive strains increase from 459 

c = -0.00048 to c = -0.00092 due to creep and shrinkage, tensile reinforcement strains remain 460 

almost constant (with only an increment of 5% approximately). Such results confirm the adequacy 461 

of the hypothesis adopted to evaluate the time-dependent curvatures (see Figure 3). 462 

Figure 11 shows the stress in the reinforcement at the midspan section, which varies from 153 to 463 

162 N/mm2 over time. 464 

 465 

Figure 11 466 

 467 

The proposed formulation, applied for simply supported members (la = lc = 0, lb = l), provides the 468 

following results in terms of slenderness limits and stress in the reinforcement: 469 
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where: 471 
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It can be observed that the deformation slenderness limit provided by the proposed formulation is 477 

very close to that of the slab analyzed (l/d = 23.34 vs l/d = 24, 2.75% error), associated to amax = 478 

l/250.  479 

The stress at the reinforcement can be extracted from Eq. (16), as follows: 480 

2 2
3 2

2 2
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0.9 0.9 0.00628 1 0.25

g m

s

k k pl
N mm

bd

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  
  

  
  481 

Such stress, that already includes the tension stiffening effect through factor kr, is 7% higher than 482 

that given by the numerical model (s = 162 N/mm2).  483 

3.4.  Case study 2: Continuous one-way ribbed slab. 484 

Consider a continuous one-way reinforced concrete ribbed slab of three equal spans of 7.5 m length 485 

each, subjected to a characteristic uniformly distributed surface load of 15 kN/m2, of which g = 10 486 

kN/m2 are permanent and q = 5 kN/m2 corresponds to live load. The quasi-permanent load 487 

combination factor is 2 = 0.2 and it is assumed that all loads are applied at 28 days. The ribbed 488 

slab is composed by a top slab of 100 mm depth and rectangular ribs of b = 200 mm and h = 250 489 

mm, spaced 800 mm between ribs axes. Figure 12 shows the longitudinal and cross section 490 
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geometry and the reinforcement layout. The total and effective depth of the slab are 300 mm and 491 

250 mm, respectively, and the member slenderness is =7.5/0.30=25. 492 

Concrete characteristic compressive strength at 28 days is fck = 25 N/mm2 (fcm = 33 N/mm2, Ec = 493 

31477 N/mm2, fctm = 2.56 N/mm2). The environmental relative humidity is RH = 60%, the concrete 494 

creep coefficient is  = 2.6, and the shrinkage strain is cs = 0.0005. The reinforcing steel yield 495 

strength is fyk = 500 N/mm2 and the modulus of elasticity is Es = 200000 N/mm2. The maximum 496 

deflection (which takes place at the exterior spans) should be less than l/250 = 30 mm. 497 

 498 

Figure 12 499 

 500 

In the following, all calculations will be made for a strip of the slab considering a T-section with a 501 

flange width of 800 mm (distance between ribs axes). The uncracked inertia of the section is Ib = 502 

0.001276 m4, the centre of gravity is at a distance v = 0.117 m from the top, and the cracking 503 

moment under positive and negative flexure (tensile stresses at bottom and top, respectively) are 504 

Mcr,p = 14 kNm and Mcr,n = 27.9 kNm. 505 

For the non-linear analysis, 60 equal 1D finite elements of 375 mm length, have been used. The 506 

cross-section is divided into 35 horizontal layers, each 10 mm thick. At 28 days, the characteristic 507 

load per unit length p = 15 kN/m2·0.8 m = 12 kN/m is applied, in order to produce a cracking level 508 

corresponding to the characteristic load combination, and subsequently, 80% of the live load (q = 5 509 

kN/m2·0.8 m = 4 kN/m) is removed, so that the quasi-permanent load p + 2 q = 8 + 0.2·4 = 8.8 510 

kN/m is maintained for 10000 days. The deflections and stresses obtained by means of the 511 

nonlinear analysis are shown in Figures 13 and 14, respectively. 512 

 513 

Figure 13 514 

 515 

It can be seen that the long-term deflection due to quasi-permanent load combination is almost 516 

exactly 30 mm, which corresponds to a fraction of the length l/250, which is the target deflection. 517 
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 518 

Figure 14 519 

The proposed formulation provides the following results in terms of slenderness limits and stress in 520 

the reinforcements. 521 
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 536 

The factor kb used is that corresponding to the external span, where the negative moment over the 537 

interior support is M = 0.1 pl2, obtained elastically, (i.e. without accounting for moments 538 

redistribution due to cracking).  539 

It can be observed that the deformation slenderness limit provided by the proposed formulation is 540 

(l/d = 26.13 which is 4.5% higher than the slab slenderness, l/d = 25, associated to amax = l/250. 541 

Probably this difference is due to not considering the effects of moment redistribution in the 542 

deflections. 543 

The stress at the tensile reinforcement at center span, according to Eq (16) is: 544 

2 2
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  
              545 

That value is only 5.8% higher than that obtained by the numerical model for long term (s = 172 546 

N/mm2).  547 

As a conclusion it can be said that even the complexity of the instantaneous and long-term 548 

structural response due to cracking, creep, shrinkage, etc., the proposed equations for slenderness 549 

limits provide quite good results, when compared with the results of a non-linear time dependent 550 

finite element analysis. Therefore, the derived slenderness limits can be very useful for design 551 

purposes.  552 

 553 

4. COMPARISON OF THE PROPOSED SLENDER LIMITS WITH THE RESULTS 554 

OBTAINED BY USING THE EUROCODE EC2 PROPOSAL FOR 555 

CALCULATION OF DEFLECTIONS 556 

To further analyze the capacity of the proposed method to obtain reasonable values of the 557 

slenderness limit, a comparison with results obtained using the EC2 [1], for the computation of 558 

deflections, is made in this section. According to previous sections, the analysis has been done for 559 

values of l/d obtained for constant load, as well as for constant stress. The calculations have been 560 

performed as indicated in the following text.  561 
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For the case of constant load, given a specific reinforcement ratio and sectional characteristics, a 562 

span length, l, is assumed, allowing to obtain long-term deflections due to quasi-permanent load 563 

from an effective moment of inertia calculated on the basis of interpolation between uncracked and 564 

fully cracked sections [1-2]. The level of cracking for obtaining the effective moment of inertia is 565 

calculated by using the characteristic load. Trying different values of the span length, the 566 

slenderness is obtained dividing l by d, when the deflection is l/250. 567 

A similar procedure has been used for the case of constant stress due to quasi-permanent loads. For 568 

a given reinforcement ratio, and a value of the stress in the tensile reinforcement, the service 569 

flexural moment for the critical section can be obtained. Again values for l are tried and the 570 

slenderness limit is obtained when the deflection is l/250.  571 

This global procedure is not different from that used in other works [21, 24, 36] for obtaining the 572 

l/d value corresponding to the maximum bending moment associated to a given reinforcement ratio 573 

(strict value). However, here the values are obtained also for lower loads than those corresponding 574 

to the flexural capacity of the section, which is usually the case in practice. 575 

Figure 15 shows the comparison for values of p/b of 10, 25, 50 and 100 kN/m2, for assumed 576 

parameters fyk = 500 N/mm2, kg = 0.7, ratio of permanent-to-total load = 0.6, f = 1.41, and for fck = 577 

30 N/mm2 ( = 2.5, εcs = 500·10-6) and fck=50 N/mm2 ( = 1.5, εcs = 400·10-6). Figures 15a and 15b 578 

show similar values for the slenderness limits under constant load, although an influence of the 579 

concrete strength around 10% is observed (higher strength concrete allows slenderer beams). Only 580 

those cases with reinforcement stress, due to quasi-permanent loads, higher than 70 N/mm2 have 581 

been represented in Figures 15a and b, to avoid non-realistic situations. An increase of l/d is seen 582 

for an increase of reinforcement ratio with constant load. A logical reduction in l/d is showed for 583 

increasing loads.  584 

The proposed method (PM in Figures 15a and 15b) follows reasonably well the values obtained 585 

with a much more complex model, such as that from EC2 [1]. Statistical values (average, 586 

maximum, minimum and coefficient of variation) of the ratio between slenderness limits obtained 587 

with the proposed method and that from EC2 [1] are shown in Table 1. It is seen that average 588 
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values are quite close to the unity. Maximum differences are obtained for the lowest load level, and 589 

as the load increases the curves are practically identical.  590 

 591 

Figure 15 592 

Table 1 593 

 594 

Figure 16 shows the comparison for values of constant stress of 150 N/mm2 due to quasi-595 

permanent loads, as well as those obtained for the maximum permissible stress under serviceability 596 

conditions, corresponding to that of the steel yielding strength for ultimate limit state (fyd = fyk/s = 597 

500/1.15 = 435 N/mm2), which is named in the figures as “σ strict”. As indicated previously, in 598 

these circumstances the quasi-permanent stress would be fyd·kg/f  = 435·0.7/1.41 = 216 N/mm2. For 599 

comparison purposes another curve called “EC2-As strict” is also presented. This curve is obtained 600 

using the procedure that was followed for obtaining the EC2 [1] slenderness ratios. It represents the 601 

values corresponding to the service moment obtained from the ultimate bending moment 602 

corresponding to a given reinforcement ratio. The difference with the “σ strict” curve is that in this 603 

case the maximum bending moment is calculated under ULS, while in the previous case is 604 

calculated from serviceability conditions (limiting the quasi-permanent service stress); the 605 

difference in the lever arms in the calculation gives the slightly different curves. 606 

 607 

Figure 16 608 

Table 2 609 

 610 

Figures 16a and 16b, for fck = 30 N/mm2 and fck = 50 N/mm2, respectively show similar trends, 611 

although a relevant influence of the concrete strength on the slenderness value is again observed 612 

(around 25% larger for the higher strength for intermediate values of reinforcement ratio). As seen 613 

in subsection 2.4 an increase in reinforcement ratio causes a reduction in l/d, since keeping the 614 

stress constant leads to a higher flexural moment to be sustained. Statistical values of the ratios 615 
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between both methods are reported in Table 2, showing that the proposed method provides 616 

acceptable values for design. 617 

Furthermore, the assumption made about constant strain in the tensile reinforcement along the time 618 

may deviate from the actual value for low reinforcement ratios. In any case, the errors are of 619 

acceptable magnitude and on the safe side. 620 

 621 

5. CONCLUSIONS 622 

The following conclusions can be drawn from the previous discussion: 623 

- Slenderness limits (l/d) for RC beams, associated to given limitations of deflections under 624 

the quasi-permanent load combination and limitations of stresses in the reinforcing steel, 625 

for crack control, have been derived. Reinforcement ratio, loading level, materials 626 

properties and support conditions are accounted for in the derived expressions, which are 627 

simple and, therefore, useful for design, either to know the minimum beam depth or the 628 

minimum reinforcement ratio necessary to avoid calculation of deflections or excessive 629 

crack width.  630 

- A very simple expression has been derived for kr, which multiplied by bd3 provides a very 631 

good approach to the effective moment of inertia of a cracked beam, to be used for the 632 

calculation of instantaneous deflections according to the bilinear method adopted by EC2 633 

[1]. This factor takes into account “tension stiffening” effects, depends linearly on the 634 

homogenized tensile reinforcement ratio n and is independent of the tensile stress.  635 

- Another very simple and useful expression has been derived, see Annex 1, for a time-636 

dependent deflections factor, kt, which allows obtaining the long-term curvature due to 637 

concrete creep and shrinkage, from the instantaneous curvature due to quasi-permanent 638 

loads. This factor explicitly depends on the concrete creep coefficient and shrinkage strain 639 

and on the compression reinforcement ratio.  640 

- The formulation is valid for simply supported beams, cantilevers and continuous beams. In 641 

the latter case, mean global member factors kr and kt have been derived to account for the 642 

effects of the tensile and compressive reinforcement ratios and effective inertia 643 
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distributions along the member length, so that beams with T shaped section can be also 644 

covered. 645 

- The results obtained by applying the proposed slenderness limits have been compared with 646 

those provided by a non-linear and time-dependent analysis of two case studies: one 647 

consisting of a simply supported solid slab and another consisting of a three span 648 

continuous ribbed slab. Excellent results have been obtained in such comparisons, despite 649 

the complexity of the observed non-linear and time dependent behavior of cracked concrete 650 

structures. 651 

- A comparative study has been made between the proposed slenderness limits and those 652 

obtained by calculating the long-term deflections by means of Eurocode 2 [1]. The 653 

influence of reinforcement ratio, concrete strength, levels of load and stress have been 654 

studied. Very good agreement has been obtained for the most common cases, although 655 

differences up to 17 % (on the side of safety) have been found. 656 

- The way in which the slenderness limits have been obtained, based on the mechanics of 657 

reinforced concrete and on an experimentally verified hypothesis about the time-dependent 658 

behavior of cracked sections, allows its application to a large variety of structural situations 659 

(i.e. support constraints, environmental conditions, materials properties, quasi-permanent 660 

load factors, etc). Furthermore, the mechanical character of the formulation facilitates its 661 

modification to other situations different to those used for its derivation, for example 662 

different load types, partially pre-stressed or post-tensioned beams use of FRP 663 

reinforcement and even moderately axially loaded columns under lateral forces, among 664 

others.   665 
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ANNEX 1. SIMPLIFIED SECTIONAL TIME DEPENDENT ANALYSIS 754 

 755 

Consider the time dependent deformation of a cracked RC rectangular cross section, as indicated in 756 

Figure 3. Due to creep and shrinkage of concrete, a redistribution of forces between concrete and 757 

reinforcement takes place. Thus, relaxation of the maximum concrete stress at top fiber and 758 

increment in the neutral axis depth takes place along the time. Assuming the simplification of no 759 

increment of stress at the tensile reinforcement, the equilibrium of internal forces is expressed by 760 

the following equation: 761 
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1 1

2 2
c c s s s s sbx bx A A E                      (A1.1) 762 

where x0 is the depth of the concrete stress block at t = t0; x is the depth of the concrete stress block 763 

at tt0; c0 is the maximum concrete stress at t = t0; c is the maximum concrete stress at t  t0; A’s 764 

is the compressive steel reinforcement; ’s is the increment of stress in the internal compressive 765 

steel reinforcements at t  t0; Es is the steel modulus of elasticity; and ’s is the increment of stress 766 

in the internal compressive steel reinforcements at t  t0. 767 

Since planar deformation is assumed, compatibility of strains of the deformed section is formulated 768 

as follows:  769 
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Substituting ’s of Eq (A1.2) into Eq. (A1.1), multiplying it by 2/(bx) and after some 771 

rearrangements, Eq. (A1.1) becomes:  772 
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Then, the variation of concrete stress results: 774 
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According to the Age Adjusted Effective Modulus Method (AAEMM), the total time dependent 776 

concrete strain under variable stress is: 777 
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where c is the variation of concrete stress from t0 to t > t0;  is the concrete creep coefficient at 779 

time t  t0;  is the concrete aging coefficient at time t  t0  780 

Substituting Eq. (A1.4) into Eq. (A1.5): 781 
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Then, the time-dependent strain at the top concrete fiber can be expressed as: 783 
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         (A1.7) 784 

where ’ = As’/bd and n = Es/Ec. For practical applications, approximate but conservative values of 785 

 = 0.8, x0/x = 0.75, d’/d = 0.15 can be adopted, resulting in: 786 
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  (A1.8) 787 

where expression 0.8-0.25 has been substituted by 0.8, which is conservative, and in the 788 

denominator, a instantaneous neutral axis depth x0/d = 0.3 and  = 2.5 have been adopted. 789 

The time-dependent increment of curvature, , can be expressed as: 790 
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which can be rewritten as:  792 
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where c0, x0 and 0 = c0/x0 are the instantaneous concrete compressive maximum strain, the 794 

neutral axis depth and the instantaneous curvature due to quasi-permanent load combination of the 795 

cracked section, respectively. 796 

The creep and shrinkage reduction factors, k and ksh, respectively, take into account the effects of 797 

the stresses relaxation and ageing of concrete, as well as the constraint introduced by the 798 

compressive reinforcement to the time dependent deformation:  799 
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(A1.11) 801 

Then, the time dependent deflection factor kt, which, assuming the same behavior along the 802 

element length can be adopted as time dependent deflection factor in Eq. (2), is: 803 
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Adopting c0 = 0.3 fc/Ec for the maximum concrete strain produced by the quasi-permanent load, 805 

x0/d = 0.3 and Ec/fc = 1000, as average values, which correspond to a reinforcement ratio of 1% and 806 

to fc = 35 N/mm2, the time-dependent deflection factor, kt, becomes:  807 
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Table 1. Statistical values of the ratio between l/d from proposed method and EC2 [1], for constant 885 

p/b (Figure 15). 886 

 

fck=30 N/mm2 fck=50 N/mm2 

pk 

(kN/m2) 

Avg. Max. Min. CoV Avg. Max. Min. CoV 

10 1.01 1.06 0.96 0.036 0.99 1.05 0.93 0.040 

25 1.04 1.10 0.98 0.041 1.01 1.06 0.97 0.031 

50 1.02 1.08 0.98 0.032 1.00 1.04 0.97 0.022 

100 1.01 1.04 0.98 0.023 0.99 1.02 0.98 0.014 

 887 

Table 2. Statistical values of the ratio between l/d from proposed method and EC2 [1], for constant 888 

stress (Figure 16). 889 

 fck=30 N/mm2 fck=50 N/mm2 

Stress Avg. Max. Min. CoV Avg. Max. Min. CoV 

150 N/mm2 1.00 1.06 0.89 0.034 0.98 1.03 0.83 0.048 

Strict 0.94 0.97 0.92 0.019 0.94 0.96 0.87 0.016 

 890 


