Input/Output Compatibility of
Reactive Systems*

Josep Carmona' and Jordi Cortadella®

! Universitat Politécnica de Catalunya
Computer Architecture Department
Avda. Canal Olimpic, s/n. 08860 Castelldefels, Spain

jcarmona@ac.upc.es

2 Universitat Politécnica de Catalunya
Software Department

Jordi Girona 1-3 08034 Barcelona, Spain
jordic@lsi.upc.es

Abstract. The notion of 1/O compatibility of reactive systems is de-
fined. It models the fact that two systems can be connected and establish
a correct dialogue through their input and output events. I/O compati-
bility covers safeness and liveness properties that can be checked with a
polynomial-time decision procedure. The relationship between observa-
tional equivalence, 1/O compatibility and input properness is also studied
with the aim at supporting the proposal of transformations for the syn-
thesis of reactive systems. Finally, a set of Petri net transformations that
preserve 1/O compatibility are shown as an example of application of the
theory presented in this paper.

Keywords

Reactive systems, Input/Output compatibility, Observational equiva-
lence, Synchronous product, Trace theory, Conformation, Petri nets.

1 Introduction

This section is devoted to present the motivation of this work and a summary
of the main contributions.

1.1 Reactive Systems

A system is said to be reactive when it has an explicit interaction with an en-
vironment. A reactive system can receive input stimuli from the environment,

* This work has been partially funded by the Ministry of Science and Technology of
Spain under contract TIC 2001-2476, ACiD-WG (IST-1999-29119) and a grant by

Intel Corporation.

Carmona, J.; Cortadella, J. Input/output compatibility of reactive systems. A: International Conference
on Formal Methods in Computer-Aided Design. "Formal Methods in Computer-Aided Design, 4th
International Conference, FMCAD 2002: Portland, OR, USA, November 6-8, 2002: proceedings".
Springer, 2002, p. 360-377.

The final authenticated version is available online at https://doi.org/10.1007/3-540-36126-X_22

execute internal operations and produce results observable by the environment.
Formally, a reactive system can be modeled as a transition system with an ex-
plicit distinction among input, internal and output events. The system can only
control its own events (internal and output), but cannot prevent the environment
from producing input events if it decides to do so.

Two different reactive systems can interact by connecting their inputs and
outputs. We assume that the composition of reactive systems is done by syn-
chronizing common events. An example of composition is the connection of two
digital circuits, in which the transitions of any output signal are simultaneously
observed by the circuit receiving them as inputs. Thus, the concept of environ-
ment is relative: each system considers the other to be its environment.

1.2 Motivation

The motivation comes from the need to formalize the fact that two systems
can be connected and establish a consistent dialogue through their input and
output events. The theory presented in this paper is inspired on the work by
Dill [7]. The formal model for specifying a system considered here is more re-
stricted that the one presented by Dill for complete trace structures. However,
the properties covered by the model, including some notion of liveness, can be
checked in polynomial time. For the type of systems that we want to deal with,
the model is powerful enough. The definition of correct interaction is done by
relating the states of the two systems. This state-based definition eases the proof
of properties on their interaction.

When then enabledness of input events is considered, sufficient conditions
can be obtained that relate the theory with the well-known concept of obser-
vational equivalence [14] and input properness [3]. Finally, we show that the
theory presented can be used for the synthesis of reactive systems. A kit of Petri
net transformations is presented that are proved to preserve the notion of /O
compatibility.

A practical application of this work is found in the area of synthesis of concur-
rent systems, e.g. asynchronous circuits [3] or codesign of embedded systems [9].

1.3 I/0 Compatibility

The notion we want to model is Input/Qutput compatibility. We now illustrate
this notion with some examples and show why other equivalences for concurrent
systems are not appropriate.

Figure 1(a) depicts two reactive systems, X and Y, synchronized by a pair
of events, a and b. Event a is an output for X and an input for Y, whereas b
is an input for X and an output for Y. Moreover, X has an internal event 7.
When enabled, internal and output events may take an unbounded, but finite,
delay to fire. At each state, a system has only a (possibly empty) subset of
input events enabled. If a non-enabled input is produced by the other partner,
a communication failure is produced.

X Y
a a al
a” \pa - fax) b b |
c! € b
(a) (b) (c)

Fig. 1. Connection between different reactive systems (the suffixes ? and ! are used to
denote input and output events, respectively).

The transition systems in Fig. 1(a) are observational equivalent. However,
they are not I/O compatible, according to the notion presented in this paper.
In the initial state, only event a (produced by X) is enabled. After firing a
synchronously in both systems, a new state is reached. In this state, Y is ready
to produce b. However, X is not ready to accept b before 7 is produced and,
thus, a communication failure occurs when Y fires b and X has not fired 7 yet.
Therefore, observational equivalence does not imply /O compatibility.

Figure 1(b) shows that I/O compatibility does not imply observational equiv-
alence. The synchronization of X and Y through the input and output events
produces the following language: (abed)*. In the initial state, X is ready to ac-
cept a and b in any order, i.e. they can fire concurrently. However, Y produces a
and b sequentially. This situation is reversed for events ¢ and d, accepted concur-
rently by Y but produced sequentially by X. In either case, the synchronization
between X and Y is correct and both systems can interact without any failure.
However, it is easy to see that X and Y are not observationally equivalent.

Figure 1(c) depicts another undesired situation. After having produced event
a, both systems block waiting for each other to fire some event. Thus, a dead-
lock is produced. This interaction would be considered “fair” in I/O automata
theory [12].

Finally, there is another situation not acceptable for I/O compatible systems:
livelock. This situation occurs when one of the systems can manifest an infinite
internal behavior without any interaction with the other partner.

1.4 Application to the Synthesis of Reactive Systems

The main objective of this work is to provide a formal framework for charac-
terizing valid transformations of reactive systems during synthesis. Synthesis is
the process of transforming a system from a specification to an implementation
that uses primitive actions available in some library. For example, a circuit is
usually specified in terms of Boolean equations. However, only logic gates with
limited fanin are available in a library. For this reason, Boolean equations must
be decomposed and matched with logic gates. When synthesizing asynchronous

circuits [3], each logic gate introduces a new internal signal with its associated
internal events.

Another example is software synthesis. A compiler is a tool that transforms
a high-level specification into assembly code. In this process, many low-level
internal actions are introduced (e.g. moving data across internal registers). In
case of software synthesis for reactive systems, these internal actions are not
observable by the environment.

X X

al b? a“ b! X

Fig. 2. Transformations for the synthesis of a reactive system

Figure 2 depicts an example of valid and invalid transformations according
to the 1/O compatibility criterion. The system X is 1/O compatible with X,
the mirror of X. Let us assume that, for implementability reasons, two internal
actions must be introduced in X, say 7 and 72. The transformation that leads
from X to X' produces the internal events concurrently between a and b. On the
other hand, the system X' produces 71 after a and then 7 and b concurrently.
Even though the transformations from X to X’ and X" preserve observational
equivalence, only X’ is /O compatible with X. If we analyze the interaction
between X and X", we observe that the trace amb leads to a state in which X
can produce the event @ but X’/ cannot accept it. In this work we will show that
input-properness is an important property in reactive systems, that guarantees
that the receptiveness of input events does not depend on the internal activity
of the system.

1.5 Contributions
The contributions of this work are next summarized:

— A formal definition of I/O compatibility, as a relation between the states of
two reactive systems is given.

Safety and liveness properties of I/O compatible systems are proved.

— A polynomial-time decision procedure for /O compatibility of finite transi-
tion systems is presented.

The relationship between observational equivalence, input-properness and
I/0O compatibility is studied as a support to propose 1/O-compatible trans-
formations during synthesis.

— A kit of Petri net transformations preserving 1/0O compatibility is presented
as an example to support the synthesis of asynchronous circuits.

For simplicity, only I/O compatibility between two systems is considered. The
extension to multiple systems would make the nomenclature more tedious, the
paper less readable and would not contribute to go deeply into the main concepts
of this work. The extension to more than two systems is quite straightforward
and left for the reader.

2 Reactive Transition Systems

An event in a reactive system can be input, output or internal. An input event
represents an action produced by the environment whereas an output event
represents an action produced by the system. Finally, an internal event represents
internal actions not observable by the environment. Typical examples of reactive
systems are a computer, a television set and a vending machine. The events
executed in a reactive system are assumed to take arbitrary but finite time.

Formally, a Reactive Transition System is a Transition System [1] where tran-
sitions are labeled with events that can occur in a reactive system.

Definition 1 (Reactive Transition System). A Reactive Transition System

(RTS) is a 4-tuple A = (S, X, T, s;,) where

— S is the set of states

— Y is the alphabet of events partitioned into three pairwise disjoint subsets of
input (X1), output (Xo) and internal (Xin7) events. Xops = X1 U Yo is
called the set of observable events.

— T CSxXxS isthe set of transitions

— Sin € S is the initial state

We will call it simply transition system (TS) when the distinction among
input, output and internal events is irrelevant.

Definition 2 (Enabling). An event e is enabled in the state s, denoted by
En(s,e), if (s,e,s") €T, for some s'.

Reachability in an RTS. The transitions are denoted by (s,e,s’) or s = s'.
The reachability relation between states is the transitive closure of the transition
relation 7. The predicate s = s’ denotes a trace of events o that leads from s
to s’ by firing transitions in T'. A state s is terminal if no event is enabled in s.
An RTS is finite if S and T are finite sets. An RTS is deterministic if for each
state s and each event e there can be at most one state s’ such that s — s’.

Language of an RTS. An RTS can be viewed as an automaton with alphabet
XY, where every state is an accepting state. For an RTS A, let L(A4) be the
corresponding language, i.e. its set of traces starting from the initial state.

2.1 Properties of Reactive Transition Systems

Depending on the interpretation of the events in an RTS, different properties
can be defined.

Definition 3 (Livelock). A livelock is an infinite trace of only internal events.

An RTS is livelock-free if it has no livelocks.

Livelocks can be detected in polynomial time in finite RTSs. The problem
is reduced to the detection of cycles in a graph in which only the edges labeled
with internal events are taken into account.

Definition 4 (Input-properness). An RTS is input-proper when for every
. e € . . .
internal transition s — s', with e € Xin7 and for every input event i € X,
En(s’,i) = En(s,1).

In other words, input-properness is a property that indicates that the en-
abledness of an input event in a given state depends only on the observable
trace leading to that state. Input-properness was introduced in [3] and is a cru-
cial concept to preserve 1/O compatibility, as shown later in Sect. 5. Tt avoids
the situations in which the system is doing some “pending” internal work when
the environment is producing an input event.

The underlying idea of input-properness was previously presented by Dill [7]
when, as a result of hiding an output signal, the same trace could be considered
both as success and failure.

Definition 5 (Mirror). The mirror of A, denoted by A, is another RTS identi-
cal to A, but in which the input and output alphabets of A have been interchanged.

2.2 Synchronous Product

The synchronous product of two transition systems is a new transition system
which models the interaction between both systems that synchronize with com-
mon events [1]. We define the synchronous product for the class of transition
systems, where no partition exists among the set of events. The extension to
reactive transitions systems is straightforward.

Definition 6 (Synchronous Product). Let A = (S4, X4, T4 1), B =

(SB,xB TB sB) be two TSs. The synchronous product of A and B, denoted
by A x B is another TS (S, X, T, s;n) defined by

Sm:(m? w};}ES
- Y=x4ux

S C S§4 x SP is the set of states reachable from s, according to the following
definition of T.
Let (s1,s1'y € S.

e lfec ZANYB, 51 5 sy € T4 and sy 5 s, € TB, then (sy,s}) >

(s2,85) €T

o Ifec XA\ X% and s1 5 sy € TA, then (s1,51) 5 (s9,81) €T

o Ifec B\ X4 and s 5 s, € TP, then (s1,s) = (s1,s4) €T

e No other transitions belong to T

3 1/0 Compatibility.

A formal description of the conditions needed for having a correct dialogue
between two RTSs is given in this section. We call this set of conditions I/0
compatibility. The properties of the /O compatibility can be stated in natural
language:

(a) Safeness: if system A can produce an output event, then B must be prepared
to accept the event.

(b) Liveness: if system A is blocked waiting for a synchronization with B, then
B must produce an output event in a finite period of time.

Theorems 1, 2 and 3 presented below define formally this properties.

Two RTSs are structurally I/O-compatible if they share the observational set
of events, in a way that they can be connected.
Definition 7 (Structural I/O Compatibility). Let A = (54, X4, T4, s4)
and B = (SP, X8, T8 sB) be two RTSs. A and B are structurally 1/O compat-
ible if ¥p = X8 ¥4 =3B ©ANXE . =0 and B NEA, = 0.

The following definition gives a concise formalization of the conditions needed
for characterizing the correct interaction of two RTSs:

Definition 8 (I/O Compatibility). Let A = (4,54, T4,s{) and B =

s in,
(8B, xB TB sB) be two structurally /O compatible RTSs. A and B are 1/0

compatible, denoted by A = B, if A and B are livelock-free and there exists a
relation R C S x S® such that:

1. sf\nRsﬁl.

2. Receptiveness (output events of one party are expected by the other party):
(a) If s1Rs), e € ¥4 and s1 = sy then En(s),¢) and ¥s| 5 s} : 53 Rsh.
(b) If siRsh, e € £B and sy 5 s, then En(s1,e) and Vs > sy : sy Rs).

3. Internal Progress (internal process preserves the interaction):

g p p .
(a) If s1Rs', e € E}ANT and s1 < sy then saRs’.
(b) If siRs, e € X8\ and s 5 s then s Rs).

4. Deadlock-freeness (both parties can not be blocked at the same time):
(a) If s1Rs| and {e|En(sy,e)} C X} then {e|En(s|,e)} ¢ XP.

(b) If s1Rs} and {e|En(s},e)} C X then {e|En(s1,e)} ¢ Xf.

Let us consider the examples of Fig. 1. In Fig. 1(a), the receptiveness condi-
tion fails and therefore X and Y are not I/O compatible. However, the RTSs of
Fig. 1(b) are I/O compatible. Finally, Fig. 1(c) presents an example of violation
of the deadlock-freeness condition.

Condition 4 has a strong impact on the behavior of the system. It guarantees
that the communication between A and B has no deadlocks (see theorem 3).

Lemma 1. Let A and B be two RTSs such that A = B, let R be an I/0 compal-
ible relation between A and B and let A x B = (S, X, T, sin) be the synchronous
product of A and B. Then, (s,s') € S = sRs'

Proof. If (s,s’y € S, then there is a trace o that leads from s;, to (s, s’). We
prove the lemma by induction on the length of o.

— Case |o| = 0. The initial states are related in Condition 1 of Definition 8.

— Case |o| > 0. Let 0 = o'e, with |0/| = n, and assume that it holds for
any trace up to length n. Let (s1,s]) be the state where the event e is
enabled. The induction hypothesis ensures that sy is I/O compatible to s;.
Two situations can happen in s; depending on the last event e of o: either
1) e € X¥o U Xin7 is enabled in s, or 2) only input events are enabled in
s1. In situation 1), Conditions 2-3 of Definition 8 guarantee that s is 1/O
compatible to s'. In situation 2), applying Condition 4 of Definition 8 ensure
that some non-input event is enabled in state s} of B. Definition 6 and
Conditions 2-3 on s} and the enabled non-input event e guarantees s to be

I/0O compatible to s'. O

Theorem 1 (Safeness). Let A and B be two RTSs such that A = B, and a
trace o € L(A x B) of their synchronous product such that s;, 5 (s,s"). If A
can fire an output event in s, then the same event is enabled in state s’ of B.

Proof. Tt immediately follows from Lemma 1 and the condition of receptiveness
in the definition of I/O compatibility. a

Theorem 2 (Absence of Livelocks). Let A and B be two RTSs such that
A= B, and let A x B be the synchronous product of A and B. Then, A x B is
livelock-free.

Proof. The definition of synchronous product implies that only livelocks appear
in A x B if either A or B has a livelock. But A and B are livelock-free because
A= B. O

The following theorem is the one that proves the absence of deadlocks pro-
duced by the interaction between two I/O compatible RTSs.

Theorem 3 (Liveness). Let A, B be two RTSs such that A = B, and a trace
o € L(A x B) of their synchronous product such that s;, % (s,s'). If only input

events of A are enabled in s, then there exists some trace (s,s') % (s, s") such
that some of the input events of A enabled in s are also enabled in s" as output
events of B.

Proof. By Lemma 1 we have that sRs’. We also have that {e|En(s,e)} C X7.
By Condition 4 of Definition 8 we know that {e|En(s},e)} ¢ XP. Theorem 2
guarantees the livelock-freeness of A x B, and therefore from (s, s') there exists a
trace of internal events reaching a state (s, s”) where no internal event is enabled.
We know by Lemma 1 that sRs’’. Condition 4 of Definition 8, together with the
fact that no internal event is enabled in s” implies that there exists an output
event enabled in s”, which is enabled as input in s. |

4 A Polynomial-time Decision Procedure for I/0
Compatibility

A procedure for deciding if two finite RTS are 1/O compatible is presented in
this section. It is based on the synchronous product of transition systems.

Theorem 4. Let A = (§4, X4, T4 s1), B= (S8, X8, T8, sB) be two livelock-

»2in
free RTSs. A= B iff A x B=(S,X,T,s;) fulfills the following properties:
1. (a) For each state s € S*, for each event e € X4 :
if En(s,e) holds and {s,s') € S then En({s, s'), €) holds.
(b) For each state s' € SB, for each event e € X5
if En(s,e) holds and (s,s'y € S then En((s, s'), e) holds.
2. For every (s,s'y € S, if (s,s'y € S is a terminal state, then s and s' are
terminal states in A and B, respectively.

Proof. The proof is divided into two parts:

Sufficiency.
Let R be an T/O compatibility relation between A and B and (s,s’) € S.
Lemma 1 guarantees that sRs’.

1. Since sRs’, then En(s’, e) holds in B. By the definition of synchronous prod-
uct, En({s, s'),) holds. (Similarly for 1(b)).

2. Every non-input event e enabled in s or s’ induces e to be enabled in (s, s’). If
only input events are enabled in one of the states, condition 4 of Definition 8
guarantees the enabling in the other state of a non-input event, and the
definition of synchronous product ensures the existence of a transition leaving
from (s,).

Necessity.
We will proof that S is an I/O compatible relation between A and B. State

(s#,s2) belongs to S by definition of synchronous product. Let {s,s’) € S.

mny TIn
Property 1, together with the definition of synchronous product implies the
receptiveness condition of Definition 8. Condition 3 (internal progress) of Defi-
nition 8 holds by the definition of synchronous product: every internal event e
enabled in s (s') is also enabled in (s, s’), and the state(s) of S reached by the
firing of € in (s, s’) are exactly the pairs of I/O compatible states induced by
Condition 3 with s and s’. Condition 4 (deadlock-freeness) of Definition 8 also
holds: if the events enabled in s are input events, then given that (s, s’) is not
terminal (due to Property 2), the only possibility for having an event enabled in

(s, s'y in Definition 6 is when a non-input event is enabled in s’. |

Theorem 4 enables the use of the synchronous product for deciding the 1/0
compatibility of two finite RTSs in polynomial-time!. It consists in computing

! Figure 3 shows why it is necessary to consider only livelock-free RTSs in Theorem 4.
Systems 1 and 2 are 1/O compatible, but System 1 could have a livelock in the state
reached after the sequence bm a.

the synchronous product in the first step, and then checking the conditions 1
and 2 of the theorem.

5 1I/0 Compatibility and Observational Equivalence.

In the first part of this section, the observational equivalence relation [13] is
defined. Section 5.2 presents the relationship between 1/O compatibility and
observational equivalence.

The proofs for the theorems in this sections are not difficult, but tedious. For
this reason, they are presented in the appendix.

5.1 Observational Equivalence

The observational equivalence relation between two reactive systems was first
introduced by Milner in [13]. The relation identifies those systems whose observ-
able behavior is indistinguishable.

Definition 9. Let A = (S4, X4, 74, s} and B = (SB, X8, TB sB) be two
RTSs. A and B are observational equivalent (A ~ B) iff ¥4, = Y5, and
there erxists a relation R C 8 x S’ satisfying

1. s# RsP .
2. (a) Vs € S, 3s' € SB s.t. sRs'.
(b) Vs' € SB, 3s € S4 s.t. sRs'.
3. (a) V¥s1 € S4, sy € SB:if siRs), e € (¥4p55) and s 5 sy then doq,09 €
(YPyp)* such that s, L% of,, and sy Rs).
(b) Vs1 € S84, s € SP:if siRs), e € (YAgps) and s| 5 sb then Jo1,09 €
(E‘IANT)* such that s; =3 s9, and sy Rsh.

The two RTSs of Fig. 1(a) are observational equivalent, because every ob-
servable sequence of one of them can be executed in the other. Figures 1(b)-(c)
depict examples of non-observationally equivalent systems.

5.2 A Sufficient Condition for I/O Compatibility.

A sufficient condition for having 1/O compatibility between two reactive systems
can be obtained when combining the notions of observational equivalence and
input-properness:

Theorem 5. Let A = (S4, X4, T4 s), B= (S8, X8, T8 sEB) be two livelock-
free RTSs with X4 = X8 and X5 = YP. If A and B are input proper and
A~ B, then A = B.

Proof. See appendix.

N a
a? c!
b b
C
rll
a4

Fig. 8. Two I/O compatible systems that are not input-proper.

When considering a system A and some 1/0O compatible system B, any trans-
formation of B preserving both input-properness and observational equivalence
will lead to another 1/O compatible system:

Theorem 6. Let A = (S4, 24,14 58, B YB.TB sB) and C =

s 2in)

B = (S
(8¢, XC, T s{) be three RTSs. If A = B, B ~ C, and C is input-proper
then A = C.

Proof. See appendix.

Figure 2 shows an example of application of Theorem 6. The transformation
of X which leads to X’ preserves both observational equivalence and input-
properness, and then, X and X’ can safely interact.

Finally, it must be noted that I/O compatibility does not require input-
properness, as shown in Fig. 3. This occurs when the non-input-proper situations
are not reachable by the interaction of the two systems.

6 Application to the Synthesis of Asynchronous Circuits

Synthesis is the process of transforming a model in such a way that the observ-
able behavior is preserved and the final model commits a set of implementability
properties. This section presents a simple synthesis example in the area of asyn-
chronous circuits modeled with Petri nets. I/O compatibility is the property we
want to preserve across all transformations from the specification. A good survey
on Petri net theory can be found in [15].

A kit of synthesis rules is presented that is valid for deterministic free-choice
live and safe Petri nets (FCLSPN) [6]. Under certain conditions, the rules in
the kit preserve I/O compatibility. Formal definitions and proofs can be found
in [4]. Section 6.2 presents a simple example that shows the usefulness of the
transformations.

6.1 I/O Compatible Petri Net Transformations

Three rules are presented for modifying the structure of a Petri net. The rule ¢,
is used for serializing two concurrent transitions. It was first defined in [2]. Here

(¢e)

Fig. 4. Kit of Petri net transformations: (¢,) concurrency reduction, (¢;) increase of
concurrency, (¢.) transition elimination.

a simplified version is presented. Rule ¢; does the opposite: it increases the con-
currency between two ordered transitions. ¢; can be obtained as a combination
of the ones appearing in [15]. Finally, rule ¢. hides a transition. It was first pre-
sented in [11]. All three rules preserve the liveness, safeness and free-choiceness
of the Petri net. In each rule, the conditions for preserving 1/0 compatibility are
also described.

Rule ¢,. The purpose of the rule ¢, is to eliminate the concurrency between two
transitions of the Petri net. This is done by inserting a place that connects
the two transitions, ordering their firing. Figure 4 (top left) presents an
example of concurrency reduction between transitions ¢; and t;. Rule ¢,
preserves 1/O compatibility when neither ¢; nor t; are transitions labeled
with an input event.

Rule ¢;. Inversely to rule ¢,, rule ¢; removes the causality relation between two
ordered transitions, making them concurrent. Figure 4 (top right) presents
an example of increase of concurrency between transitions ¢; and ¢;. Rule ¢;
preserves I/O compatibility when: 1) either ¢; or ¢; represent a transition of
an internal event, and 2) no input-properness violations are introduced by

the transformation.

Environment «) System) Environment System
X+ X X+
y

/ l\z: y© ooy
y- ¥+ | b
X— z z— zZ+

\{/ N

z- X=

(b)

Fig. 5. (a) Mirrored implementation of an asynchronous circuit, (b) valid implemen-
tation with concurrency reduction.

Rule ¢.. The rule ¢, eliminates a transition from the Petri net. Figure 4 (bot-
tom) presents an example of elimination of transition €. Rule ¢, preserves
I/O compatibility when € represents an internal event.

6.2 Synthesis of a Simple Circuit

Figures 5(a-b) depict the example. The models used to describe behavior are
marked graphs, a subclass of Petri nets with no choice places, in which events
represent rising (4) or falling (-) transitions of digital signals. The goal is to
synthesize a circuit that can have a correct dialogue with the environment. We
will assume that the components of the circuit have arbitrary delays. Likewise,
the environment may take any arbitrary delay to produce any enabled output
event.

Let us first have a look at Fig. 5(a). The marked graph in the environment can
be considered as a specification of a circuit. The underlined transitions denote
input events. Thus, an input event of the environment must have a correspon-
dence with an output event of the system, and vice versa. The behavior denoted
by this specification can be informally described as follows:

In the initial state, the environment will produce the event x+. After that,
the environment will be able to accept the events y+ and z+ concurrently
from the system. After the arrival of z+, the environment will produce
x—, that can occur concurrently with y+. Next, it will wait for the system
to sequentially produce z— and y—, thus leading the environment back to
the initial state.

The circuit shown in Fig. 5(a) behaves as specified by the adjacent marked
graph. In this case, the behavior of the system is merely a mirror of the behavior
of the environment. For this reason, the dialogue between both is correct.

Let us analyze now the system in Fig. 5(b). The marked graph in the system
part has been obtained by reducing concurrency between events y+ and z+,
from the marked graph of Fig. 5(a). Still, the system can maintain a correct
dialogue, since the environment is able to accept more behaviors than the ones

produced by the system, i.e. the transformation performed preserves I/O com-
patibility. We can observe that, even though the behavior is less concurrent, the
implementation is simpler.

7 Related Work

7.1 Conformation

The notion of conformation was defined in [7], where the model used for specify-
ing circuits is a trace structure. Conformation models the fact that a specification
is correctly realized by a given implementation. A complete trace structure is a
four-tuple containing the set of input signals (7), the set of output signals (O),
the set of traces leading to a success (S) and the set of traces leading to a fail-
ure (F), with S, F C (1 UO)*. A complete trace structure models complete
executions of a circuit. This allows to express liveness properties.

Given two complete trace structures 7" and 7", T' conforms to T" (T < T")
if the composition of 7" and the mirror of 7" is failure-free (i.e. set of failures of
the resulting trace structure is empty).

The 1/O compatibility can be reformulated to define a concept similar to
conformation: for specification A, the system A represents a model of the envi-
ronment where a possible implementation B must correctly interact [7]. We call
this relation I/0 preserving realization:

Definition 10 (I/O Preserving Realization). Let A and B be two RTSs,
A representing the specification of a reactive system. B realizes A (A = B) if
A=B.

I/0 preserving realization inherits the liveness property from 1/O compati-
bility: if no deadlocks exist in the interaction between the specification and its
environment then the same occurs with its T/O realizable implementation.

7.2 Other Relations

I/O automata [12] is a model similar to RTS. In fact, any RTS can be expressed as
an I/0 automata by including a failure state that is the sink of transitions labeled
with the input events not enabled at each state. In [12], a notion of automata
satisfaction is presented, expressing when an I/O automata specification is cor-
rectly implemented by another I/O automata. The main difference between their
satisfaction notion and our realization notion is that we guarantee the absence
of deadlock situations in the dialogue between the system and its environment.
Moreover, the fact that systems are assumed to be livelock-free allows a local
definition of the I/O compatibility, in contrast to the trace-based definition in
I/0 automata. I/O compatibility has also relations with other equivalences like
testing equivalence [5], built-in at CTRCATL [8].

In the area of asynchronous systems, several authors have defined differ-
ent relations to model the concepts of refinement and realization [3,18,16,17,

10]. Among them, we emphasize the one proposed by Brzozowski and Seger [3].
They introduced the concept of input-properness and defined a realization notion
stronger than I/O compatibility, that requires language equivalence. In particu-
lar, the following theorem can be easily proved.

Theorem 7. Let A, B be two livelock-free RTSs such that A realizes B under
the conditions defined in [3]. Then, A = B.

Finally, Verhoeff proposed the XDI refinement for delay-insensitive systems.
This type of refinement assumes that the dialogue between two systems is pro-
duced by introducing any arbitrary delay in the communication, i.e. an event is
received some time later than it is produced. Analogously to [7], the expressive
power of the XDl model allows to include progress concerns in the model. Differ-
ently to the RTS model, the XDl model can not express internal progress (only
input/output events are allowed in the model).

8 Conclusions

The theory presented in this paper is only the starting point to support syn-
thesis frameworks that require a kit of transformations that preserve a correct
interaction with the environment.

Transformations such as insertion of internal events, reduction/increase of
concurrency and so on, are crucial for the synthesis of asynchronous circuits
or embedded software, in which concurrent models, e.g. Petri nets, are used to
specify the behavior of the system.

Further research is needed to extend the results of this work and derive
necessary and sufficient conditions for the preservation of /O compatibility.

References

1. A. Arnold. Finite Transition Systems. Prentice Hall, 1994.

2. G. Berthelot. Checking Properties of Nets Using Transformations. In G. Rozen-
berg, editor, Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer
Science, pages 19-40. Springer-Verlag, 1986.

3. Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits. Springer-
Verlag, 1995.

4. J. Carmona, J. Cortadella, and E. Pastor. Synthesis of reactive systems: application
to asynchronous circuit design. In J. Cortadella, A. Yakovlev, and G. Rozenberg,
editors, Advances in Concurrency and Hardware Design (ACHD). Springer-Verlag,
2002. (To appear). Available at http://www.lsi.upc.es/”jcarmona/achd02.ps.gz.

5. R. de Nicola and M. C. B. Hennessy. Testing Equivalences for Processes. Theoret-
ical Computer Science, 34(1-2):83-133, November 1984.

6. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
Cambridge, Great Britain, 1995.

7. David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

10.

11.

12.

13.

14.

15.

16.

17.

18.

5 1 1
e'i (27;0 el 2 e’l .0
) 2 e’i ./*. el

(a) (b)

Fig. 6. Conditions 2(a) and 4(a) from the proof of Theorem 5.

G.J. Milne. CIRCAL: A calculus for circuit descriptions. Integration, the VLSI
Journal, 1(2-3):121-160, October 1983.

A. Jerraya. Hardware-software codesign. [EEE Design & Test of Computers,
17:92-99, March 2000.

Mark B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9-18, 1988.

A. V. Kovalyov. On complete reducibility of some classes of Petri nets. In Pro-
ceedings of the 11th International Conference on Applications and Theory of Petri
Nets, pages 352-366, Paris, June 1990.

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
In CWI-Quarterly, volume 2, pages 219-246, Centrum voor Wiskunde en Infor-
matica, Amsterdam, The Netherlands, September 1989.

R. Milner. A Calculus for Communicating Processes, volume 92 of Lecture Notes
in Computer Science. Springer Verlag, 1980.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541-574, April 1989.

Radu Negulescu. Process Spaces and Formal Verification of Asynchronous Circuits.
PhD thesis, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, August 1998.

Tom Verhoeff. Analyzing specifications for delay-insensitive circuits. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 172-183, 1998.

M. Yoeli and A. Ginzburg. Lotos/cadp-based verification of asynchronous circuits.
Report CS-2001-09-2001, Technion - Computer Science Department, September
2001.

A Proofs of Section 5

Proof of Theorem 5.

Proof. Let R be the relation induced by the observational equivalence between
A and B. We will prove that R is also an T/O compatibility relation between A
and B. R must fulfill the conditions of the 1/O compatibility relation:

— Condition 1: s/ Rs? by Definition 9.

v
0 1
P,

' Q

MY
D)
o)
e

-0

(a) (b)

Fig. 7. Conditions 2(a) and 2(b) from the proof of Theorem 6.

— Condition 2(a): let s Rs, and assume s; — sy, with e € X3. Figure 6(a)
depicts the situation. The observational equivalence of s1 and s} implies that
a trace o of internal events exists in s} enabling e. The event e is an input
event in B, and therefore the input-properness of B ensures that in every
state s’ of o, En(s’, €) holds. In particular, it also holds in the first state and,
thus, En(s},¢). The definition of R ensures that every s} such that sy < s/
is related with s by R.

— Condition 3(a): let syRs| and assume sq 5 sy, with e € Z}"NT. The
definition of R implies that s, Rs].

— Condition 4(a): let s Rs}, and suppose {e|En(s1,e)} C X7'. Figure 6(b)
depicts the situation. Let e be one of the input events enabled in s;. The
observational equivalence between s; and s} requires that a sequence o of
internal events exists enabling e starting in s}, and given that e in not input

in B implies {e|En(s},¢e)} ¢ XP.

An identical reasoning can be applied in the symmetric cases (conditions 2(b),

3(b) and 4(b)). O

Proof of Theorem 6.

Proof. Let R’ be the relation between A and B, and & the observational equiv-
alent relation between states from B and C'. Define the relation R as:

VS c SA,S“ c SB,Sl c SC . SRISIIASII zSI o (S,Sl) c R

The conditions that R must satisfy are the ones of Definition 8. Remember
that A = B implies that X5 = ¥4 and XP = ¥4. Moreover, relation B ~ C
implies that X554 = X5 5..

— Condition 1: the initial states are related in R by definition.
— Condition 2(a): let 51 Rs’, and suppose s; — sy with e € ¥4. Figure 7(a)
depicts the situation. Given that sy R's{, e is enabled in s{ and for each

€ . .
sy such that s{ — s4, saR’'sYy. The observational equivalence of s{ and s/,

together with the fact that C' is input-proper implies that e is also enabled
in s} (identical reasoning of condition 2(a) in Theorem 5), and the definition
of ~ implies that each s} such that s{ < s5 must be related in & with s.
Then each s/, such that s| < s} is related by R with s,.
Condition 2(b): let s; Rs’, and suppose s§ — s, with e € £5. Figure 7(b)
depicts the situation. The observational equivalence of 5“ and s| implies that
there is a sequence o of internal events startlng in s{ and enabling e, and
every state of o is observational equivalent to s}. Moreover, every state of o
is also related to s1 by the condition 3(b) of R’. In particular, s; is related
by R’ with the state s’ of o s.t. s’ i) s4; applying Condition 2(b) of R/,
En(s1,€) holds and for each e s.t. s1 N s2, SQRIS The definition of R and
~ induces that each such s is related with s} by R.
Condition 3(a): let sy Rs), and suppose s; — sy with e € ¥4 .. Then
Condition 3(a) of R’ ensures s;R’sY and then applying the definition of R
implies s, Rs].
Condition 3(b): let s; Rs}, and suppose s = s, with e € X¥¢,,.. Then
s & sy, and then s1 Rs.
Condition 4(a): let 51 Rs}, and suppose {e|En(s1,¢)} C 7. Condition 4(a)
of R ensures that {e|En(51, } ¢ TP:let a be an event such that 51 5 sy,
witha ¢ XP. If a € X5, the related pair s & s| ensures that in s{ there
is a feas1ble sequence of internal events (which can be empty) enabling a,
and therefore {e|En(s|,e)} ¢ Y¢. 1f a € ¥B,,., applying Condition 3(b) of
R’ and the definition of =, s1R'sy and s{ ~ s} is obtained, respectively.
The same reasoning applied to s1, s{ and s} can now be applied to s1, s}
and s{. Given that B is livelock-free, the sequence of internal events starting
in s{ and passing through s} must end in a state s where a observable
event o’ is enabled. State s” is also related by R’ with s1, and by ~ with s}
(applying inductively the same reasoning applied to s%). Event a’ belongs to
Y5 because otherwise a violation of Condition 2(b) in R’ arise. The previous
case (a € X5, enabled in s/) can be applied to s”.
Condition 4(b): let 31R3'1, and suppose {e|En(s,e)} C X¢. Let a such
that s 5 s§. Ifa € X5, then a contradiction arise because s{ & s} and
{e|En(s},e)} C Y¢. 1f a € Y8, then identical conditions make En(s/,a) to
hold. If a € X8, then Condltlons 3(a) of R" and = ensure that s{ R'sy and
5’2’ A 51, and the same reasoning of s1, s} and s{ can be applied to s1, s} and
5 (but not infinite times, because B is livelock-free). Therefore a feasible
sequence of internal events (which can be empty) exist from 51 reaching a
state s’/ such that {e|En(s",e)} C uI , Wlth is's” and s” &~ s]. Condition
4(b) of R’ ensures that {e|En (s1,)} ¢ X O

