
 
 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

Aquesta és una còpia de la versió author’s final draft d'un article 
publicat a la revista  International journal of engineering science. 

URL d'aquest document a UPCommons E-prints:  

https://upcommons.upc.edu/handle/2117/130813 

 
 

Article publicat / Published paper: 

Leseduarte, M. C.; Quintanilla, R. Decay rates of Saint-Venant type 
for functionally graded heat-conducting materials. "International 
journal of engineering science", Juny 2019, vol. 139, p. 24-41. DOI: 
10.1016/j.ijengsci.2019.03.001 
 
 
 
 
 

© 2019. Aquesta versió està disponible sota la llicència CC-BY-NCND 
3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/es/ 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
https://upcommons.upc.edu/handle/2117/130813
https://doi.org/10.1016/j.ijengsci.2019.03.001
http://creativecommons.org/licenses/by-nc-nd/3.0/es/


Decay rates of Saint-Venant type for functionally graded

heat-conducting materials

M.C. Leseduarte∗ and R. Quintanilla
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Abstract

This paper investigates decay rates for the spatial behaviour of solutions for functionally graded
heat-conducting materials. From a mathematical point of view, we obtain a new inequality of
Poincaré type. This new result allows us to give new decay rates for functionally graded materials
when the inhomogeneity depends on the radial variable and the axial variable of the cylinder. The
case when the cross-section is increasing is also considered. Besides, we propose to obtain estimates
for the case of mixtures. Some pictures illustrate our estimates.

keywords: Functionally graded materials, heat conduction, spatial decay estimates

1 Introduction

Saint-Venant’s principle has been investigated from a mathematical and a thermomechanical points
of view in recents years [1–7]. For these studies the authors try to evaluate how the perturbations
produced on a part of the boundary of a solid are damped far away where they were applied. This is
relevant to clarify where the influence of the perturbations can be neglected.

A considerable interest has been developed in investigating the influence of material inhomogene-
ity on the decay rate of Saint-Venant end effects in mechanical theories of elasticity, mixtures and
piezoelectric materials [4, 8–15]. Also lower bounds for the decay has been obtained by means of the
logarithmic convexity argument [16]. It is suitable to say that these studies are motivated by the big
interest on functionally graded materials (FGMs). These materials are characterized by the continuous
varying properties tailored to satisfy particular applications in engineering.

In the previously cited papers the main idea is to consider anti-plane shear deformations of elastic
or mixtures of elastic materials. Therefore the problem becomes a problem on a semi-infinite strip.
We have changed completely the aim of our interest. We are going to consider an isotropic, but now
inhomogeneous heat conducting material which occupies a circular semi-infinite cylinder (or cone). In
this context we propose two situations. The first is when the inhomogeneity of the material depends
on the radial coordinate and the second when the inhomogeneity depends on the radial coordinate
and the axial coordinate. The case when the cross-section is increasing is also considered.

In the first case we are driven to a singular Sturm-Liouville problem and the question is to
determinate a lower bound for the first eigenvalue. To this end, we use a couple of approaches. One of
them uses a result obtained in [12] which is useful in our case and the second one is more innovating
because we propose a new Poincaré’s inequality type for suitable weight functions. This new inequality
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requires that the weight satisfies certain conditions and we will give a large quantity of examples
where the conditions hold. Then we sketch how the use of the usual arguments for spatial decay
estimates [1, 17, 18] bring us to use again the new proposed Poincaré’s inequality. New spatial decay
estimates are obtained. In Section 6 we also consider the case when the geometry of the body is not
a cylinder. Last section is devoted to point out how to extend our results in the case of mixtures.

2 Basic Equations

In this section we recall the problem we want to work about in a mathematical language. As our
analysis involves the study of spatial estimates we will define our problem in a semi-infinite cylinder
R = D × [0,∞), where D is a two-dimensional circle of radius a.

Our aim is to study the rate of decay for the solutions of the problem determined by the equation

(K(r, x3)u,i),i = 0 in D × [0,∞) (K ≥ 0) (2.1)

with the boundary conditions
u(x) = 0 on ∂D × [0,∞) (2.2)

u(x1, x2, 0) = f(x1, x2) on D × {0} (2.3)

and the asymptotic condition

u −→ 0 as x3 −→∞ (uniformly). (2.4)

In this paper we assume an inhomogeneity in the sense that the thermal conductivity depends
on the variable

r =
(
x21 + x22

)1/2
(2.5)

and with respect to the axial variable x3.
As our problem is defined in terms of the polar coordinates, we will recall our equation (2.1) in

these coordinates. That is, we assume that

u = u(r, θ, x3) (2.6)

where r is defined at (2.5) and

θ = arctan

(
x2
x1

)
. (2.7)

We have
u,1 = u,r

x1
r
− u,θ

x2
r2
, u,2 = u,r

x2
r

+ u,θ
x1
r2

and

(K(r, x3)u,1),1 =
∂K(r, x3)

∂r

x1
r

(
u,r

x1
r
− u,θ

x2
r2

)
+K(r, x3)

[
u,rr

x21
r2
− 2u,rθ

x1x2
r3

+ u,θθ
x22
r4

+ u,r
r2 − x21
r3

+ u,θ
2x1x2
r4

]
,

(K(r, x3)u,2),2 =
∂K(r, x3)

∂r

x2
r

(
u,r

x2
r

+ u,θ
x1
r2

)
+K(r, x3)

[
u,rr

x22
r2

+ 2u,rθ
x1x2
r3

+ u,θθ
x21
r4

+ u,r
r2 − x22
r3

− u,θ
2x1x2
r4

]
.
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In view of (2.5) and after adding the last two equalities, equation (2.1) can be written as

∂K(r, x3)

∂r
u,r +K(r, x3)

[
u,rr +

u,θθ
r2

+
u,r
r

]
+ [K(r, x3)u,3],3 = 0. (2.8)

The solutions u(r, θ, z) of (2.8) are combinations of the functions

ψn(r, x3)

{
sinnθ
cosnθ

}
, (2.9)

where ψn(r, x3) satisfies

∂K(r, x3)

∂r
ψn,r +K(r, x3)

[
ψn,rr +

1

r
ψn,r

]
+ [K(r, x3)ψn,3],3 =

n2

r2
K(r, x3)ψn. (2.10)

It is worth noting that the right hand side term of (2.10) comes from the evaluation of K(r, x3)u,θθ/r
2.

In this case the equation we want to study can be written as

∂K(r, x3)

∂r
u,r +K(r, x3)

[
u,rr +

u,r
r

]
+ [K(r, x3)u,3],3 =

n2

r2
K(r, x3)u, (2.11)

which can be rewritten as(
rK(r, x3)u,r

)
,r

+
(
rK(r, x3)u,3

)
,3

=
n2

r
K(r, x3)u. (2.12)

It is worth noting that whenever we assume that K(r, x3) ≥ 0, the slowest solution will be obtained
when n = 0. Therefore in this paper we will study the equation(

rK(r, x3)u,r
)
,r

+
(
rK(r, x3)u,3

)
,3

= 0. (2.13)

The boundary conditions (2.2), (2.3) become

u(a, x3) = 0, on {a} × [0,∞), (2.14)

u(r, 0) = f(r) on [0, a]× {0}. (2.15)

The asymptotic condition (2.4) is also imposed.

2.1 Case K = K(r)K = K(r)K = K(r)

An important problem is determined in the case where the function K is independent of x3; that is
K = K(r). Whenever K(r) satisfy suitable conditions, we have that the problem is well posed. In
fact, the general solutions of the equation (2.8) are combinations of the functions

u(r, θ, x3) = φm(r)

{
sinnθ
cosnθ

}
exp (−λnmx3) , (2.16)

where φm(r) are the solutions of the Sturm-Liouville problem(
rK(r)φ′(r)

)′
+

(
λ2r − n2

r

)
K(r)φ(r) = 0 (2.17)

with the boundary conditions
φ(a) = 0, |φ(0)| <∞. (2.18)

The problem determined by (2.17)-(2.18) is a singular Sturm-Liouville problem and we will obtain
the smallest value for λ when n = 0.

As we want to obtain the smallest rate of decay, we will restrict our attention to the problem
determined by the equation (

rK(r)φ′(r)
)′

+ λ2rK(r)φ(r) = 0 (2.19)

with the corresponding boundary conditions (2.18).
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3 KKK independent of x3x3x3: First Approach

In this section we will try to obtain a lower bound for the first eigenvalue λ21 determined by the problem
(2.18)-(2.19).

3.1 Theoretical Analysis

We know that the first eigenvalue of the problem can be characterized by means of the minimum value
of the Rayleigh quotient (see [19], p.184)

λ21 = min

∫ a
0 rK(r) (φ′(r))2 dr∫ a
0 rK(r) (φ(r))2 dr

(3.1)

This characterization shows that∫ a

0
rK(r) (φ(r))2 dr ≤ λ−21

∫ a

0
rK(r)

(
φ′(r)

)2
dr (3.2)

for every continuous function φ(r) satisfying condition (2.18).
Our first approach to this eigenvalue can be obtained with the help of the result ( [12], p.119).

Lemma 3.1 Let F (r) ∈ C2(0, a) such that F 1/2(r) > 0 on (0, a), F (0) = 0 and(
F 1/2

)′′
≥ −c1

(
F 1/2

)′
− c2

(
F 1/2

)
on (0, a), (3.3)

where c1, c2 are constants such that
c2 < π2/a2. (3.4)

Then, there exists a positive constant k1 = k1(|c1|, c2, a) such that∫ a

0
F (r)φ2(r)dr ≤ k1

∫ a

0
F (r)

(
φ′(r)

)2
dr (3.5)

for all continuous functions φ(r) such that |φ(0)| is bounded and φ(a) = 0.

It is worth noting that (see [12], p.121)

k1 =
a2(1 + |c1|/(2ε))

π2 [1− (c2 + |c1|ε/2) a2/π2]
, (3.6)

where
ε = −B +

√
B2 + (1− CA)/A (3.7)

and

A =
a2

π2
, B =

|c1|
2
, C = c2. (3.8)
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3.2 Discussion

We now give several illustrative examples where the previous result can be applied.
Example 1. Suppose that

K1/2(r) = K
1/2
0

( r
a2

)1/2
exp

(mr
a

)
, (3.9)

where m is a dimensionless constant and K0 is a positive constant.
If we take

F (r) = rK(r)

we see that
F 1/2(r) = K

1/2
0

r

a
exp

(mr
a

)
.

It is not difficult to see ( [12], p.123) that F 1/2 satisfies(
F 1/2

)′′
= −c1

(
F 1/2

)′
− c2F 1/2, (3.10)

where

c1 = −2m

a
, c2 =

m2

a2
.

Inequality (3.4) holds, whenever
m2 < π2.

We can calculate (see [12], p.123) that

k1 =
a2

π2

(
1− |m|

π

)−2(
1 +

2|m|
π

)−1
.

Therefore a lower bound for the rate of decay is

k ≡ π

a

(
1− |m|

π

)(
1 +

2|m|
π

)1/2

. (3.11)

Example 2. Let us consider the case

K1/2(r) =

(
K0

r

)1/2

exp
(mr
a

)
sin

br

a
, (3.12)

where m is a dimensionless parameter and K0 is a positive constant. We take

F 1/2(r) = K
1/2
0 exp

(mr
a

)
sin

br

a
.

The function F 1/2(r) is non-negative whenever

b < π.

Relation (3.10) holds, where

c1 = −2m

a
, c2 =

m2 + b2

a2
.

Therefore condition (3.4) holds whenever m2 + b2 < π2.
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If we consider

ε =
π

a

[√
1− b2

π2
− |m|

b

]
we can obtain (see [12], p.125)

k1 =
a2

π2

(
1 +
|m|
εa

)[
1−

(a
π

)2(m2 + b2

a2
+
|m|ε
a

)]−1
and the lower bound for the rate of decay will be

k ≡ π

a

(
1 +
|m|
εa

)−1/2 [
1−

(a
π

)2(m2 + b2

a2
+
|m|ε
a

)]1/2
. (3.13)

Example 3. Let us consider the case

K1/2(r) =

(
K0

r

)1/2 1

m

(
1− exp

(
−mr
a

))
, (3.14)

where m > 0 is a dimensionless constant and K0 is also a positive parameter. We have that

F 1/2(r) =
K

1/2
0

m

(
1− exp

(
−mr
a

))
.

We know that (
F 1/2

)′′
= −m

a

(
F 1/2

)′
.

Therefore we can take
c1 =

m

a
, c2 = 0.

And so

k1 =
(a
π

)2 (1 + d+
√

1 + d
)2

d(1 + d)
,

where d =
(
2π
m

)2
. A lower bound for the rate of decay becomes

k ≡ π

a

[√
1 +

m2

4π2
− m

2π

]
. (3.15)

4 KKK independent of x3x3x3: Second Approach

The estimates obtained in the previous section give some information on the lower bounds for the rate
of decay for the solutions. However, it is worth noting that the theoretical result proposed in Section
3 could not be applied to the easier case where K(r) = 1. For this reason we have proposed to state
another Poincaré’s type inequality in such a way that the homogeneous case could be also applied.
This new inequality will be used in a large quantity of examples.
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4.1 A new theorem

The aim of this subsection is to state and prove the following theorem and corollaries.

Theorem 4.1 Let K1/2(r) ∈ C2(0, a) such that K1/2(r) > 0 on (0, a) and such that K1/2(r) ≥ 0. Let
us also suppose that there exist three constants c1, c2 and c3 such that(

K1/2
)′′
≥ −c1

(
K1/2

)′
− c2K1/2 on (0, a), (4.1)

and
c1
2
K1/2 +

(
K1/2

)′
≥ −c3rK1/2 on (0, a), (4.2)

where
c2 + c3 < (z0/a)2 (4.3)

and z0 is the first zero of the Bessel function J0(r)
1. Then, there exists a positive constant k1 =

k1(|c1|, c2, c3) such that ∫ a

0
rK(r)φ2(r)dr ≤ k1

∫ a

0
rK(r)

(
φ′
)2

(r)dr, (4.4)

for all continuous function φ(r) such that |φ(0)| <∞ and φ(a) = 0.

Proof : Let us consider G(r) = K1/2(r)φ(r). We have that (see [19], p.300)∫ a

0
rG2(r)dr ≤

(
a

z0

)2 ∫ a

0
r
(
G′(r)

)2
dr. (4.5)

In view of the definition of the function G(r), we have after an integration by parts∫ a

0
r
(
G′(r)

)2
dr =

∫ a

0
rK(r)

(
φ′
)2

(r) dr −
∫ a

0
rK1/2(r)

(
K1/2

)′′
(r)φ2(r) dr

−
∫ a

0
K1/2(r)

(
K1/2

)′
(r)φ2(r)dr.

(4.6)

Therefore, we see that∫ a

0
rK(r)φ2(r) dr ≤

(
a

z0

)2 [∫ a

0
rK(r)

(
φ′
)2

(r) dr −
∫ a

0
rK1/2(r)

(
K1/2

)′′
(r)φ2(r) dr

−
∫ a

0
K1/2(r)

(
K1/2

)′
(r)φ2(r) dr

]
.

(4.7)

But

−
∫ a

0
rK1/2

(
K1/2

)′′
φ2(r) dr ≤ c1

∫ a

0
rK1/2

(
K1/2

)′
φ2(r) dr + c2

∫ a

0
rK(r)φ2(r) dr, (4.8)

and
1

2

∫ a

0
r (K(r))′ φ2(r) dr = −

∫ a

0
rK(r)φ(r)φ′(r) dr − 1

2

∫ a

0
K(r)φ2(r) dr. (4.9)

1It is known that z0 = 2.4048255577...
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From (4.7), (4.8) and (4.9) we obtain∫ a

0
rK(r)φ2(r) dr ≤

(
a

z0

)2 [∫ a

0
rK(r)

(
φ′
)2

(r) dr − c1
∫ a

0
rK(r)φ(r)φ′(r) dr

+c2

∫ a

0
rK(r)φ2(r) dr

]
−
(
a

z0

)2 ∫ a

0

(
c1
2
K1/2(r) +

(
K1/2

)′
(r)

)
K1/2(r)φ2(r) dr.

(4.10)

In view of the condition (4.2), the term containing the last integral on the right hand side of (4.10)
can be bounded by (

a

z0

)2

c3

∫ a

0
rK(r)φ2(r) dr. (4.11)

Therefore, ∫ a

0
rK(r)φ2(r) dr ≤

(
a

z0

)2 [∫ a

0
rK(r)

(
φ′
)2

(r) dr − c1
∫ a

0
rK(r)φ(r)φ′(r) dr

+(c2 + c3)

∫ a

0
rK(r)φ2(r) dr

]
.

(4.12)

So, if we apply the arithmetic-geometric mean inequality, we obtain that[
1−

(
c2 + c3 +

|c1|ε
2

)(
a

z0

)2
]∫ a

0
rK(r)φ2(r) dr ≤

(
a

z0

)2(
1 +
|c1|
2ε

)∫ a

0
rK(r)

(
φ′
)2

(r) dr.

(4.13)
Here ε is an arbitrary positive constant. We may choose ε so small that

1−
(
c2 + c3 +

|c1|ε
2

)(
a

z0

)2

> 0 (4.14)

and so it follows that the following inequality∫ a

0
rK(r)φ2(r) dr ≤ Q(ε)

∫ a

0
rK(r)

(
φ′
)2

(r) dr (4.15)

holds, where

Q(ε) =
a2 (1 + |c1|/(2ε))

z20
[
1− (c2 + c3 + |c1|ε/2) a2/z20

] . (4.16)

We now choose ε to minimize Q(ε) and satisfying (4.14). Thus, we get

ε = −B +
√
B2 + (1− CA)/A, (4.17)

where

A =

(
a

z0

)2

, B =
|c1|
2
, C = c2 + c3. (4.18)

For this choice of ε, the value for Q(ε) is

Q(ε) =
A (1 +B/ε)

1− (C +Bε)A
. (4.19)

The desired inequality is obtained by taking

k1 = Q(ε). � (4.20)

In the case where c3 = 0 in the previous theorem, we obtain directly the following result.
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Corollary 4.1 Let K1/2(r) ∈ C2(0, a) such that K1/2(r) > 0 on (0, a) and such that K1/2(r) ≥ 0. Let
us also suppose that there exist two constants c1 and c2 such that(

K1/2
)′′
≥ −c1

(
K1/2

)′
− c2K1/2 on (0, a), (4.21)

and
c1
2
K1/2 +

(
K1/2

)′
≥ 0 on (0, a), (4.22)

where
c2 < (z0/a)2 . (4.23)

Then, there exists a positive constant k1 = k1(|c1|, c2) such that∫ a

0
rK(r)φ2(r)dr ≤ k1

∫ a

0
rK(r)

(
φ′
)2

(r)dr, (4.24)

for all continuous function φ(r) such that |φ(0)| <∞ and φ(a) = 0.

In the case c1 = c2 = 0 we obtain the following result.

Corollary 4.2 Let K1/2(r) ∈ C2(0, a) such that K1/2(r) > 0 on (0, a) and such that K1/2(r) ≥ 0. Let
us also assume that (

K1/2
)′
≥ 0, and

(
K1/2

)′′
≥ 0. (4.25)

Then, ∫ a

0
rK(r)φ2(r)dr ≤

(
a

z0

)2 ∫ a

0
rK(r)

(
φ′(r)

)2
dr, (4.26)

for all continuous function φ(r) such that |φ(0)| <∞ and φ(a) = 0.

Proof : In this case we can take c1 = c2 = c3 = 0. The conditions of the theorem 4.1 are clearly
satisfied. The estimate (4.1) holds. �

Remark. It is worth noting that if we have

0 ≤ K1/2
m K̄1/2(r) ≤ K1/2(r) ≤ K1/2

M K̄1/2(r), (4.27)

where K̄1/2(r) satisfies that the inequality∫ a

0
rK̄(r)φ2(r)dr ≤ k∗

∫ a

0
rK̄(r)

(
φ′
)2

(r)dr (4.28)

holds, we can obtain a similar inequality for K(r). In fact, we have∫ a

0
rK(r)φ2(r)dr ≤ KM

∫ a

0
rK̄(r)φ2(r)dr ≤ KM

Km
k∗
∫ a

0
rK(r)

(
φ′(r)

)2
dr. (4.29)

9



4.2 Discussion

Example 4. We consider the case

K1/2(r) = K
1/2
00 exp

(mr
a

)
+K

1/2
01 r exp

(mr
a

)
, (4.30)

where K
1/2
00 , K

1/2
01 are non-negative constants and m is a dimensionless parameter. We have that(

K1/2
)′

=
m

a

[
K

1/2
00 +K

1/2
01

(
r +

a

m

)]
exp

(mr
a

)
, (4.31)

(
K1/2

)′′
=
(m
a

)2 [
K

1/2
00 +K

1/2
01

(
r + 2

( a
m

)2)]
exp

(mr
a

)
(4.32)

So, (
K1/2

)′′
=

2m

a

(
K1/2

)′
−
(m
a

)2
K1/2 (4.33)

and condition (4.21) is satisfied with

c1 = −2m

a
, c2 =

(m
a

)2
. (4.34)

At the same time

−m
a
K1/2 +

(
K1/2

)′
= K

1/2
01 exp

(mr
a

)
≥ 0 (4.35)

and then condition (4.22) is also satisfied. However, to guarantee condition (4.23), we need to impose
that

m2 < z20 . (4.36)

In this case we have

A =

(
a

z0

)2

, B =
∣∣∣m
a

∣∣∣ , C =
(m
a

)2
. (4.37)

So that

ε =
z0
a

(
1− |m|

z0

)
(4.38)

and we obtain

k1 =

(
a

z0

)2(
1− |m|

z0

)−2(
1 +

2|m|
z0

)−1
. (4.39)

Therefore a lower bound for the rate of decay is

k ≡ z0
a

(
1− |m|

z0

)(
1 +

2|m|
z0

)1/2

. (4.40)

Several sub-families could be considered. When K01 = 0, we have an estimate for the function

K1/2(r) = K
1/2
0 exp

(mr
a

)
. (4.41)

However, this family is restricted to the condition (4.36). Later, we will use another approach that
improves the results obtained in the case of the family (4.41) when m > 0.

A second family could be considered if we assume that m→ 0 in (4.30). We have

K1/2(r) = K
1/2
00 + rK

1/2
01 . (4.42)

10



In this case the estimate (4.40) gives the lower bound

k ≡ z0
a

(4.43)

which is exact in the particular case of homogeneous materials. In fact, this estimate could be also
obtained directly from corollary 4.2.

Example 5. We now consider the family of functions

K1/2(r) = K
1/2
0 exp

(mr
a

)
sin

(
br

a
+ ϕ0

)
, (4.44)

where ϕ0 ≥ 0, b > 0 and m are dimensionless constants. If we assume that ϕ0 < π and b < π − ϕ0,
the function (4.44) is strictly positive in the interior of (0, a). We have that

(
K1/2

)′
=
K

1/2
0

a
exp

(mr
a

)[
m sin

(
br

a
+ ϕ0

)
+ b cos

(
br

a
+ ϕ0

)]
(4.45)

(
K1/2

)′′
=
K

1/2
0

a
exp

(mr
a

)[
(m2 − b2) sin

(
br

a
+ ϕ0

)
+ 2mb cos

(
br

a
+ ϕ0

)]
(4.46)

So, (
K1/2

)′′
=

2m

a

(
K1/2

)′
− m2 + b2

a2
K1/2. (4.47)

Our inequality is satisfied, where

c1 = −2m

a
, c2 =

m2 + b2

a2
. (4.48)

To guarantee the condition (4.23), we must impose

m2 + b2 < z20 . (4.49)

On the other hand, we have

−m
a
K1/2 +

(
K1/2

)′
=
bK

1/2
0

a
exp

(mr
a

)
cos

(
br

a
+ ϕ0

)
. (4.50)

To guarantee that the right hand side of (4.50) is positive we need to impose that

b+ ϕ0 < π/2, (4.51)

which is a stronger condition to the one proposed before on b and ϕ0.
In this situation we can take

A =

(
a

z0

)2

, B =
∣∣∣m
a

∣∣∣ , C =
m2 + b2

a2
. (4.52)

So,

ε =
z0
a

[√
1− b2

z20
− |m|

z0

]
, (4.53)

which gives

Q =

(
a

z0

)2 (
1 +

∣∣∣m
aε

∣∣∣) [1−
(
a

z0

)2(m2 + b2

a2
+
|m|ε
a

)]−1
, (4.54)

11



which gives a lower bound for the decay

k ≡ z0
a

(
1 +
|m|
aε

)−1/2 [
1−

(
a

z0

)2(m2 + b2

a2
+
|m|ε
a

)]1/2
. (4.55)

Notice the symmetry with respect to the sign of m. Taylor’s development of k centered at zero for
m ≥ 0 is2

z0
a

[
1−

(
b

z0

)2
]1/2

− 1

a
m+

1.66868...× 10−17

a(1− 0.172915...b2)1/2
m2 +

6.03144...× 10−17

a(−5.78319...+ b2)
m3

+
2.60732...× 10−18

a(1− 0.172915...b2)3/2
m4 − 2.08585...× 10−18

a(1− 0.172915...)2
m5 +O[m6].

(4.56)

So we can approximate our lower bound (4.55) as

k ≈ z0
a

[
1−

(
b

z0

)2
]1/2

− |m|
a
. (4.57)

In case that m→ 0 we obtain the function

K1/2(r) = K
1/2
0 sin

(
br

a
+ ϕ0

)
. (4.58)

The lower bound for the decay rate for the family (4.58) is

k ≡ z0
a

[
1−

(
b

z0

)2
]1/2

. (4.59)

Example 6. Another interesting example is given when

K1/2(r) = K
1/2
01 exp

(m1r

a

)
+K

1/2
02 exp

(m2r

a

)
, (4.60)

where K
1/2
01 and K

1/2
02 are non-negative and m1, m2 are dimensionless constants.

We know that (
K1/2

)′′
=
m1 +m2

a

(
K1/2

)′
− m1m2

a2
K1/2. (4.61)

We can take

c1 = −m1 +m2

a
, c2 =

m1m2

a2
. (4.62)

Then condition (4.23) is satisfied whenever

m1m2 < z20 . (4.63)

On the other hand,

1

2
c1K

1/2 +
(
K1/2

)′
=

1

2a
(m2 −m1)

[
K

1/2
02 exp

(m2r

a

)
−K1/2

01 exp
(m1r

a

)]
(4.64)

2We note that this approximation has been obtained with the help of Wolfram Mathematica.
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Figure 1: Lower bound for the decay for Example 6 with a = 1 and some small m2 ≥ 0.

which is positive if we assume that

(m2 −m1)
(
K

1/2
02 −K

1/2
01

)
≥ 0. (4.65)

In this case, we can take

A =

(
a

z0

)2

, B =
|m1 +m2|

2a
, C =

m1m2

a2
. (4.66)

We then obtain that

ε =
−|m1 +m2|+

√
|m1 +m2|2 + 4z20 − 4m1m2

2a
(4.67)

and

Q =

(
a
z0

)2 (
1 + |m1+m2|

2aε

)
1−

(
m1m2
a2

+ |m1+m2|ε
2a

)(
a
z0

)2 . (4.68)

The lower bound for the rate of decay becomes

k ≡

[(
z0
a

)2 − (m1m2
a2

+ |m1+m2|ε
2a

)]1/2
(

1 + |m1+m2|
2aε

)1/2 (4.69)

In Figures 1 and 2 we have represented the dependence of the lower bound for the decay with
respect to the parameters (4.69). We have fixed the radius of the cylinder a = 1. We note that the
domain of m1 varies according to m2 in order to satisfy condition (4.63). Figure 1 corresponds to some
small values of 0 ≤ m2 ≤ 1. The graph for the small negative values of m2 is symmetrical with respect
to the ordinate axis of the graph of Figure 1.

Figure 2 illustrates the dependence of the lower bound with respect to the parameters for some
negative values m2 < −1. The graph for positive values of m2 is symmetrical with respect to the
ordinate axis of the previous figure.
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Figure 2: Lower bound for the decay for Example 6 with a = 1 and some m2 ≤ 0.

It is worth noting that, for a = 1 and fixed m2, the lower bound k = k(m1) given by (4.69) tends
to |m2| as m1 → −∞ or m1 → +∞ according to m2 ≥ 0 or m2 ≤ 0, respectively.

A particular family of examples of (4.60) is when

m1 = m and m2 = −m, m > 0. (4.70)

We then have

c1 = 0, c2 = −m
2

a2
. (4.71)

To satisfy (4.65), we need to suppose that K
1/2
01 ≥ K

1/2
02 . We have that

A =

(
a

z0

)2

, B = 0, C = −m
2

a2
(4.72)

and

ε =

√
z20 +m2

a
. (4.73)

We arrive that a lower decay rate is

k ≡
√
z20 +m2

a
. (4.74)

For instance, if we assume

K1/2(r) = K
1/2
01 cosh

(mr
a

)
+K

1/2
02 sinh

(mr
a

)
(4.75)

we can write

K1/2(r) =
1

2

(
K

1/2
01 +K

1/2
02

)
exp

(mr
a

)
+

1

2

(
K

1/2
01 −K

1/2
02

)
exp

(
−mr
a

)
. (4.76)

Therefore, if we assume that K
1/2
01 ≥

∣∣∣K1/2
02

∣∣∣, we can apply the previous arguments.
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Another interesting case corresponds to the function

K1/2(r) = K
1/2
0 exp

(mr
a

)
. (4.77)

When we assume that m > 0 and K
1/2
0 > 0, we can recover the previous case and we obtain the lower

bound

k ≡
√
z20 +m2

a
. (4.78)

This estimate improves that the one obtained in the example 4 for the case of the exponential. However,
here we need to impose that m > 0.

Example 7. Now, we give an example satisfying the assumptions of the corollary 4.2. If we consider

K1/2(r) = K
1/2
0

(
1 +

mr

a

)β
, β ≥ 1, (4.79)

where m is a dimensionless positive constant, we have that z0/a is a lower bound for the decay.
Example 8. If we take

K1/2(r) = K
1/2
0

(
1 +

mr

a

)β
, 0 < β ≤ 1 (4.80)

we can not apply directly the theorem neither the corollaries. However, we have that(
1 +

mr

a

)β
=
(

1 +
mr

a

)β−1 (
1 +

mr

a

)
. (4.81)

We note that

(1 +m)β−1 ≤
(

1 +
mr

a

)β−1
≤ 1. (4.82)

In view of the remark after the corollary 4.2 and the comments in the Example 7, we can see that a
lower bound for the decay in this case can be

z0
a(1 +m)1−β

. (4.83)

We can extend the analysis to the case when β < 0 by means a recurrence.

We could also consider lower bounds for the cases when we combine
(
1 + mr

a

)β
, β < 1, with the

examples 4 to 7 considered previously. But we left to obtain lower bounds for the decay as an exercise
for the reader.

So far we have seen several examples to obtain lower bounds by means of the corollaries. We now
consider an example to apply Theorem 4.1.

Example 9. We take

K1/2(r) = K
1/2
0 exp

(
mr2

a2

)
, (4.84)

where m is a dimensionless real constant. We have that(
K1/2

)′
= K

1/2
0

2mr

a2
exp

(
mr2

a2

)
(4.85)

(
K1/2

)′′
= K

1/2
0

(
2m

a2
+

4r2m2

a4

)
exp

(
mr2

a2

)
. (4.86)
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Thus, we have that (
K1/2

)′′
≥ 2m

a2
K

1/2
0 exp

(
mr2

a2

)
(4.87)

and condition (4.1) is satisfied with

c1 = 0, c2 = −2m

a2
. (4.88)

Since (
K1/2

)′
= K

1/2
0

2m

a2
r exp

(
mr2

a2

)
, (4.89)

condition (4.2) holds with

c3 = −2m

a2
. (4.90)

Moreover, if m ≥ 0, condition (4.3) is satisfied

c2 + c3 = −4m

a2
≤ 0 < (z0/a)2. (4.91)

But, if m < 0, condition (4.3) is satisfied whenever

−4m

a2
<
z20
a2
. (4.92)

That is, −z20/4 < m < 0. Now, for m > −z20/4, we consider

A =

(
a

z0

)2

, B = 0, C = −4m

a2
(4.93)

and

Q(ε) =
a2

z20 + 4m
. (4.94)

Therefore, a lower bound for the rate of decay is

k ≡
√
z20 + 4m

a
, m > −z20/4. (4.95)

Clearly, for m > 0 the lower bound is greater than for m < 0. So, the decay is faster when m > 0.
Notice that, for m < 0, it is not possible to apply any of the above corollaries (4.1), (4.2) because(

K1/2
)′
< 0 and neither (4.22) nor (4.25) are satisfied.

5 Inhomogeneity also in the axial direction

The aim of this section is to study the problem determined by the equation (2.12) together with the
boundary conditions (2.14)-(2.15).

We want to obtain lower bounds for the rate of decay. To do that, we cannot continue with the
proposed arguments in the previous section. We will use the usual energy arguments joined with the
new Poincaré type inequality we proposed before.
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5.1 Theoretical Aspects

We now consider the problem determined by the equation (2.12) in the strip [0, a]× [0,∞). We assume
the boundary conditions

u(a, x3) = 0, on {a} × [0,∞), (5.1)

|u(0, x3)| bounded on {0} × [0,∞), (5.2)

u(r, 0) = f(r) on [0, a]× {0}. (5.3)

The asymptotic condition (2.4) is also imposed.
In this section we suppose that K1/2(r, x3) satisfies:

(I)
∂2
(
K1/2

)
∂r2

≥ −c1(x3)
∂
(
K1/2

)
∂r

− c2(x3)K1/2.

(II)
c1(x3)

2
K1/2 +

∂
(
K1/2

)
∂r

≥ −rc3(x3)K1/2.

Here, c1(x3), c2(x3) and c3(x3) are three functions such that

c2(x3) + c3(x3) <
(z0
a

)2
, for all x3 ≥ 0. (5.4)

We note that in this situation we have∫ a

0
rK(r, x3)u

2dr ≤ k1(|c1(x3)|, c2(x3), c3(x3), a)

∫ a

0
rK(r, x3)u

2
,rdr (5.5)

for every function u(r, x3) such that satisfies conditions (5.1)–(5.3) and (2.4).
In fact, we can calculate

k1(x3) =
A (1 +B(x3)/ε(x3))

1− (C(x3) +B(x3)ε(x3))A
, (5.6)

where

A =
a2

z20
, B(x3) =

|c1(x3)|
2

, C(x3) = c2(x3) + c3(x3) (5.7)

and
ε(x3) = −B +

√
B2 + (1−AC)/A. (5.8)

Now, if we define

H(x3) = −
∫ a

0
rK(r, x3)uu,3 dr (5.9)

we see that

H ′(x3) =

∫ a

0
rK(r, x3)(u

2
,r + u2,3)dr. (5.10)

The key point is to evaluate H(x3) in terms of the derivative. We see

|H(x3)| ≤
(∫ a

0
rK(r, x3)u

2dr

)1/2(∫ a

0
rK(r, x3)u

2
,3dr

)1/2

. (5.11)

If we use the inequality (5.5), we see that

|H(x3)| ≤
1

2
k
1/2
1 (x3)H

′(x3) (5.12)
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From where we obtain that the function

E(x3) =

∫ ∞
x3

∫ a

0
rK(r, x3)

(
u2,r + u2,3

)
drdx3 (5.13)

satisfies the inequality (see [1, 17,18] for the details in the analysis)

E(x3) ≤ E(0) exp

[
−2

∫ x3

0
k
−1/2
1 (ξ) dξ

]
. (5.14)

If we denote by

k̄(x3) =

∫ x3

0
k
−1/2
1 (ξ) dξ, (5.15)

we obtain a lower bound for the decay which is

exp
(
k̄(x3)

)
. (5.16)

We also note that with the help of the arguments recalled in Section 3, we could also obtain an
alternative approach to this problem. However, we believe that this is not a difficult task after the
arguments proposed in this section and the ideas developed at [12].

5.2 Discussion

Example 10. An easy example corresponds to the case that

K1/2(r, x3) = K
1/2
00 + rK

1/2
01 (x3), (5.17)

where K
1/2
00 and K

1/2
01 are non-negative. This case corresponds to

∂2
(
K1/2

)
∂r2

= 0,
∂
(
K1/2

)
∂r

= K
1/2
0 (x3). (5.18)

We can take c1(x3) = c2(x3) = c3(x3) = 0 and (II) is also satisfied. We have that k1 = a/z0 and then,

exp
(
k̄(x3)

)
= exp

(z0
a
x3

)
. (5.19)

Example 11. Another illustrative example corresponds to the case

K1/2(r, x3) = K
1/2
01 (x3) cosh

(mr
a

)
+K

1/2
02 (x3) sinh

(mr
a

)
, (5.20)

where m > 0 and K
1/2
01 (x3), K

1/2
02 (x3) are two non-negative functions. Following the ideas proposed in

Example 6, we can see that

exp
(
k̄(x3)

)
= exp

(√
z20 +m2

a
x3

)
. (5.21)

Example 12. We now consider the case

K1/2(r, x3) = K
1/2
01 cosh

[
m
(x3
a

)1/2 r
a

]
+K

1/2
02 sinh

[
m
(x3
a

)1/2 r
a

]
, (5.22)

where m > 0 is a dimensionless parameter and K
1/2
01 , K

1/2
02 are non-negative. We see that

∂
(
K1/2

)
∂r

≥ 0 (5.23)
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and
∂2
(
K1/2

)
∂r2

=
(m
a

)2 (x3
a

)
K1/2. (5.24)

We have that c1(x3) = 0 and c2(x3) = −
(m
a

)2 (x3
a

)
. In this case,

k̄(x3) =
z0
a

∫ x3

0

(
1 +

m2ξ

z20a

)1/2

dξ =
2z30
3m2

[(
1 +

m2x3
z20a

)3/2

− 1

]
. (5.25)

So,

k̄(x3) ∼
2m

3

(x3
a

)3/2
, (5.26)

which is faster than the usual linear exponential decay obtained in Examples 9 and 10.

6 Increasing Cross-Section

Another interesting aspect is considered in the case when we assume that the radius of the cross-
section is increasing with the variable x3. That is, we will have again the problem determined by the
equation (2.12) in the region determined by

{(r, x3)|x3 ≥ 0, 0 ≤ r ≤ h(x3)}, (6.1)

where h(x3) is a positive function. Then we assume that

|u(0, x3)| <∞, u(h(x3), x3) = 0. (6.2)

As in Section 5, if we define

H(x3) = −
∫ h(x3)

0
rK(r, x3)uu,3dr, (6.3)

we have that

H ′(x3) =

∫ h(x3)

0
rK(r, x3)

(
u2,r + u2,3

)
dr. (6.4)

And so

|H(x3)| ≤
1

2
k
1/2
1 (x3)H

′(x3), (6.5)

where
k1 = k1(|c1(x3)|, c2(x3), c3(x3), h(x3)). (6.6)

That is in this case we have

A(x3) =
h2(x3)

z20
, B(x3) =

|c1(x3)|
2

, C(x3) = c2(x3) + c3(x3). (6.7)

If we assume a similar condition to (5.4), but with h(x3) depending on the variable x3, we see that

c2(x3) + c3(x3) ≤
(

z0
h(x3)

)2

. (6.8)

In fact, when c2 and c3 are independent of x3 and the length of the interval tends to infinite, we see
that c2 + c3 ≤ 0. If we consider Example 11, we see that

k̄(x3) =

∫ x3

0

√
z20 +m2

h(ξ)
dξ. (6.9)
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Figure 3: Rate of decay exp(k̄(x3)) for some m and c.

In case we consider
h(ξ) = 1 + cξ, c > 0 (6.10)

we see that

k̄(x3) =

√
z20 +m2

c
ln(1 + cx3) (6.11)

and therefore

exp
(
k̄(x3)

)
= (1 + cx3)

√
z20+m2

c , (6.12)

which is a decay rate of polynomial type.
If we assume that

h(ξ) = (e+ cξ) ln(e+ cξ), (6.13)

we have that

k̄(x3) =

√
z20 +m2

c
ln [ln(e+ cx3)] (6.14)

and

exp
(
k̄(x3)

)
= [ln(e+ cx3)]

√
z20+m2

c , (6.15)

which gives a rate of decay slower that the polynomial decay. We have represented the graph of the
rate of decay (6.15) in Figure 3, for some values of m and c.

7 Case of a mixture

The arguments proposed in the previous sections can be adapted to study the case of a mixture of
heat conducting rigid solid. In this case, we have to study the system (see [20–22]){

(a11K(r, x3)u,i),i + (a12K(r, x3)w,i),i − cK(r, x3)(u− w) = 0

(a12K(r, x3)u,i),i + (a22K(r, x3)w,i),i + cK(r, x3)(u− w) = 0
(7.1)
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To this system we adjoin the boundary conditions the boundary conditions

u(x) = w(x) = 0 on ∂D × [0,∞), (7.2)

u(x1, x2, 0) = f(x1, x2)
w(x1, x2, 0) = g(x1, x2)

}
on D × {0}, (7.3)

and the asymptotic conditions

u,w −→ 0 as x3 −→∞ (uniformly). (7.4)

We here assume that (
a11 a12
a12 a22

)
(7.5)

is positive definite and c > 0. Adding the two equations of (7.1), it is clear that the function

z1 = (a11 + a12)u+ (a12 + a22)w (7.6)

satisfies the equation (2.1). On the other side, the function

z2 = u− w (7.7)

satisfies
(K(r, x3)z2,i),i − δK(r, x3)z2 = 0, (7.8)

where

δ = c
a11 + a22 + 2a12
a11a22 − a212

> 0. (7.9)

In fact, if we take the first equation of (7.1) minus a11+a12
a22+a12

times the second one and we simplify the
calculations, we obtain (7.8).

It is clear that the lower bounds for the decay rates for z1 and z2 can be obtained by means of
the arguments proposed before.

On the other side, from (7.6) and (7.7) we get u and w in terms of z1 and z2:

u =
z1 + (a12 + a22)z2
a11 + a22 + 2a12

, w =
z1 − (a11 + a12)z2
a11 + a22 + 2a12

. (7.10)

Then, we can obtained the corresponding estimates for u and w.
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