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Abstract

We find precise asymptotic estimates for the number of planar maps and graphs
with a condition on the minimum degree, and properties of random graphs from
these classes. In particular we show that the size of the largest tree attached to the
core of a random planar graph is of order c log(n) for an explicit constant c. These
results provide new information on the structure of random planar graphs.

Mathematics Subject Classifications: 05C30, 05C80, 0510

1 Introduction

The main goal of this paper is to enumerate planar graphs subject to a condition on
the minimum degree δ, and to analyze the corresponding random planar graphs. Asking
for δ > 1 is not very interesting, since a random planar graph contains in expectation
a constant number of isolated vertices. The condition δ > 2 is directly related to the
concept of the core of a graph. Given a connected graph G, its core (also called the 2-core
in the literature) is the maximum subgraph C of G with minimum degree at least two.
The core C is obtained from G by repeatedly removing vertices of degree one. Conversely,
G is obtained by attaching rooted trees at the vertices of C. Note that the core of a tree
is empty.

The kernel of G is obtained from C by contracting all the induced paths between
vertices of degree greater than 2 to a single edge. The kernel has minimum degree at least
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MDM-2014-0445.
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three, and C can be recovered from K by replacing edges with induced paths. Notice that
G is planar if and only C is planar, in turn if and only if K is planar.

As shown in Figure 1, the kernel may have loops and multiple edges, which must
be taken into account since our goal is to analyze simple graphs. Another issue is that
when replacing loops and multiple edges with paths the same graph can be produced
several times. To this end we weight multigraphs according to the number of loops and
edges of each multiplicity. We remark that the concepts of core and kernel of a graph are
instrumental in the classical theory of random graphs [14, 17].
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Figure 1: Core and kernel of a graph.

For the sake of brevity, it is convenient to introduce the following definitions: a 2-graph
is a connected graph with minimum degree at least two, and a 3-graph is a connected graph
with minimum degree at least three. In order to enumerate planar 2- and 3-graphs we use
generating functions. From now on all graphs are labelled and generating functions are of
the exponential type. Let cn, hn and kn be, respectively, the number of planar connected
graphs, 2-graphs and 3-graphs with n vertices, and let

C(x) =
∑

cn
xn

n!
, H(x) =

∑
hn
xn

n!
, K(x) =

∑
kn
xn

n!

be the associated generating functions. Also, let tn = nn−1 be the number of (labelled)
rooted trees with n vertices and let T (x) =

∑
tnx

n/n!. The decomposition of a connected
graph into its core and the attached trees implies the following equation

C(x) = H(T (x)) + U(x), (1)

where U(x) = T (x)−T (x)2/2 is the generating functions of unrooted trees. Since T (x) =
xeT (x), we can invert the above relation and obtain

H(x) = C(xe−x)− x+
x2

2
.
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The equation definingK(x) is more involved and requires the bivariate generating function

C(x, y) =
∑

cn,k y
kx

n

n!
,

where cn,k is the number of connected planar graphs with n vertices and k edges. We can
express K(x) in terms of C(x, y) as

K(x) = C(A(x), B(x)) + E(x), (2)

where A(x), B(x), E(x) are explicit elementary functions (see Section 4).
From the expression of C(x) as the solution of a system of functional-differential

equations [11], it was shown that

cn ∼ κn−7/2γnn!,

where κ ≈ 0.4104·10−5 and γ ≈ 27.2269 are computable constants. In addition, analyzing
the bivariate generating function C(x, y) it is possible to obtain results on the number of
edges and other basic parameters in random planar graphs. Our main goal is to extend
these results to planar 2-graphs and 3-graphs.

Using Equations (1) and (2) we obtain precise asymptotic estimates for the number
of planar 2- and 3-graphs:

hn ∼ κ2n
−7/2γn2n!, γ2 ≈ 26.2076, κ2 ≈ 0.3724 · 10−5,

kn ∼ κ3n
−7/2γn3n!, γ2 ≈ 21.3102, κ3 ≈ 0.3107 · 10−5.

As is natural to expect, hn and kn are exponentially smaller than cn. Also, the number
of 2-connected planar graphs is known to be asymptotically κcn

−7/226.1841nn! (see [2]),
smaller than the number of 2-graphs. This is consistent, since a 2-connected graph has
minimum degree at least two, but not conversely.

By enriching Equations (1) and (2) taking into account the number of edges, we prove
that the number of edges in random planar 2-graphs and 3-graphs are both asymptotically
normal with linear expectation and variance. The expected number of edges in connected
planar graphs was shown to be [11] asymptotically µn, where µ ≈ 2.2133. We show that
the corresponding constants for planar 2-graphs and 3-graphs are

µ2 ≈ 2.2614, µ3 ≈ 2.4065.

This conforms to our intuition that increasing the minimum degree should increase the
expected number of edges.

We also analyze the size Xn of the core in a random connected planar graph, and
the size Yn of the kernel in a random planar 2-graph. We show that both variables are
asymptotically normal with linear expectation and variance and that

EXn ∼ λ2n, λ2 ≈ 0.9618,

EYn ∼ λ3n, λ3 ≈ 0.8259.
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The value of λ2 has been recently found by McDiarmid [16] using alternative methods.
Also, we remark that the expected size of the largest block (2-connected component) in
random connected planar graphs is asymptotically 0.9598n [12]. Again this is consistent
since the largest block is contained in the core but not conversely.

The picture is completed by analyzing the size of the trees attached to the core.
We show that for fixed k > 1 the number of trees with k vertices attached to the core
is asymptotically normal with linear expectation and variance. The expected value is
asymptotically

C
kk−1

k!
ρkn,

where C > 0 is a constant and ρ = γ−1 ≈ 0.03673 is the radius of convergence of C(x).
For k large, the previous quantity grows like

C√
2π
· k−3/2(ρe)kn.

This quantity is negligible when k � log(n)/(log(1/ρe)). Using the method of moments,
we show that the size Ln of the largest tree attached to the core satisfies

Ln
log n

→ 1

log(1/ρe)
≈ 0.4340 in probability.

This result provides new information on the structure of random planar graphs.
Our last result concerns the distribution of the vertex degrees in random planar 2-

graphs and 3-graphs. We show that for each fixed k > 2 the probability that a random
vertex has degree k in a random planar 2-graph tends to a positive constant dH(k), and
for each fixed k > 3 the probability that a random vertex has degree k in a random planar
3-graph tends to a positive constant dK(k). Moreover

∑
k>2 pH(k) =

∑
k>3 pK(k) = 1,

and the probability generating functions

pH(w) =
∑
k>2

dH(k)wk, pK(w) =
∑
k>3

dK(k)wk

are computable in terms of the analogous probability generating function pC(w) of con-
nected planar graphs, which was fully determined in [7].

The previous results show that almost all planar 2-graphs have a vertex of degree
two, and almost all planar 3-graphs have a vertex of degree three. Hence asymptotically
all our results hold also for planar graphs with minimum degree exactly two and three,
respectively. For the sake of conciseness, we will not repeat for each of our results the
corresponding statement for arbitrary graphs of minimum degree exactly two or three.
In addition, all our results for connected planar graphs easily extend to arbitrary planar
graphs. This is because the expected size of the largest component in a random planar
graph is n−O(1) (see [12]). For simplicity, we state our results only for arbitrary planar
graphs.
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It is natural to ask why we stop at minimum degree three. The reason is that there
seems to be no combinatorial decomposition allowing to deal with planar graphs of min-
imum degree four or five (a planar graph has always a vertex of degree at most five).
It is already an open problem to enumerate 4-regular planar graphs. In contrast, the
enumeration of cubic planar graphs was solved in [4].

The contents of the paper are as follows. In Section 2 we review some technical
preliminaries needed in the paper. In Section 3 we find similar results for planar maps,
that is, connected planar graphs with a fixed embedding. They are simpler to derive
and serve as a preparation for the results on planar graphs, while at the same time they
appear to be new and interesting by themselves. In Section 4 we find equations linking
the generating functions of connected graphs, 2-graphs and 3-graphs; to this end we must
consider multigraphs as well as simple graphs. In Section 5 we use singularity analysis
in order to prove our main results on asymptotic enumeration and properties of random
planar 2-graphs and 3-graphs. The analysis of the distribution of the degree of the root,
which is technically more involved, is deferred to Section 6. We conclude with some
remarks and open problems.

2 Preliminaries

We assume familiarity with the basic results of analytic combinatorics as described in [8].
Given a complex number ρ 6= 0, a ∆-domain at ρ is an open set of the form

∆(R, φ) = {z : |z| < R, z 6= ρ, | arg(z − ρ)| > φ}, R > ρ.

A singularity of f(z) is a point where f(z) ceases to be analytic. A dominant singularity
is one of minimum modulus. We say that f(z) is ∆-analytic at ρ if it is anlytic in a
∆-domain at ρ. We will need the following result [8, Corollary VI.1].

Theorem 1 (Transfer Theorem). If f(z) has a unique dominant singularity at ρ at which
it is ∆-analytic and satisfies the estimate

f(z) ∼ (1− z/ρ)−α, z → ρ,

with α 6∈ {0,−1,−2, . . . }, then the coefficients of f(z) satisfy

[zn]f(z) ∼ nα−1

Γ(α)
ρ−n.

We also need and a simplified version of [8, Theorem IX.8].

Theorem 2 (Quasi-powers Theorem). Let Xn be non-negative discrete random variables
with probability generating functions pn(u). Assume that, uniformly in a fixed complex
neighbourhood of u = 1

pn(u) = A(u) ·B(u)n
(

1 +O

(
1

n

))
,
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where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume that B(u) satisfies
B′′(1) +B′(1)−B′(1)2 6= 0.

Then the distribution of Xn is, after standardization, asymptotically Gaussian, and
the mean and variance satisfy

EXn ∼
(
B′(1)

B(1)

)
n, VarXn ∼

(
B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2
)
n.

In our applications we will have B(u) = ρ(1)/ρ(u), where ρ(u) will be the dominant
singularity (as a function of z) of a bivariate generating function f(z, u). The former
expressions become then

EXn ∼
(
−ρ′(1)

ρ(1)

)
n, VarXn ∼

(
−ρ
′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2
)
n.

In order to apply the former results we need to show that the corresponding generating
functions are ∆-analytic at suitable singularities. This is relatively simple for planar maps,
since we have explicit algebraic expressions for the generating functions, but it is rather
more involved for planar graphs. The expressions obtained in Section 4 are not enough
for this purpose and we have to use alternative equations related to the decomposition of
connected graphs into 2-connected components (see Section 5). Some of these derivations
are rather long and are given in the Appendix. Several of the arguments we use may have
applications in related situations where ∆-analyticity has to be guaranteed.

In Section 5 we need the following result from [6]. It deals with the maximum degree
of random graphs and can be adapted to other extremal parameters such as the size of
the largest tree attached to the core. In can be thought of as a kind of ‘master theorem’
for analyzing the maximum degree and related extremal parameters.

Theorem 3. Let dn,k denote the probability that a randomly selected vertex of a certain
class of random graphs of size n has degree k, and let dn,k,` denote the probability that two
different randomly selected (ordered) vertices have degrees k and `. Suppose that we have
the following properties.

1. There exists a limiting degree distribution dk (k > 1) with an asymptotic behaviour
of the form

log dk ∼ k log q (k →∞),

where q is a real constant with 0 < q < 1.

2. We have, as n → ∞, k → ∞, ` → ∞, and uniformly for k, ` 6 C log n (for an
arbitrary constant C > 0)

dn,k ∼ dk and dn,k,` ∼ dkd`.

3. There exists q < 1 such that, uniformly for all n, k, ` > 1,

dn,k = O(qk) and dn,k = O(qk+`).
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Let ∆n denote the maximum degree of a random graph of size n in this class. Then

∆n

log n
→ 1

log(1/q)
in probability,

and

E∆n ∼
1

log(1/q)
log n (n→∞).

3 Planar maps

We recall that a planar map is a connected planar multigraph embedded in the plane up
to homeomorphism. A map is rooted if one of its edges is distinguished and oriented.
In this way a rooted map has a root edge and a root vertex (the tail of the root edge).
We define the root face as the face to the right of the root edge. A rooted map has no
automorphisms, in the sense that every vertex, edge and face is distinguishable. From
now on all maps are planar and rooted. We stress the fact that maps may have loops and
multiple edges.

The enumeration of rooted planar maps was started by Tutte in his seminal paper [19].
Let mn be the number of rooted maps with n edges, with the convention that m0 = 0.
Then

mn =
2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)
, n > 1

The generating function M(z) =
∑

n>0mnz
n is equal to

M(z) =
18z − 1 + (1− 12z)3/2

54z2
− 1. (3)

Either from the explicit formula or from the expression for M(z) and the transfer theorem,
it follows that

mn ∼
2√
π
n−5/212n. (4)

If mn,k is the number of maps with n edges and degree of the root face equal to k, then
M(z, u) =

∑
mn,kz

nuk satisfies the equation

M(z, u) = zu2(M(z, u) + 1)2 + uz

(
uM(z, u)−M(z, 1)

u− 1
+ 1

)
. (5)

By duality, M(z, u) is also the generating function of maps in which u marks the degree
of the root vertex. The empty map is not included so that m0 = 0.

The core C of a mapM is obtained, as for graphs, by removing repeatedly vertices of
degree one, so that C has minimum degree at least two (the core is empty if and only if
M is a tree). ThenM is obtained from C by placing a planar tree at each corner (pair of
consecutive half-edges) of C. This is equivalent to replacing each edge with a non-empty
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planar tree rooted at an edge. The number tn of planar trees with n > 1 edges is equal
to the n-th Catalan number and the generating function T (z) =

∑
tnz

n satisfies

T (z) =
1

1− z(1 + T (z))
− 1.

We define a 2-map as a map with minimum degree at least two, and a 3-map as a map
with minimum degree at least three. Let hn and kn be, respectively, the number of 2-maps
and 3-maps with n edges.

Theorem 4. The generating functions H(z) and K(z) of 2-maps and 3-maps, respec-
tively, are given by

H(x) =
1− x
1 + x

(
M

(
x

(1 + x)2

)
− x
)

= x+ 3x2 + 16x3 + 96x4 + 624x5 + · · · ,

K(x) =

H

(
x

1 + x

)
− x

1 + x
= 2z2 + 9z3 + 47z4 + 278z5 + · · ·

The following estimates hold:

hn ∼ κ2n
−5/2(5 + 2

√
6)n, kn ∼ κ3n

−5/2(4 + 2
√

6)n, (6)

where

κ2 =
2√
π

(
2

3

)5/4

≈ 0.6797, κ3 =
2√
π

(
4− 4

√
2

3

)5/2

≈ 0.5209.

Proof. The decomposition of a map into its core and the collection of trees attached to
the corners implies the following equation:

M(z) = T (z) +H (T (z))
1 + T (z)

1− T (z)
. (7)

The first summand corresponds to the case where the map is a tree, and the second one
where the core is non-empty: each edge is replaced with a non-empty tree whose root
corresponds to the original edge. The factor

1 + T (z)

1− T (z)
= 1 +

2T (z)

1− T (z)

is interpreted as follows. The first summand corresponds to the case where the root of the
map belongs to the core, and the second one to the case where it is in a pendant rooted
tree τ , which we place at the left-back corner of the root edge of the core. In this case
there is a non-empty sequence of non-empty trees from the root edge e of τ to the root
edge of the core, and the factor 2 distinguishes the two possible orientations of e.

In order to invert the former relation let x = T (z), so that

z =
x

(1 + x)2
.
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M C K

Figure 2: Core and kernel of a map.

We obtain

H(x) =
1− x
1 + x

(
M

(
x

(1 + x)2

)
− x
)
. (8)

Let now C be a 2-map. The kernel K of C is defined as follows: replace every maximal
path of vertices of degree two in C with a single edge (see Figure 2). Clearly K is a 3-map
and C can be obtained by replacing edges in K with paths. It follows that

H(z) = K

(
z

1− z

)
1

1− z
+

z

1− z
. (9)

The first term corresponds to the substitution of paths for edges, and the extra factor
1/(1 − z) indicates where to locate the new root edge in the path replacing the original
root edge. The last term corresponds to cycles, whose kernel is empty. Inverting the
relation x = z/(1− z) we obtain

K(x) =

H

(
x

1 + x

)
− x

1 + x
. (10)

In order to obtain asymptotic estimates for hn and kn we need to locate the dominant
singularities of H(z) and K(z) and show that these functions are analytic on suitable
∆-domains. M(z) has a unique singularity at ρ = 1/12 and is analytic in C minus
the ray [1/12,+∞), and T (z) is singular only at 1/4. Hence H(z) has a singularity at
σ = ρT (ρ)2 = 5− 2

√
6. We show next that H(z) is analytic in |x| < σ and has no other

singularities in |x| = σ. By continuity it is ∆-analytic at σ.
From Equation (8), the singularities of H are at −1 and at the points x where t =

x/(1 + x)2 ∈ [1/12,∞). We show that these points either satisfy |x| > 1 or belong to the
real segment [σ, 1). If we solve the equation for x we get

x =
1− 2t±

√
1− 4t

2t
, t ∈ [1/12,∞).
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We analyze two cases. For t > 1/4 we can rewrite x = (1 − 2t ± i
√

4t− 1)/2t and
obtain |x| = 1. When 1/12 6 t 6 1/4, x must be real. Consider the solution x(t) =
(1− 2t+

√
1− 4t)/2t. It is non-increasing since the derivative

x′(t) = −1− 2t+
√

1− 4t

2
√

1− 4t · t2

is negative. Since x(1/4) = 1 it follows that x > 1. For the solution x(t) = (1 − 2t −√
1− 4t)/2t the derivative is positive and x(1/12) = σ. Hence x > σ.

From Equation (10) it follows that K(x) has a singularity at τ = σ/(1− σ) = (
√

6−
2)/4. A similar argument as before shows that K(x) is ∆-analytic at τ .

The singular expansion of M(z) at the singularity z = 1/12 can be obtained directly
from the explicit formula (3), and is equal to

M(z) =
1

3
− 4

3
Z2 +

8

3
Z3 +O(Z4),

where Z =
√

1− 12z. Plugging this expression into (8) and expanding gives

H(x) = H0 +H2X
2 +

8

3

(
2

3

)5/4

X3 +O(X4),

where now X =
√

1− x/σ. A similar computation using (10) gives

K(x) = K0 +K2X
2 +

8

3

(
4− 4

√
2

3

)5/2

X3 +O(X4),

where X =
√

1− x/τ .
The estimates for hn and kn follow by the transfer theorem and the value Γ(−3/2) =

4
√
π/3.

For future reference we display the dominant singularities for 2- and 3-maps, respectively:

σ = 5− 2
√

6, τ =

√
6− 2

4
.

Our next result is a limit law for the size of the core and the kernel in random maps.

Theorem 5. The size Xn of the core of a random map with n edges, and the size Yn of
the kernel of a random 2-map with n edges are asymptotically Gaussian with

EXn ∼
√

6

3
n ≈ 0.8165n, VarXn ∼

n

6
≈ 0.1667n,

EYn ∼ (2
√

6− 4)n ≈ 0.8990n, VarYn ∼ (18
√

6− 44)n ≈ 0.0908n.

The size Zn of the kernel of a random map with n edges is also asymptotically Gaussian
with

EZn ∼

(
4− 4

√
6

3

)
n ≈ 0.7340n, VarZn ∼

(
128

3
− 52

3

√
6

)
n ≈ 0.2088n.
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Proof. If u marks the size of the core in maps, then an immediate extension of (7) yields

M(z, u) = H (uT (z))
1 + T (z)

1− T (z)
+ T (z). (11)

It follows that a dominant singularity ξ(u) of the univariate function z 7→M(z, u) is given
by uT (ξ(u)) = σ. Inverting this relation we obtain

ξ(u) =
σu

(σ + u)2
.

Consider u ∈ C close to 1. If |z| = ξ(u) but z 6= ξ(u) then M(z, u) is analytic at z.
Indeed, for such a |z| we have:

|uT (z)| = |u||T (z)| < |u|T (|z|) = |u| σ
|u|

= σ.

Now we can apply the quasi-powers theorem, so that the distribution is asymptotically
Gaussian with linear expectation and variance. An easy calculation gives

−ξ
′(1)

ξ(1)
=

√
6

3
, −ξ

′′(1)

ξ(1)
− ξ′(1)

ξ(1)
+

(
ξ′(1)

ξ(1)

)2

=
1

6
.

If now u marks the size of the kernel in 2-maps then an extension of (9) gives

H(z, u) = K

(
uz

1− z

)
1

1− z
+

z

1− z
. (12)

A dominant singularity χ(u) of z 7→ K(z, u) is now given by

χ(u) =
τ

τ + |u|
.

Again, for u0 close enough to 1 the generating function H(z, u0) can be extended to a
∆-domain with inner radius χ(u0). As before, for z with |z| = χ(u0) but z 6= χ(u0) we
have: ∣∣∣∣u0 z

1− z

∣∣∣∣ = |u0|
∣∣∣∣ z

1− z

∣∣∣∣ < |u0| |z|1− |z|
= |u0|

τ

|u0|
= τ.

Therefore the quasi-powers theorem applies and we have

−χ
′(1)

χ(1)
= 2
√

6− 4, −χ
′′(1)

χ(1)
− χ′(1)

χ(1)
+

(
χ′(1)

χ(1)

)2

= 18
√

6− 44.

The last statement concerning Zn follows by combining equations (11) and (12), ob-
taining an expression of M(z, u) in terms of K(z), and repeating the same computations
as before for the corresponding singularity function.

It is interesting to compare the previous result with the known results on the largest
block (2-connected component) [1]. The expected size of the largest block in random maps
is asymptotically n/3, quite smaller than the size of the core. In other words, the core
C consists of the largest block B together with smaller blocks attached to B comprising
in total

√
6−1
3
n ≈ 0.4832n edges. An explanation for this fact is the presence of a linear

number of loops, which belong to the core, but do not belong to the largest block.
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Degree distribution. Our last result in this section deals with the distribution of the
degree of the root vertex in 2-maps and 3-maps. We let M(z, u) be the GF of maps,
where z marks edges and u marks the degree of the root vertex. Similarly, H(z, u) is the
GF for 2-maps, and T (z, u) = 1/(1−uz(T (z) + 1))− 1 for trees, where again u marks the
degree of the root. Then we have

M(z, u) = H

(
T (z),

u(T (z, u) + 1)

T (z) + 1

)
(T (z, u) + 1) +H(T (z))

T (z, u)

1− T (z)
+ T (z, u).

The first term corresponds to the case where the root belongs to the core: we replace each
edge with a tree, and each edge incident to the root vertex is replaced with a possibly
empty tree, where u marks the degree of the root. The term T (z) + 1 in the denominator
ensures that an edge is not replaced twice with a tree. The factor T (z, u) + 1 allows to
place a possibly empty tree in the root corner. The second term corresponds to the case
where the root belongs to a tree attached to the core: the denominator 1− T (z) encodes
a sequence of trees going from the core to the root edge. The last term corresponds to
the case where the core is empty, and therefore the map is a tree.

If we change variables x = T (z) and w = u(T (u, z) + 1)/(T (z) + 1), the inverse is

z =
x

(1 + x)2
, u =

w(1 + x)

1 + wx
.

The former equation becomes

H(x,w) =

M

(
x

(1 + x)2
,
w(1 + x)

1 + wx

)
1 + wx

− wx

1 + x
M

(
x

(1 + x)2

)
+

1

1 + wx
+

wx2

1− x
− 1. (13)

The first terms are

H(x, u) = w2x+
(
w2 + 2w4

)
x2 +

(
3w2 + 4w3 + 4w4 + 5w6

)
x3 + · · ·

The relationship between H(z, u) and K(z, u) is simpler:

H(z, u) = K

(
z

1− z
, u

)
+K

(
z

1− z

)
zu2

1− z
+

zu2

1− z
.

Inverting gives

K(x, u) = H

(
x

1 + x
, u

)
− xu2

1 + x
H

(
x

1 + x

)
− xu2

1 + x
, (14)

and the first terms are

K(z, u) = 2u4z2 + (4u3 + 5u6)z3 + (9u3 + 9u4 + 15u5 + 14u8)z4 + · · ·

In order to analyze H(z, u) and K(z, u) we need the expansion of M(z, u) near the
singularity ρ = 1/12. Notice that the singularity does not depend on u for u ∼ 1, hence
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the analyticity in a ∆-domain is granted. As we have seen, the expansion of M(z) near
z = 1/12 is

M(z) =
1

3
− 4

3
Z2 +

8

3
Z3 +O(Z4),

where Z =
√

1− 12z. Since M(z, u) satisfies (5) we obtain

M(z, u) = M0(u) +M2(u)Z2 +M3(u)Z3 +O(Z4). (15)

A simple computation by indeterminate coefficients gives

M3(u) =
8u√

3(2 + u)(6− 5u)3
.

The limiting probability that a random map has a root vertex (or face) of degree k is
equal to

pM(k) =
[uk][zn]M(z, u)

[zn]M(z)
.

Both coefficients can be estimated using transfer theorems and we get that the probability
generating function of the distribution is given by

pM(u) =
∑

pM(k)uk =
M3(u)

M3(1)
=

u
√

3√
(2 + u) (6− 5u)3

. (16)

Our goal is to obtain analogous results for 2-maps and 3-maps.

Theorem 6. Let pM(u) be as before, and let pH(u) and pK(u) be the probability generating
functions for the distribution of the root degree in 2-maps and 3-maps, respectively. Then
we have

pH(u) =

pM

(
u(1 + σ)

1 + uσ

)
1 + σ

1 + uσ
− uσ

1− σ
,

pK(u) =
pH(u)− u2σ

1− σ
,

where σ = 5−2
√

6, as in Theorem 4. Furthermore, the limiting probabilities that the degree
of the root vertex is equal to k exist, both for 2-maps and 3-maps, and are asymptotically

pH(k) ∼ ν2k
1/2wkH ,

pM(k) ∼ ν3k
1/2wkK ,

where wH = wK =
√

2/3 ≈ 0.8165, ν2 =
√

3(1− σ)/(64π) ≈ 0.1158, and ν3 =√
3/(64π(1− σ)) ≈ 0.1288.

The correction terms uσ in pH(u) and u2σ in pK(u) are due to the fact, respectively,
that 2-maps have no vertices of degree one and 3-maps no vertices of degree two.
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Proof. Since M(z, u) satisfies (15) and H(x,w) satisfies (13), we obtain

H(z, u) = H0(u) +H2(u)Z2 +H3(u)Z3 +O(Z4),

where Z =
√

1− z/σ, and H3(u) can be computed as

H3(u) =

(
1− σ
1 + σ

)3/2(
M3 (u(1 + σ)/(1 + uσ))

1 + uσ
− M3(1)uσ

1 + σ

)
.

The probability generating function of the distribution is given by

pH(u) =
H3(u)

H3(1)
=

pM

(
u(1 + σ)

1 + uσ

)
1 + σ

1 + uσ
− uσ

1− σ
, (17)

as claimed in the statement.
On the other hand, by (14), K(z, u) satisfies

K(z, u) = K0(u) +K2(u)Z2 +K3(u)Z3 +O(Z4),

where now Z =
√

1− z/τ and K3(u) is

K3(u) =

(
1

1 + τ

)3/2 (
H3(u)−H3(1)σu2

)
.

The probability generating function of the distribution is given by

pK(u) =
K3(u)

K3(1)
=
pH(u)− u2σ

1− σ
. (18)

The asymptotics of the distributions can be obtained from that of pM(u). The singu-
larity of pM(u) is at uM = 6/5, and its expansion is computed from the explicit formula
in (16) as

pM(u) = P−3U
−3 +O(U−2), (19)

where U =
√

1− 5u/6 and P−3 = 1/(4
√

10). The singularity of pH and pK is obtained
by solving the equation

u(1 + σ)

1 + uσ
= uM =

6

5
,

giving uH = uK =
√

3/2. Hence, the exponential growth constants are wH = wK =
√

2/3.
The singular expansion of pH(u) is obtained by composing (17) and (19), giving as a result

pH(u) = Q−3U
−3 +O(U−2), (20)

where now U =
√

1− u
√

2/3, and Q−3 = P−3
√

15(1− σ)/8 =
√

3(1− σ)/16. The

singular expansion of pK(u) is obtained by composing (18) and (20) giving as a result

pK(u) = R−3U
−3 +O(U−2), (21)
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where U is as before and R−3 = Q−3/(1− σ) =
√

3/(1− σ)/16.
The estimates for pH(k) and pM(k) follow by the transfer theorem, provided that

the probability generating functions can be extended to a ∆-domain. Since we know
explicitly pM(u), we also know that it is analytic at D = C \ (−∞,−2] ∪ [6/5,∞). By
Equation (17) we know that if u(1 + σ)/(1 + uσ) ∈ D then pH and pK are analytic
at u. By inverting the expression we can check that if u(1 + σ)/(1 + uσ) /∈ D then
u ∈ (−∞,−1/(8 − 3

√
6)] ∪ [

√
3/2,∞), and therefore pH and pK are analytic in a ∆-

domain.

4 Equations for 2-graphs and 3-graphs

In this section we find expressions for the generating functions of 2- and 3-graphs in terms
of the generating function of connected graphs. The results are completely general and
specialize to the generating functions of planar graphs, since a graph is planar if and only
if its core its planar, and in turn the core is planar if and only if its kernel is planar.

Let C(x, y) be the generating function of connected graphs, where x marks vertices
and y marks edges. Denote by H(x, y) and K(x, y) the generating functions, respectively,
of 2-graphs and 3-graphs. We will find equations of the form

H(x, y) = C(A1(x, y), B1(x, y)) + E1(x, y)
K(x, y) = C(A2(x, y), B2(x, y)) + E2(x, y),

where Ai, Bi and Ei are explicit functions.
From now on all graphs are labelled, and all generating functions are of the exponential

type.

2-graphs. Let G be a connected graph. The core C of G is obtained by removing
repeatedly vertices of degree one, so that G is obtained from C by replacing each vertex
of G with a rooted tree. The number Tn of rooted trees with n edges is known to be nn−1,
and the generating function T (x) =

∑
Tnx

n/n! satisfies

T (x) = xeT (x).

The core of G can be empty, in which case G must be an (unrooted) tree. The number Un
of unrooted trees is known to be nn−2, and the generating function U(x) =

∑
unx

n/n! is
equal to

U(x) = T (x)− T (x)2

2
.

Theorem 7. Let hn be the number of 2-graphs with n vertices. Then H(x) =
∑
hnx

n/n!
is given by

H(x) = C(xe−x)− x+
x2

2
. (22)

Proof. The decomposition of a graph into its core and the attached rooted trees implies
the following equation:

C(z) = H(T (z)) + U(z). (23)
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The first summand corresponds to the case where the core is non-empty, and the second
summand corresponds to the case where the graph is a tree. In order to invert the former
relation let x = T (z), so that

z = xe−x, U(z) = x− x2

2
.

We obtain

H(x) = C(xe−x)− x+
x2

2
=
x3

3!
+ 10

x4

4!
+ 252

x5

5!
+ · · ·

Equation (22) can be enriched by taking edges into account. The generating functions
T (x, y) and U(x, y) are easily obtained as T (x, y) = T (xy)/y and U(x, y) = U(xy)/y, and
a quick computation gives

H(x, y) = C(xe−xy, y)− x+
x2y

2
= y3

x3

3!
+ (3y4 + 6y5 + y6)

x4

4!
+ · · · (24)

3-graphs. A multigraph is a graph where loops and multiple edges are allowed. As in
the case of simple graphs, we define a k-multigraph as a connected multigraph in which
the degree of each vertex is at least k. Let C̃ be a 2-multigraph. The kernel K̃ of C̃
is defined as follows: replace every maximal path of vertices of degree two in C̃ with a
single edge. Clearly K̃ is a 3-multigraph (unless C̃ is a cycle), and C̃ can be recovered by

replacing edges in K̃ with paths.
Let G̃ be a multigraph. For each i > 1, let αi be the number of vertices in G̃ that

are incident to exactly i loops, and let βi be the number of i-edges, that is, edges of
multiplicity i. The weight of G̃ is defined as

w(G̃) =
∏
i>1

(
1

2ii!

)αi

·
∏
i>1

(
1

i!

)βi
.

This definition is justified by the fact that when replacing an i-edge with i different
paths, the order of the paths is irrelevant. Similarly, when replacing a loop with a path,
the orientation is irrelevant. Note that the weight satisfies 0 < w(G̃) 6 1, and moreover

w(G̃) = 1 if and only if G̃ is simple. With this definition, the sum K̃n of the weights of
all 3-multigraphs with n vertices is finite.

As a preliminary step to computing the generating function of 3-graphs, we establish
a relation between 3-multigraphs and connected multigraphs. In order to distinguish
between edges of different multiplicity, we introduce infinitely many variables as follows.
Let C̃n,m,l1,l2,... be the sum of the weights of connected multigraphs with n vertices, m

loops and li i-edges for each i > 1. Define similarly K̃n,m,l1,l2,... for 3-multigraphs, and let

C̃(x, z, y1, y2, . . .) =
∑

C̃n,m,l1,l2,...x
nzmyl11 y

l2
2 . . . /n!

and
K̃(x, z, y1, y2, . . .) =

∑
K̃n,m,l1,l2,...x

nzmyl11 y
l2
2 . . . /n!.
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Theorem 8. Let C̃(x, z, y1, y2, . . .) and K̃(x, z, y1, y2, . . .) be as before. Then

K̃(x, z, y1, y2, . . .) =

C̃
(
xe−x(y1+s),−sxy1 − xy2 + z, s+ y0, s

2 + 2y1s+ y2, . . . ,
∑k

j=0

(
k
j

)
yjs

k−j, . . .
)

+E(x, y1),

(25)

where

y0 = 1, s = − xy21
1 + xy1

, E(x, y) = −x+
x2y

2 + 2xy
− ln

√
1 + xy +

xy

2
− (xy)2

4
.

The proof of Theorem 8 is quite technical and is given below. As a corollary we obtain
the generating function of 3-graphs. Recall that C(x, y) is the generating function of
connected graphs.

Corollary 9. Let Kn,m be the number of 3-graphs with n vertices and m edges. The
generating function K(x, y) =

∑
Kn,mx

nym/n! is given by

K(x, y) = C (A(x, y), B(x, y)) + E(x, y), (26)

where
A(x, y) = xe(x

2y3−2xy)/(2+2xy), B(x, y) = (y + 1)e−xy
2/(1+xy) − 1,

and E(x, y) is as in Theorem 8.

Proof. Since the weight of a simple graph is one, the number of simple 3-graphs is equal to
the number of weighted 3-multigraphs without loops or multiple edges. This observation
leads to

K(x, y) = K̃(x, 0, y, 0, . . . , 0, . . .). (27)

Moreover, for each connected multigraph G̃, a connected simple graph G can be obtained
by removing loops and replacing each multiple edge with a single edge. Then G̃ is obtained
from G by replacing each edge with a multiple edge, and attaching zero or more loops at
each vertex. This can be encoded as

C̃(x, z, y1, y2, . . . , yk, . . .) = C

(
xez/2,

∑
i>1

yi
i!

)
, (28)

where the exponential and the 1/i! terms take care of the weights. Finally, Equation (26)
follows by combining (27), (25) and (28).

We remark that a formula equivalent to (26) was obtained by Jackson and Reilly [13],
using the principle of inclusion and exclusion. Our approach emphasizes the assignment
of weights to multigraphs, which are needed in the various combinatorial decompositions.

Note that taking y = 1 in Equation (26) we obtain the univariate generating function
K(x) of 3-graphs as
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K(x) = K(x, 1) = C(A(x, 1), B(x, 1)) + E(x, 1). (29)

The proof of Theorem 8 requires the generating function of 2-multigraphs. Let

H̃n,m,l1,l2,...

be the sum of the weights of 2-multigraphs with n vertices, m loops and li i-edges (i > 1),
and let

H̃(x,w,w1, w2, . . .) =
∑

H̃n,m,l1,l2,...x
nwmwl11 w

l2
2 . . . /n!.

Lemma 10. Let H̃(x, z, y1, y2, . . .) and K̃(x, z, y1, y2, . . .) be as before, and let s =
xy21

1−xy1 .
Then the following equation holds:

K̃(x, z, y1, y2, . . . , yk, . . .) =

H̃
(
x,−sxy1 − xy2 + z, y1 − s, y2 − 2y1s+ s2, . . . ,

∑k
j=1(−1)k−j

(
k
j

)
yjs

k−j, . . .
)

− ln
√

1 + xy1 −
xz

2
+
x2y2

4
+
xy1
2
− (xy1)

2

4
.

(30)

Proof. The kernel of a 2-multigraph is obtained by replacing each edge with a path. This
implies the following equation:

H̃(x,w,w1, w2, . . . , wk, . . .) =

K̃
(
x, sxw1 + xw2 + w,w1 + s, w2 + 2w1s+ s2, . . . ,

∑k
j=1

(
k
j

)
wjs

k−j, . . .
)

− ln
√

1− xw1 +
xw

2
+
x2w2

4
− xw1

2
− (xw1)

2

4
, s =

xw2
1

1− xw1

.

(31)

The first summand corresponds to the case where there is at least one vertex of degree
> 3, and thus the kernel is not empty. The other summands correspond to cycles (each
vertex is of degree exactly two), and from the logarithm encoding cycles we must take
care of cycles of length one or two.

If the kernel is not empty, we replace every edge and every loop with a path. The
expression s encodes a nontrivial path, consisting of at least one vertex. Each loop can
be replaced with either another loop, or a vertex and a double edge, or a path consisting
of at least two vertices; these operations are encoded, respectively, by z, xy2 and s. Note
that if the kernel has an i-loop, then we can replace any of the loops with a path, in both
orientations. Therefore there are 2i ways to obtain the same graph, which compensates
the fact that the weight of the new graph will be 2i times the weight of the old graph.
Each k-edge can be replaced with a j-edge and k − j nontrivial paths, where 0 6 j 6 k.
There are (k − j)! ways to obtain the same graph, and the weight becomes k!/j! times
the previous weight. Therefore yk is replaced with

(
k
j

)
yjs

k−j, for j = 0, . . . , k.

In view of Equation (31), we need to invert the following change of variables:

z = sxw1 + xw2 + w

yk =
∑k

j=1

(
k
j

)
wjs

k−j, k > 1
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It is well known that inverting yk =
∑k

j=1

(
k
j

)
wjs

k−j gives wk =
∑k

j=1(−1)k−j
(
k
j

)
yjs

k−j.

Together with w = sxy1 − xy2 + z gives (30), as claimed.

Proof of Theorem 8. Given a multigraph it is clear that every vertex incident to a loop or
to a multiple edge belongs to the core. Therefore, Equation (24) can be easily extended
to multigraphs, giving the equation

H̃(x, z, y1, y2, . . . , yk, . . .) = C̃
(
xe−xy1 , z, y1, y2, . . . , yk, . . .

)
− x+

x2y1
2
. (32)

Finally, Equation (25) follows by composing (30) and (32).

As mentioned before, Theorem 7 and Corollary 9 hold for planar graphs as well. In
the next section we use them to enumerate and analyze planar 2- and 3-graphs.

5 Planar graphs

In this section we follow the ideas of Section 3 on planar maps in order to obtain related
results for planar 2-graphs and 3-graphs. The asymptotic enumeration of planar graphs
was solved in [11], as well as the distribution of the number of edges. From now on we
assume that we know the generating function C(x, y) of connected planar graphs, where
x marks vertices and y marks edges, as well as its main properties, such as the dominant
singularities and the singular expansions around them (see [11] for details).

In this section we use the equations obtained in Section 4 to compute several param-
eters in planar graphs. Most of the computations will be analogous to the ones of maps,
but technically more involved. In order to compare the following results, we recall [11]
that the number of connected planar graphs is cn ∼ κn−7/2γn, where κ ≈ 0.4104 ·10−5 and
γ ≈ 27.2269. As expected, there are exponentially fewer connected 2-graphs and 3-graphs
than connected planar graphs. Besides, the expected degree of 2-graphs and 3-graphs is
larger.

5.1 Planar 2-graphs

We start our analysis with the enumeration of planar 2-graphs.

Theorem 11. Let hn be the number of planar 2-graphs. The following estimate holds:

hn ∼ κ2n
−7/2γn2n!,

where γ2 ≈ 26.2076 and κ2 ≈ 0.3724 · 10−5.

Proof. Recall Equation (22) from Section 4:

H(x) = C(xe−x)− x+
x2

2
.

In order to obtain an asymptotic estimate for hn we need to locate the dominant singularity
of H(x). The singularity of C(x) is ρ = γ−1 ≈ 0.0367 [11]. Hence the singularity of
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H(x) is at σ = T (ρ) ≈ 0.0382. Therefore, the exponential growth constant of hn is
γ2 = σ−1 ≈ 26.2076. Note that we use the same symbol σ as in Section 3 for maps, but
they correspond to different constants. No confusion should arise and it helps emphasizing
the parallelism between planar maps and graphs.

The singular expansion of C(x) at the singularity x = ρ is

C(x) = C0 + C2X
2 + C4X

4 + C5X
5 +O(X6),

where X =
√

1− x/ρ, and C5 ≈ −0.3880 · 10−5 is computed in [11]. Plugging this
expression into (22) and expanding gives

H(x) = H0 +H2X
2 +H4X

4 +H5X
5 +O(X6),

where now X =
√

1− x/σ and H5 = C5(1− σ)5/2 ≈ −0.3520 · 10−5. The estimate for hn
follows directly by the transfer theorem, provided that H can be extended to a ∆-domain.
As opposed to the case of maps, we do not have an exact expression for C, and because
of the relation of Equation (22), it is not enough to assume that C can be extended to
a ∆-domain, since |(−σ) exp(−(−σ))| > ρ. Instead, we use an alternative expression for
H.

Define A(x) as the generating function of connected planar graphs with an unlabelled
root vertex where all the vertices except, perhaps, the root, have degree at least 2. If the
root has degree 2 then graphs in A are encoded by H ′(x). Otherwise either the graph is
reduced to a single vertex or the root is connected to a rooted 2-graph through a path of
arbitrary length and they are encoded by x

1−xH
′(x). Hence we have

A(x) =
H ′(x)

1− x
+ 1. (33)

Let B(x) be the generating of planar 2-connected graphs. The unique decomposition
of a rooted connected graph into blocks is reflected (see [11]) into the basic equation
C ′(x) = exp (B′(xC ′(x))). The radius of convergence R of B is given by R = ρC ′(ρ), and
R is the only singularity in the circle of convergence of B(x).

A modification including paths as building blocks in the decomposition gives

A(x) = exp(B′(xA(x))− x), (34)

reflecting the fact in the block decomposition any edge-block should have a non-empty
graph attached at its farthest extremity from the root.

Let F (x) = exp(B′(xA(x)) − x) be the right-hand side of (34). Equation (33) shows
that A has the same singularities as H in the open ball of radius 1. We now use (34) to
prove that A, and therefore H, can be extended to a ∆-domain.

The proof has two parts. First we have to prove that A behaves like a square root
near its singularity x = σ. This follows from [5, Theorem 2.31], using r(x) = R/x (in
the notation of [5]). Then we need to prove that there is no branch point when solving
A = F (A, x) for x in the circle of convergence |x| = σ. Since FA(A, x) = xAB′′(xA) is
a positive function, and FA(A(σ), σ) = RB′′(R) < 1, we have that |FA(A(x), x)| < 1,
so it is analytic in a neighbourhood of x. By compactness A is analytic in a ∆-domain
at σ.
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Our next result is a limit law for the number of edges in a random planar 2-graph.
We recall [11] that the expected number of edges in random connected planar graphs is
asymptotically µn, where µ ≈ 2.2133, and the variance is λn with λ ≈ 0.4303.

Theorem 12. The number Xn of edges in a random planar 2-graph with n vertices is
asymptotically Gaussian with

EXn ∼ µ2n ≈ 2.2614n,

VarXn ∼ λ2n ≈ 0.3843n.

Proof. Equation (24) from Section 4

H(x, y) = C(xe−xy, y)− x+
x2y

2

implies that the singularity σ(y) of the univariate function x 7→ H(x, y) is given by

σ(y)e−σ(y)y = ρ(y),

where ρ(y) is the singularity of the univariate function x 7→ C(x, y). An easy calculation
gives

µ2 = −σ
′(1)

σ(1)
=
−ρ′(1)/ρ− σ

1− σ
=
µ− σ
1− σ

≈ 2.2614,

which provides the constant for the expectation. Similarly

λ2 = −σ
′′(1)

σ(1)
− σ′(1)

σ(1)
+

(
σ′(1)

σ(1)

)2

=

−ρ′′(1)

ρ(1)
− 3σ′(1)− 3σ′(1)2

σ
+ σ′(1)2 + 2σ′(1)σ + σ2 − σ′(1)

σ
+

(
σ′(1)

σ

)2

1− σ
.

This value can be computed from the known values of µ, λ and σ.
Again, in order to apply the quasi-powers theorem we need to prove that H(x, y) is

∆-analytic for y close enough to 1. Define A(x, y) as the generating function of connected
planar graphs with an unlabelled root where all the vertices except the root have degree
at least 2. The following equations are a direct extension of (33) and (34):

A(x, y) =
Hx(x, y)

1− xy
+ 1,

A(x, y) = exp(Bx(xA(x, y), y)− xy) = F (A, x, y).

From the first equation we know that A and H have the same singularities for x, y such
that xy < 1, so we just need to prove that for values y0 near 1 the function A(x, y0) is
∆-analytic. The proof is analogous to that of Theorem 11. First, A(x, y) behaves like a

the electronic journal of combinatorics 25(4) (2018), #P4.5 21



square root near the singularity σ(y0), again by [5, Theorem 2.31] taking r(x, u) = R(u)/x.
Then we need that, when |x| = R(y), FA(A(x, y), x, y) 6= 1 holds. Since FA is positive,
FA(A(x, 1), x, 1) < 1, and since both F and A are continuous in y, for values of y close
enough to 1 the inequality holds, so again we can extend A(x, y) to a ∆-domain at
σ(y).

Next we determine a limit law for the size of the core in random connected planar
graphs.

Theorem 13. The size Xn of the core of a random connected planar graph with n edges
is asymptotically Gaussian with

EXn ∼ (1− σ)n ≈ 0.9618n, VarXn ∼ σn ≈ 0.0382n.

Proof. The generating function Ĉ(x, u) of connected planar graphs, where u marks the
size of the core, is given by

Ĉ(x, u) = H(uT (x)) + U(x). (35)

It follows that the singularity ξ(u) of the univariate function x 7→ Ĉ(x, u) is given by the
equation

uT (ξ(u)) = σ.

We can isolate ξ(u) obtaining the explicit formula

ξ(u) =
σe−σ/u

u
.

An easy calculation gives

−ξ
′(1)

ξ(1)
= 1− σ, −ξ

′′(1)

ξ(1)
− ξ′(1)

ξ(1)
+

(
ξ′(1)

ξ(1)

)2

= σ.

In order to apply the quasi-powers theorem we need to show that, for u0 close enough
to 1 we can extend the generating function C(x, u0) to a ∆-domain. As in the proof of
Theorem 11, two steps are needed. First, we have to prove that C(x, u) is analytic near
x = ρ(u) if arg(x/ρ(u)− 1) > α. We know that this is the case for H(x) near σ, for some
angle β. Since uT (x) is analytic, it is conformal and preserves angles locally, hence for u
close enough to 1 and x close enough to ρ(u), if arg(x/ξ(u)−1) > α for some α > β, then
uT (x) is close to σ and arg(T (x)u/σ− 1) > β. Then T (x)u is in the region of analyticity
of H and C(x, u) is analytic in x. On the other hand, if u = 1 then uT (x) is a positive
function, hence if |x| = ξ(1) but x 6= ξ(1) then |T (x)| < σ. This implies that if u is
close enough to 1 and |x| = |ξ(u)| but far enough from ξ(u), then |uT (x)| < σ by the
continuity of uT (x)u, so C(x, u) is analytic in a neighbourhood of x. By compactness, a
finite number of neighbourhoods is enough, and their union gives a ∆-domain in which
C(x, u) is analytic.
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Our next goal is to analyze the size of the trees attached to the core of a random
connected planar graph.

Theorem 14. Let k be fixed and let Xn,k count trees with k vertices attached to the core
of a random connected planar graph with n vertices. Then Xn,k is asymptotically normal
and

EXn,k ∼ αkn, VarXn ∼ βkn,

where

αk =
1− σ
σ

kk−1

k!
ρk,

and βk is described in the proof.

Proof. The generating function of trees where variable w marks trees with k vertices is
equal to

T (x,w) = T (x) + (w − 1)Tkx
k,

where Tk = kk−1/k! is the k-th coefficient of T (x). The composition scheme for the core
decomposition is then

C(x,w) = H(T (x,w)) + U(x),

where U(x) = T (x)−T (x)2/2 as in the introduction. It follows that the singularity ρk(w)
of the univariate function x 7→ C(x,w) is given by the equation

T (ρk(w)) + (w − 1)Tk(ρk(w))k = σ.

An easy calculation gives

αk = −ρ
′
k(1)

ρk(1)
=

1− σ
σ

kk−1

k!
ρk

βk = −ρ
′′
k(1)

ρk(1)
− ρ′k(1)

ρk(1)
+

(
ρ′(1)

ρ(1)

)2

=
1

σ2

(
Tkρ

k(Tkρ
k(1− 2k + 4σ − 2kσ2) + σ − σ2

)
The proof that C(x,w) can be extended analytically to a ∆-domain is analogous to the
proof of Theorem 13.

As expected,
∑

k>0 αk = 1−σ, since there are σn vertices not in the core, and therefore
there are (1− σ)n trees attached to the core. Moreover,

∑
k>0 kαk = 1, since a connected

graph is the union of the trees attached to its core.
To conclude this section, we consider the parameter Ln equal to the size of largest tree

attached to the core of a random planar connected graph.

Theorem 15. Let Ln be the size of largest tree attached to the core of a random planar
connected graph. Then

Ln
log n

→ 1

log(1/(eρ))
≈ 0.4340 in probability,

and

ELn ∼
1

log(1/(eρ))
log n (n→∞).
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Proof. The main idea in the proof is to generalize Theorem 3, assigning a numerical
“label” ν to each vertex instead of its vertex degree. Given the same hypothesis in the
behaviour of this parameter, the conclusion still holds and we obtain an estimate on the
maximum label.

In our case the label is the size of the tree attached to the core that contains the given
vertex. If the graph is itself a tree then all labels are equal to 0 by convention. Therefore,
in the rewording of Theorem 3, dn,k denotes the probability that a randomly selected
vertex of a random planar graph of size n has label k, and dn,k,l denotes the probability
that two different (ordered) randomly selected vertices have labels k and l. In order to

compute such probabilities we define the generating functions Ĉ(x, z) and Ĉ(x, z, w) as

follows: Ĉ(x, z) is for connected planar graphs with a root vertex, where x marks vertices

and z marks the label of the root. Analogously, Ĉ(x, z, w) is for connected planar graphs
with two different ordered root vertices, where x marks vertices, z marks the label of the
first root, and w the label of the second root.

Given a generating function F (x) of labelled graphs, we let F •(x) = xF ′(x), which
encodes graphs rooted at a vertex. Also, F ••(x) encodes graphs rooted at two different
vertices. The next equation is derived from (23) by differentiation

C•(x) = H ′(T (x)T •(x) + T (x),

and the following relations extend the previous equation, marking the labels of the root
vertices:

Ĉ(x, z) = H ′(T (x))T •(zx) + T (x),

Ĉ(x, z, w) = H ′′(T (x))T •(zx)T •(wx) +H ′(T (x))T ••(zwx) + T •(x).

We then have

dn,k =
[xnzk]Ĉ(x, z)

[xn]Ĉ(x, 1)
, dn,k,l =

[xnzkwl]Ĉ(x, z, w)

[xn]Ĉ(x, 1, 1)
.

Also note that Ĉ(x, 1) = C•(x), and Ĉ(x, 1, 1) = C••(x), which are well-known functions.
Next we verify that all the conditions in Theorem 3 hold.

Condition 1. Define αk as in Theorem 14. Then

dk = k · αk =
1− σ
σ

kk

k!
ρk.

And one easily checks that log dk ∼ k log(eρ) as k →∞, as required.

Condition 2. To check this condition we cannot use the quasi-powers theorem, since it
only proves the desired result for fixed k. Since we only need the result for k tending to
infinity, we can dismiss the graphs whose core is empty. Therefore, for k →∞,

[xnzk]Ĉ(x, z) ∼ [xn]H ′(T (x))[zk]T •(xz) = [xn−k]H ′(T (x)) · [zk]T •(z).
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From this we obtain

dn,k ∼
[xn−k]H ′(T (x))

[xn]C•(x)
· [zk]T •(z) ∼ 1− σ

σ

(
n− k
n

)−5/2
ρk · 1√

2πk
ek.

Finally, when k 6 C log n we have
(
n−k
n

)−5/2 → 1 and thus dn,k ∼ dk.

Now we have to prove a similar estimate for dn,k,l. Let Ĉ(x, z, w) = S1 + S2 + S3,
where

S1 = H ′′(T (x))T •(zx)T •(wx), S2 = H ′(T (x))T ••(zwx), S3 = T •(x).

We know that the coefficients of S3 are 0 when k and l tend to infinity. Since we differ-
entiate H once instead of twice, it follows that [xnzkwk]S2 = O((k/n)[xnzkwk]S1). Since
k = O(log n), the coefficients of S2 are asymptotically smaller than those of S1. Therefore,
the main asymptotic part comes from S1. We have

[xnzkwl]S1(x, z, w) = [xn−k−l]H ′′(T (x)) · [zk]T •(z) · [wl]T •(w).

Then

dn,k,l =
[xn−k−l]H ′′(T (x))

[xn]C••(x)
· [zk]T •(z) · [wl]T •(w) · (1 + o(1))

∼
(

1− σ
σ

)2(
n− k − l

n

)−3/2
ρk+l · 1√

2πk

1√
2π`

ek+l.

When k, ` = O(log n) we have
(
n−k−l
n

)−3/2 → 1, and thus dn,k,l ∼ dkdl, as required.

Condition 3. We already proved that, for k, l > 1, and uniformly for any k, l, n, we have

[xnzk]Ĉ(x, z) = f(n, k)(eρ)k, [xnzkwl]Ĉ(x, z, w) = g(n, k, l)(eρ)k+l,

where f and g are subexponential functions, so for any q > eρ we have that dn,k = O(qk)
and dn,k,l = O(qk+l).

Thus Theorem 3 applies and we conclude the proof.

Remark. A similar result can be proved for random maps. Let Ln be the size of a
largest tree attached to the core of a random rooted map with n edges. Then it can be
shown that

Ln
log n

→ 1

log(3)
≈ 0.912 in probability,

and

ELn ∼
1

log(3)
log n (n→∞).

The proof is similar to the prove of the previous result and we omit it for the sake of
brevity.
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5.2 Planar 3-graphs

We recall again that the generating function of connected planar graphs C(x, y), where x
marks vertices and y marks edges, was computed in [11].

Theorem 16. Let kn be the number of planar 3-graphs. The following estimate holds:

kn ∼ κ3n
−7/2γn3n!,

where
γ3 ≈ 21.3102, κ3 ≈ 0.3107 · 10−5.

Proof. Recall Equation (29) from Section 4:

K(x) = C (A(x), B(x)) + E(x), (36)

where A(x), B(x) and E(x) are explicit functions. In order to obtain an estimate for kn
we need to locate the dominant singularity of K(x). The singularities of C(x, y) is given
by (X(t), Y (t)), where t ∈ (0, 1) and X, Y are explicit functions defined in [11]. Hence
the singularity τ of K(x) is obtained by solving

X(t) = A(τ), Y (t) = B(τ).

The smallest positive solution τ of the system can be computed numerically and is τ ≈
0.0469. The exponential growth constant is then γ3 = τ−1 ≈ 21.3102.

The singular expansion of C(x, y) at the singularity x = ρ(y) is of the form

C(x, y) = C0(y) + C2(y)X2 + C4(y)X4 + C5(y)X5 +O(X6),

where X =
√

1− x/ρ(y), and C5(y) is an explicit expression computed in [11]. Plugging
this expression into (36) and expanding, and taking into account that A(x) and B(x) are
analytic at τ , gives

K(z) = K0 +K2Z
2 +K4Z

4 +K5Z
5 +O(Z6), (37)

where Z =
√

1− z/τ . In order to compute the dominant coefficient K5, we need to

expand C5(B(z)) (1−D(z))5/2, where D(z) = A(z)/ρ(B(z)), at z = τ . Consider the
first-order Taylor expansion of D(z):

D(z) = D(τ) +D′(τ)(z − τ) +O((z − τ)2).

Since (A(τ), B(τ)) is a singular point of C(x, y), we have

A(τ) = ρ(B(τ)), D(τ) =
A(τ)

ρ(B(τ))
= 1.

Therefore,
√

1−D(z) is computed as√
τD′(τ)(1− z/τ) +O((x− τ)2) =

√
τD′(τ)Z +O(Z2),
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hence (1 − D(z))5/2 = (τD′(τ))5/2Z5 + O(Z6). Since C5(y) is analytic at y = B(τ), we
conclude that K5 = C5(B(τ))(τD′(τ))5/2 ≈ −0.2937 · 10−5. The estimate for kn follows
directly by the transfer theorem, with κ3 = K5/Γ(−5/2) ≈ 0.3107 · 10−5, provided that
K can be analytically extended to a ∆-domain at τ . The proof is more technical than
the previous proofs of ∆-analyticity and is shown in the appendix.

Our next result is a limit law for the number of edges in a random planar 3-graph.

Theorem 17. The number Xn of edges in a random planar 3-graph with n vertices is
asymptotically Gaussian with

EXn ∼ µ3n ≈ 2.4065n, VarXn ∼ λ3n ≈ 0.3126n.

Proof. Recall Equation (26) from Section 4:

K(x, y) = C (A(x, y), B(x, y)) + E(x, y), (38)

where
A(x, y) = xe(x

2y3−2xy)/(2+2xy), B(x, y) = (y + 1)e−xy
2/(1+xy) − 1,

E(x, y) = −x+
x2y

2 + 2xy
− ln

√
1 + xy +

xy

2
− (xy)2

4
.

It follows that the singularity τ(y) of the univariate function x 7→ K(x, y) is given by the
equation

A(τ(y), y) = ρ(B(τ(y), y)),

where ρ(y) is as before the singularity of x 7→ C(x, y). The value of τ(1) = τ is already
known. In order to compute τ ′(1) we differentiate and obtain

Ax(τ, 1)τ ′(1) + Ay(τ, 1) = ρ′(B(τ, 1)) [Bx(τ, 1)τ ′(1) +By(τ, 1)] .

Solving for τ ′(1) we obtain

τ ′(1) = −ρ
′(B(τ, 1))By(τ, 1)− Ay(τ, 1)

ρ′(B(τ, 1))Bx(τ, 1)− Ax(τ, 1)
.

Since ρ = X ◦ Y −1, where X and Y are explicit functions defined in [11], ρ′(y) can be
computed as X ′(Y −1(y))/Y ′(Y −1(y)). After some calculations we finally get a value of
τ ′(1) ≈ −0.1129 and

µ3 = −τ
′(1)

τ(1)
≈ 2.4065.

Using the same procedure we can isolate τ ′′(1) ≈ 0.3700 and obtain

λ3 = −τ
′′(1)

τ(1)
− τ ′(1)

τ(1)
+

(
τ ′(1)

τ(1)

)2

≈ 0.3126.

In order to apply quasi-powers theorem we have to show that K(x, y) is analytic in a ∆-
domain for y close enough to 1. The proof is a direct extension of that of the Lemma in
the Appendix by adding variable y marking edges, and we omit it to avoid repetition.
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Next we determine the limit law for the size of the kernel in random planar 2-graphs.

Theorem 18. The size Yn of the kernel of a random planar 2-graph with n edges is
asymptotically Gaussian with

EYn ∼ µKn ≈ 0.8259n, VarYn ∼ λKn ≈ 0.1205n (39)

Proof. Recall that the decomposition of a simple 2-graph into its kernel gives

H(x) = H̃(x, 0, 1, 0, . . .)

= K̃
(
x, x2

1−x ,
1

1−x , . . . , k
(

x
1−x

)k−1
+
(

x
1−x

)k
, . . .

)
+ E(x, 1).

If u marks the size of the kernel then

H(x, u) = K̃

(
ux,

x2

1− x
,

1

1− x
, . . . , k

(
x

1− x

)k−1
+

(
x

1− x

)k
, . . .

)
+ E(x, 1).

Composing with Equations (25) and (28) we get

H(x, u) = C (A(x, u), B(x, u)) + F (x, u)

where

A(x, u) = ux exp

(
−x (2u+ x+ u2x− 2ux)

2(1− x+ ux)

)
,

B(x, u) = −1 + 2 exp

(
x (1− u)

1− x+ ux

)
,

and F (x, u) is a correction term which does not affect the singular analysis. It follows
that the singularity χ(u) of the univariate function x 7→ H(x, u) is given by the equation

A(χ(u), u) = ρ(B(χ(u), u)),

If we differentiate the former expression and replace u with 1 we get

Ax(σ, 1)χ′(1) + Ay(σ, 1) = ρ′(1)(Bx(σ, 1)χ′(1) +By(σ, 1)).

Note that χ(1) = σ, where σ is, as before, the singularity of the generating function
H(x) of planar 2-graphs. Moreover, B(x, 1) = 1. After some calculations we finally get
χ′(1) ≈ −0.03135 and

µK = −χ
′(1)

χ(1)
=

2ρ′(1)eσ + σ2 − σ + 1

1− σ
.

This is computed using the known values of σ and ρ′(1) = −ρµ. Using the same procedure
we can isolate χ′′(1) ≈ 0.05295 and compute λK as

λK = −χ
′′(1)

χ(1)
− χ′(1)

χ(1)
+

(
χ′(1)

χ(1)

)2

≈ 0.1205.
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We need to show that H(x, u) is analytic in a ∆-domain. If u = 1 we already know it for
H(x, 1). Since A(x, u) and B(x, u) are both analytic, and A(σ, 1) = ρ and B(x, 1) = 1,
then for u close enough to 1 and x close enough to χ(u), by continuity, if arg(x/χ(u)−1) >
α then arg(A(x, u)/ρ(B(x, u)) − 1) > β for some β > 0, as in the proof of Theorem 13.
Also, if |x| = σ but x 6= σ, then we know that H(x, 1) is analytic near x. Again by
continuity, if u is close enough to 1 and |x| = χ(u) then H(x, u) is analytic at (x, u), and
by compactness this is sufficient to prove analyticity in a ∆-domain.

Note that, since the expected size of the core of a random connected planar graph is
1−σ, the expected size of the kernel of a random connected planar graph with n vertices
is asymptotically (1− σ)µKn = (2ρ′(1)eσ + σ2 − σ + 1)n ≈ 0.7944n.

6 Degree distribution

In this section we compute the limit probability that a vertex of a planar 2-graph or
3-graph has a given degree. In order to do that, we compute the probability distribution
of the root of a rooted planar 2-graph and 3-graph. Since every vertex is equally likely
to be the root, we conclude that the average distribution is the same. Note that this is
not true for maps, so in this section we only compute the distribution for graphs. This
section is rather technical, especially the part of 3-graphs, so that is why we separate its
content from that of Section 5.

Let c•n be the number of rooted connected planar graphs with n vertices, i.e., c•n = n·cn.
Let C•(x) =

∑
c•nx

n = xC ′(x) be its associated generating function. Let c•n,k be the
number of rooted connected planar graphs with n vertices and such that the root degree
is exactly k. Let C•(x,w) =

∑
c•n,mx

num be its associated generating function. The limit
probability dk that the root vertex has degree k can be obtained as

dk = lim
n→∞

c•n,k
c•n

= lim
n→∞

[xn][wk]C•(x,w)

[xn]C•(x)
.

Therefore, the probability distribution p(w) =
∑
dkw

k can be obtained from the knowl-
edge of C•(w, u). In [7] this function is computed, and dk is proven to be asymptotically

dk ∼ c · k−1/2qk,

where c ≈ 3.0175 and q ≈ 0.6735 are computable constants. Our goal is to obtain similar
results for 2-graphs and 3-graphs, by respectively computing generating function H•(x,w)
and K•(x,w) in terms of C•(x,w).

6.1 2-graphs

Theorem 19. Let h•n,k be the number of rooted 2-graphs with n vertices and with root

degree k. Let H•(x,w) =
∑
h•n,kx

nwk be its associated generating function. The following
equation holds

H•(x,w) = ex(1−w)C•(xe−x, w)− xwC•(xe−x)− x+ x2w (40)
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Proof. The decomposition of a graph into ins core and the attached rooted trees implies
the following equation:

C•(z, w) = H•(T (z), w)
T (z, w)

T (z)
+H•(T (z))

wT (z, w)

1− T (z)
+ T (z, w),

where T (z, w) = z · ewT (z) is the generating function of rooted trees where w marks the
degree of the root. The first addend corresponds to the case where the root is in the core.
In this case, the degree of the graph root is the degree of the core root plus the degree of
the root of its appended tree. The second addend corresponds to the case where the root
is in an attached tree. In this case there is a sequence of trees between the core and the
root, and finally a rooted tree. The degree of the graph root is the degree of the root of
the rooted tree plus one. The last addend corresponds to the case where the graph is a
tree, and therefore its core is empty.

In order to invert the former relation let x = T (z) so that

z = xe−x, T (z, w) = xe−x(1−w), H•(T (z)) = (1− x)C•(xe−x) + x2 − x.

After some calculations we obtain

H•(x,w) = ex(1−w)C•(xe−x, w)− xwC•(xe−x)− x+ x2w =

=
1

2
w2x3 +

(
w2 +

2

3
w3

)
x4 +

(
9

2
w2 +

13

3
w3 +

41

24
w4

)
x5 + . . .

The probability distribution p(w) can be computed using transfer theorems. The
expansion of C•(x,w) near the singularity x = ρ gives the following equation

C•(x,w) = C0(w) + C2(w)X2 + C3(w)X3 +O(X4), (41)

where X =
√

1− x/ρ. The probability distribution can be computed as

p(w) =
C3(w)

C3(1)
.

Our goal is to obtain the same result by applying the relation obtained in (40).

Theorem 20. Let ek be the limit probability that a random vertex has degree k in a 2-
graph. Let pH(w) =

∑
ekw

k be its probability distribution. Let p(x) be as before. The
following equation holds:

pH(w) =
eσ(1−w)p(w)− σw

1− σ
, (42)

where σ = T (ρ), as in Theorem 11. Furthermore, the limiting probability that the degree
of a random vertex is equal to k exists, and is asymptotically

pH(k) ∼ ν2k
−1/2qk,

where q ≈ 0.6735 and ν2 ≈ 3.0797.
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Proof. Since C•(x,w) satisfies (41), and H•(x,w) satisfies (40), we obtain

H•(x,w) = H0(w) +H2(w)X2 +H3(w)X3 +O(X4),

where X =
√

1− x/σ, and H3(w) is computed as

H3(w) = eσ(1−w)C3(w)(1− σ)3/2 − wσC3(1)(1− σ)3/2

The probability generating function of the distribution is given by

pH(w) =
H3(w)

H3(1)
=

(1− σ)3/2
(
eσ(1−w)C3(w)− wσC3(1)

)
(1− σ)3/2C3(1)(1− σ)

=
eσ(1−w)p(w)− σw

1− σ
.

The asymptotics of the distribution can be obtained from p(w). The singularity of
p(w) is obtained in [7] as r ≈ 1.4849. The expansion of p(w) near the singularity is
computed as

p(w) = P−1W
−1 +O(1),

where P−1 ≈ 5.3484 is a computable constant, and W =
√

1− w/r. Plugging this
expression into (42) we get

pH(w) = Q−1W
−1 +O(1),

where Q−1 = P−1e
σ(1−r)/(1 − σ) ≈ 5.4586. The estimate for pH(k) follows directly by

singularity analysis.

6.2 3-graphs

In order to prove a similar result for 3-graphs, we need to extend the generating function
C•(x,w) so that it takes edges into account. Our goal is to obtain the analogous generating
function for 3-graphs, K•(x,w), in terms of C•(x, y, w), which was computed in [7]. We
remark that the precise expression given in [7] for C•(x, y, w) is extremely involved and
needs several pages to write it down.

Theorem 21. Let k•n,k be the number of rooted 3-graphs with n vertices and with root

degree k. Let K•(x,w) =
∑
k•n,kx

nwk be its associated generating function. The following
equation holds

K•(x,w) = B0(x,w) · C• (B1(x), B2(x), B3(x,w)) + A(x,w) (43)

where
B0(x,w) = e(w

2−1)x2/(2+2x)+x(1−w)/(1+x), B1(x) = xe(x
2−2x)/(2+2x),

B2(x) = 2e−x/(1+x) − 1, B3(x,w) =
(1 + w)e−wx/(1+x) − 1

2e−x/(1+x) − 1
,

A(x,w) = A0(x) + A1(x)w + A2(x)w2,

and A0(x), A1(x), A2(x) are analytic functions.
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In order to prove this theorem we need some technical lemmas that relate different
classes of graphs.

Lemma 22. Let C̃•(x,w, z, y1, . . . , yk, . . .) be the generating function of rooted connected
planar weighted multigraphs where x marks vertices, w marks the root degree, z marks
loops, and yk marks k-edges. The following equation holds

C̃•(x,w, z, y1, . . . , yk . . .) = ez·(w
2−1)/2C•

(
xez/2,

∑
i>1

yi
i!
,

∑
i>1w

i · yi/i!∑
i>1 yi/i!

)
. (44)

Proof. Given a simple connected planar graph G, a connected planar multigraph can be
obtained from G by replacing each edge with a multiple edge, and placing 0 or more loops
in each vertex (see proof of Corollary 9 for details). In the case of rooted graphs, if we
replace an edge incident to the root with a i edge, its root degree is increased in i − 1.
Therefore, instead of replacing such an edge with a multiple edge with generating function
yi/i!, we replace it with a multiple edge with generating function wiyi/i!. Similarly, when
we add a loop incident to the root vertex, the root degree is increased by 2. Therefore,
the associated generating function at the root-vertex is ezw

2/2 instead of ez/2.

Lemma 23. Let H̃•(x,w, z, y1, . . . , yk, . . .) be the generating function of rooted planar
weighted 2-multigraphs where x marks vertices, w marks the root degree, z marks loops,
and yk marks k-edges. The following equation holds

H̃•(x,w, z, y1, . . . , yk . . .) = ey1x(1−w)C̃•(xe−y1x, w, z, y1, . . . , yk . . .)
−w · A(x, z, y1, . . . yk, . . .)− x,

(45)

for a given function A(x, z, y1, . . . yk, . . .) that does not depend on w.

Proof. The decomposition of a planar connected weighted multigraph into its core and
the attached rooted trees implies the following equation:

C̃•(x,w, z, y1, . . . , yk, . . .) = H̃•(T (x, y1), w, z, y1, . . . , yk, . . .)
T (x, y1, w)

T (x, y1)
+

+H̃•(T (x, y1), z, y1, . . . , yk, . . .)
wT (x, y1, w)

1− T (x, y1)
+ T (x, y1, w),

where T (x, y) = T (xy)/y is the generating function of rooted trees where x marks vertices
and y marks edges, and T (x, y, w) = T (xy, w)/y is the generating function of rooted trees
where x marks vertices, y marks edges, and w marks the root degree. The justification of
this relation is analogous to the proof of Theorem 19, as well as the inverse.

Lemma 24. Let K•(x,w) be the generating function of rooted simple planar 3-graphs
where x marks vertices and w marks the root degree. The following equation holds

K•(x,w) = H̃•(x,w,−sx, 1 + s, 2s+ s2, . . . , ksk−1 + sk, . . .) + w2A(x), (46)

for a given function A(x), and where s = −x/(1 + x).
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Proof. The starting point is Equation (31), corresponding to the decomposition of a planar
2-multigraph into its kernel and paths of vertices. If we root a vertex of a planar 2-
multigraph there are two options: either it belongs to the kernel or it belongs to an edge
of the kernel. In the former case, its degree corresponds to the degree of the corresponding
vertex in the kernel. In the latter case its degree must be 2. With this observation we
can extend this equation so that it considers rooted graphs and it takes the root degree
into account, as

H̃•(x,w, z, y1, y2, . . . , yk, . . .) =

K̃•
(
x,w, sxy1 + xy2 + z, y1 + s, y2 + 2y1s+ s2, . . . ,

∑k
j=0

(
k
j

)
yjs

k−j, . . .
)

+w2A(x, z, y1, . . . , yk, . . .),

where A(x, z, y1, . . . , yk, . . .) does not depend on w. This relation can be inverted as in
Section 4, and finally we can conclude (46) from the following equation

K•(x,w) = K̃•(x,w, 0, 1, 0, . . . , 0, . . .).

Proof of Theorem 21. Equation (43) is a direct consequence of equations (46), (45) and
(44).

Theorem 25. Let fk be the limit probability that a random vertex has degree k in a planar
3-graph. The limit probability distribution pK(w) =

∑
fkw

k exists and is computable.

Proof. The generating function C•(x, y, w) is expressed in [7] as

C•(x, y, w) = C0(y, w) + C2(y, w)X2 + C3(y, w)X3 +O(X4),

where X =
√

1− x/ρ(y). If we compose this expression with (43) we obtain

K•(x,w) = B0(x,w)×
[C0(B2(x)), B3(x,w)) + C2(B2(x), B3(x,w))X2 + C3(B2(x), B3(x,w))X3 +O(X4)]

+A(x,w),
(47)

where X =
√

1−B1(x)/ρ(B2(x). If we define D(x) = B1(x)/ρ(B2(x)) then we can

proceed as in the proof of Theorem 16, obtaining that X =
√
τD′(τ)Z + O(Z2), where

Z =
√

1− x/τ . Plugging this expression into (47) we obtain

K•(z, w) = K0(w) +K2(w)Z2 +K3(w)Z3 +O(Z4),

where Z =
√

1− z/τ and

K3(w) = B0(τ, w)C3(B2(τ), B3(τ, w))(τD′(τ))3/2 + a0 + a1w + a2w
2,

for some constants a0, a1 and a2 arising from A(x,w). The limit probability distribution
of the root vertex being of degree k is computed as

pK(w) =
K3(w)

K3(1)
=
B0(τ, w)C3(B2(τ), B3(τ, w))(τD′(τ))3/2 + a0 + a1w + a2w

2

B0(τ, 1)C3(B2(τ), 1)(τD′(τ))3/2 + a0 + a1 + a2
.
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The fact that a 3-graph has no vertices implies that f0 = f1 = f2 = 0, which determines
a0, a1, a2 uniquely. Since we know that a 3-graph has no vertices of degree 0, 1 or 2,
we we can choose suitable values of a0, a1 and a2 such that the probability distribution
pK(w) =

∑
fkw

k satisfies f0 = f1 = f2 = 0. The function C3(y, w) is described in [7],
and every other function that appears in the previous expression is explicit. Therefore,
pK is computable, as we wanted to prove.

We remark that pK(w) is expressed in terms of C3(x,w), which is a very involved
(although elementary) function, given in the appendix in [7].

7 Concluding remarks

Most of the results we have obtained can be extended to other classes of graphs. Let G
be a class of graphs closed under taking minors such that the excluded minors of G are 2-
connected. Interesting examples are the classes of series-parallel and outerplanar graphs.
Given such a class G, a connected graph is in G if and only if its core is in G. Hence
Equation (22) also holds for graphs in G. Using the results from [3], we have performed
the corresponding computations for the classes of series-parallel and outerplanar graphs
(there are no results for kernels since outerplanar and series-parallel have always minimum
degree at most two). The results are displayed in the next table, together with the data
for planar graphs. The expected number of edges is µn, and the expected size of the core
is κn. It is worth remarking that the size of the core is always linear, whereas the size of
the largest block in series-parallel and outerplanar graphs is only O(log n) [12, 18].

Graphs Growth constant µ (edges) κ (core)

Outerplanar 7.32 1.56 0.84

Outerplanar 2-graphs 6.24 1.67

Series-parallel 9.07 1.62 0.875

Series-parallel 2-graphs 8.01 1.70

Planar 27.23 2.21 0.962

Planar 2-graphs 26.21 2.26

The k-core of a graph G is the maximum subgraph of G in which all vertices have
degree at least k. Equivalently, it is the subgraph of G formed by deleting repeatedly (in
any order) all vertices of degree less than k. In this terminology, what we have called the
core of a graph is the 2-core. Since a random planar graph contains linearly many copies
of any fixed connected planar graph [15, 11] it is not difficult to show that the 3-core,
4-core and 5-core of a random planar graph have all linear size with high probability
(there is no 6-core since a planar graph has always a vertex of degree at most five). The
interesting question is however whether the k-core has a connected component of linear
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size, as is the case for k = 2. We have performed computational experiments on random
planar graphs, using the algorithm described in [9], and based on the results we formulate
the following conjecture.

Conjecture. With high probability the 3-core of a random planar graph has one com-
ponent of linear size. With high probability the components of the 4-core of a random
planar graph are all of sublinear size.

We have not been able to prove neither of the conjectures. As opposed to the kernel,
the 3-core is obtained by repeatedly removing vertices of degree two. These deletions may
have long-range effects that appear difficult to analyze. Even more challenging appears
the analysis of the 4-core.
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[3] M. Bodirsky, O. Giménez, M. Kang, and M. Noy. Enumeration and limit laws for
series-parallel graphs. European J. Combin. 28 (2007), 2091–2105.
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Appendix

The following technical result was needed to conclude the proof of Theorem 16.

Lemma 26. The generating function K(x) is ∆-analytic at its dominant singularity τ .

Proof. For the proof we introduce the following generating functions:

• K•(x) is the generating function of rooted planar graphs with minimum degree at
least 3. Note that K•(x) has the same radius of convergence τ as K(x).

• For i = 1, 2, K•i (x) is the generating function of rooted planar graphs where all the
vertices have degree at least 3 except for the root, which has degree exactly i.

• B̂(x, u) is the generating function of 2-connected planar graphs where x marks
vertices of degree at least 3, u marks vertices of degree exactly two, and both
types of vertices are labelled with the same set of labels. In particular B̂(x, u) =∑

n,m>0 bn,mx
num/(n+m)!, where bn,m counts 2-connected planar graphs with n

vertices of degree at least 3 and m vertices of degree exactly 2. Note that we do not
count a single edge in B̂(x, u) since it has no vertices of degree 2 or more.

A simple combinatorial argument gives

K•1 = F1(x,K
•, K•2),

K•2 = F2(x,K
•, K•1 , K

•
2),

K• = F3(x,K
•, K•1 , K

•
2),

(48)
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where

F1(x, z, z2) = x(z + z2),

F2(x, z, z1, z2) = x

(
(z + z2)

2

2
+Bu

)
,

F3(x, z, z1, z2) =

x

(
Bx + (z + z2)(Bu +Bx) +

(Bu +Bx)
2

2
+ exp>3(z + z2 +Bu +Bx)

)
,

and
Bx = B̂x(x+ z + z1 + z2, z + z1 + z2),

Bu = B̂u(x+ z + z1 + z2, z + z1 + z2).

For instance, the second equation is obtained as follows. The root vertex v has two
neighbours v1 and v2. Either they belong to a common block, a situation encoded by Bu,
or they are the roots of two different blocks (whose roots may have degree 2 or greater
than 2): this situation is encoded by (K•” + K•)2/2, where the division by 2 is because
the pair of blocks is unordered.

We remark that the coefficients of the series Fi are non-negative. First we check that
F1, F2 and F3 are analytic in a neighbourhood of 0, which is equivalent to checking that
Bx and Bu are analytical at 0. We derive this from the following properties of B̂, where
being analytic at a point means being in the convergence region:

• B̂ is a series in x and u with non-negative coefficients.

• Bx and Bu (x0, u0) if and only if B̂ is analytic at (x0, u0).

• If B̂ is analytic near (x0, u0), then it is analytic at (x1, u1), for |x1| 6 x0 and
|u1| 6 u0.

• B̂(x, x) = B(x) − x2/2, hence B̂(x, u) is analytic for (x0, u0) < (R,R), although it
might be analytic for (x0, u0) where u0 < R 6 x0 or x0 < R 6 u0 as well.

This implies that B̂(x, u) is analytic at 0, and the same holds for F1, F2 and F3. Since
K•(0) = K•1(0) = K•2(0) = 0 we have that the system (48) holds in a neighbourhood of
x = 0, and it ceases to hold at the singularity of K•. First note that K•1 , K•2 and K• have
all the same radius of convergence, τ , because all of them are the sum of the others plus
some positive terms. In these cases there are three sources of singularities:

• Poles at F1, F2 and F3. This is not possible, since all the involved functions are
analytic in C except for Bx and Bu.

• Branching point in solving F1, F2 and F3. This is not possible either, since in this
case the singular analysis of K• would be of the form K• = K•0 + K•1Z + O(Z2),
where K•1 6= 0, and we have seen in Equation (37) that this is not the case.
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• A singularity in Bx(x, u) and Bu(x, u) (note that both functions share singularities).
This must be the source of singularity, and in fact the singularity of Bx(x) must be
exactly at x = τ . If the singularity was at a given x0 < τ , then there would be an
unbounded derivative of Bx at x0, and since K• is x · Bx plus some positive terms,
then K• would have an unbounded derivative at x0 < τ , and that is impossible since
K• is analytic for x with |x| < τ . The singularity cannot be at an x0 > τ either,
because we discarded the other sources of singularities and this would imply that
K• is analytic for x > τ , which is impossible.

Therefore the equations hold in the convergence region of K(x) for x such that Bx is
analytic at (x+K•1(x) +K•2(x) +K•(x), K•1(x) +K•2(x) +K•(x)). Now, consider x such

that |x| = τ but x 6= τ . Then, by positivity of B̂ and K•i , we have: (|x+K•1(x) +K•2(x) +
K•(x)|, |K•1(x)+K•2(x)+K•(x)|) < (τ+K•1(τ)+K•2(τ)+K•(τ), K•1(τ)+K•2(τ)+K•(τ)),

so B̂ is analytic and the equations hold. Therefore K•(x) is analytic as well.
We just have to check that, if |x| = τ and x 6= τ then there is no branching point when

solving the system of equations. Let A be the Jacobian matrix of (F1, F2, F3). According
to [5, Section 2.2.5], the maximum positive eigenvalue of A is a positive function in
x, K•i . We know that such an eigenvalue must be smaller than 1 when evaluated at
(τ,K•1(τ), K•2(τ), K•(τ)), since otherwise there would exist a real x with |x| 6 τ such
that the system evaluated at x has a branching point, and we know this is not possible.
Hence, by positivity of the maximum eigenvalue, if |x| = τ but x 6= τ then the maximum
eigenvalue of A evaluated at (x,K•1(x), K•2(x), K•(x)) cannot be 1, so we can apply the
Implicit Function Theorem and there is an analytic continuation of K• in a neighbourhood
of x, and by compactness it can be extended to a ∆-domain, as we wanted to prove.
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