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Abstract. We study the third order in time linear dissipative wave equation

known as the Moore-Gibson-Thompson equation, that appears as the lineariza-
tion of a the Jordan-Moore-Gibson-Thompson equation, an important model

in nonlinear acoustics. The same equation also arises in viscoelasticity theory,

as a model which is considered more realistic than the usual Kelvin-Voigt one
for the linear deformations of a viscoelastic solid. In this context, it is known

as the Standard Linear Viscoelastic model. We complete the description in [13]

of the spectrum of the generator of the corresponding group of operators and
show that, apart from some exceptional values of the parameters, this gener-

ator can be made to be a normal operator with a new scalar product, with a
complete set of orthogonal eigenfunctions. Using this property we also obtain

optimal exponential decay estimates for the solutions as t → ∞, whether the

operator is normal or not.

1. Introduction and statement of results. In this paper we study the third
order in time dissipative abstract wave equation

(u+ αut)tt + L(u+ βut) = 0, with α, β > 0 (1)

where L is a self-adjoint, strictly positive operator in a Hilbert spaceH with compact
resolvent. Recall that in this situation the eigenvalues µn of L are strictly positive,
increasing, tending to ∞, semi-simple and the corresponding eigenfunctions φn are
an orthonormal family. A typical case is when L = −a2∆ and ∆ is Laplace’s
operator with Dirichlet boundary conditions in a bounded domain Ω with a regular
boundary, and in that case H = L2(Ω).

When L = −a2∆, this equation is known as the Moore-Gibson-Thompson equa-
tion. It is obtained as the linearization of the Jordan-Moore-Gibson-Thompson
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equation, an important model in nonlinear acoustics for wave propagation in vis-
cous thermally relaxing fluids. See [8] and [13] and their references. Other recent
studies on this equation can be seen in [9] and [11], for example. The same equa-
tion appears in viscoelasticity theory, then under the name of Standard Linear
Viscoelastic model. In this case, the model represents the linear deformations of a
viscoelastic solid with an approach that is considered to be more realistic than the
usual Kelvin-Voigt one (and reduces to it when taking α = 0). See [6] and [1] and
the references therein for a discussion of this approach, or some other recent works
such as [2] or [16], for example.

At some parts of the paper we are going to refer to some of the results in [13],
which is written using the standard notation in the acoustics approach, while the
notation in (1) recalls more the one in the Standard Linear Viscoelastic model.
That is we think setting the correspondence between both notations can be helpful
to the reader when this comparison has to be made. The Moore-Gibson-Thompson
equation in [13] reads:

(ut + α′u)tt + bA
(
c2

b
u+ ut

)
= 0 on H. (2)

which is the same as (1) if L = a2A and:

α′ =
1

α
, c2 =

a2

α
, b =

a2β

α
. (3)

The physical meaning of the parameters in (1) when L = −a2∆ is the following.
In the acoustics approach, and comparing (1) with the Moore-Gibson-Thompson
equation (in [8] or [13]), we have α representing the relaxation time, a the velocity
of sound and β = δ

a2 + α, where δ stands for the diffusivity of sound. In the
formulation of [17] the equation is for the velocity and no longer for the velocity
potential. It has the same form but the parameters are combined in a different way
and therefore have a different physical meaning.

In the viscoelastic approach, that is, comparing (1) with the standard linear
viscoelastic model, the physical meaning of the coefficients can be seen, for instance,
in [16]: α represents the stress relaxation time under constant strain, β represents
the strain relaxation time under constant stress and a2 = E/ρ, where E stands for
the relaxed elastic modulus and ρ for the longitudinal density of the material. These
parameters, in turn, depend on the elastic and viscous coefficients of the material.

In particular, observe that both approaches depend on three parameters: α′, c2,
b > 0 in the acoustic approach, and α, β > 0 and a third parameter hidden in the
operator L, which becomes clearer if we write L = a2A. This third parameter will
play an important role when conditions involving the eigenvalues of the operator L
are given (see Remarks 4 and 6).

The dissipative case corresponds to α/β < 1 (γ = α′ − c2/b > 0 in the acoustic
literature). It is known that in this case all solutions tend exponentially to zero (see
[8] or [13]). For α/β ≥ 1 it can be shown, by looking for the appropriate eigenvalues
and eigenfunctions or by seeing that the energy is non-decreasing (see formula (1)
below, or [6], [1]), that there exist solutions that do not tend to zero when t→∞.
The paper [4] also deals with the case α/β > 1.

The second-order in time strongly damped wave equation, that would correspond
to taking α = 0 in (1), has been and is still being much more studied. See [3] or [10]
as important references on this equation, and [12], for example, and the references
therein, for recent references on this α = 0 case. This case was also studied by the
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authors in [15] some years ago, motivated by our previous work [14] on a viscoelastic
model. In that paper we proved that the infinitesimal generator of the semigroup
associated to that equation was self-adjoint in a particular new scalar product, that
was shown explicitly, provided that the dissipation coefficient was large enough
(overdamping regime). Several optimal exponential-polynomial decay estimates for
smoother solutions were then obtained by using that new scalar product.

The goal of the present paper is also to show the existence of a suitable scalar
product associated to the semigroup defined by (1) for some ranges of the param-
eters. In this scalar product the infinitesimal generator of the semigroup turns out
to be a normal operator, hence admitting an orthonormal basis of eigenfunctions.
The necessary and sufficient condition for the existence of this scalar product, and
the normality of the operator, is given in Theorem 1.1, to be stated below. This
fact will allow us to obtain the optimal exponential decay rate of the solutions. The
main point that will have to be checked in the construction of this scalar product is
that it defines a new norm that is equivalent to the natural one. This will be done
in several functional spaces where the equation (1) defines a semigroup (in fact, a
group). The second main result of the present paper is given in Theorem 1.2. It
states the optimal decay rate for the solutions, and not only the growth bound of
the semigroup, both when the scalar product considered in Theorem 1.1 exists or
not.

We believe that this new scalar product will also allow to obtain sharp exponen-
tial-polynomial decay rates for the solutions of (1) in some ranges of parameters,
with the same techniques that were used in [15]; this, however, is still a work in
progress.

It is important to say that, by looking at the results of [13], one could think that
the infinitesimal generator of the semigroup perhaps could be made to be normal
in a suitable scalar product for all ranges of the parameters. As we will see in the
present work, this is not always true, as there are some special cases in which the
spectrum contains non-semi-simple eigenvalues (see Theorem 1.1 for more details).

Writing U = (u, v, w)T = (u, ut, utt)
T we can write (1) as the following first order

evolution equation:

dU

dt
= AU , U ∈ D(A), with AU =

 v
w

− 1

α
L(u+ βv)− 1

α
w

 (4)

The operator A can be defined in several functional spaces. According to [1], if
L = −a2∆ with Dirichlet boundary conditions then the first possibility is that:

H = H1
0 (Ω)×H1

0 (Ω)× L2(Ω)
D(A) = {(u, v, w), w ∈ H1

0 (Ω), u+ βv ∈ H2(Ω) ∩H1
0 (Ω)} (5)

It can be seen that, in this case, (A,D(A)) defines a C0-semigroup (in fact a
group) and that it is dissipative when α < β. This last part can be seen using the
energy functional associated to the following scalar product:

〈(u1, v1, w1), (u2, v2, w2)〉 =

∫
Ω

(v1 + αw1)(v2 + αw2)

+a2

∫
Ω

∇(u1 + αv1)∇(u2 + αv2)

(6)



4 MARTA PELLICER AND JOAN SOLÀ-MORALES

+a2α(β − α)

∫
Ω

∇v1∇v2

Observe that if (u, v, w) ∈ H this energy is well defined. From [1] or [6] we know
that if (u, v, w) ∈ D(A) then

dE(t)

dt
= −a2(β − α)

∫
Ω

|∇v|2

which exhibits the dissipativeness of the operator when α < β.
But this is not the only possible functional framework. According to [13], some

possible functional settings are:

H1 = D(L1/2)×D(L1/2)×H
H2 = D(L)×D(L)×D(L1/2)
H3 = D(L)×D(L1/2)×H
H4 = D(L3/2)×D(L)×D(L1/2),

(7)

with the corresponding domains for A. Observe that, actually, H1 = H defined in
(5) if L = −a2∆ with Dirichlet boundary conditions.

The normality of the infinitesimal generator A in a new explicit metric is given
in Theorem 1.1. Associated to (1) we define the following numbers m1,m2, which,
as it will be seen in Section 2, are the zeroes of a certain Cardano discriminant, in
fact that of the characteristic equation (10) below:

m1 = α
−C1 −

√
C2

8β3
, m2 = α

−C1 +
√
C2

8β3
(8)

with

C1 = 27− 18

(
β

α

)
−
(
β

α

)2

, C2 = C2
1 − 64

(
β

α

)3

. (9)

Theorem 1.1. If µn 6= m1,m2 for all the eigenvalues µn of L, then in each of the
spaces Hi given in (7) we can define a new equivalent and explicit scalar product
〈·, ·〉Gi where the operator A becomes a normal operator. Also, there exists a set

{Ψn,i
j , j = 1, 2, 3, n = 1, . . . ,∞} of eigenfunctions of A which is orthonormal in the

corresponding new scalar product and complete in Hi. This is equivalent to say that
the operator A admits a Riesz basis of eigenfunctions.

Conversely, in the cases where one of the eigenvalues of L coincides with one of
the two numbers m1 or m2 (including the case m1 = m2) then the operator A can
not be made to be normal in any scalar product.

Remark 1. Associated to each µn eigenvalue of L, there exist three corresponding
eigenvalues of A, named λn1 , λ

n
2 , λ

n
3 , the three solutions of the characteristic equation:

αλ3 + λ2 + βµnλ+ µn = 0. (10)

The role of the numbers m1,m2 will become clearer in Section 2 (see Proposition
2) when we show that:

1. if m1 < µn < m2, the three of λn1 , λ
n
2 , λ

n
3 are real;

2. if µn = m1 or µn = m2, they are also real, but two of them are equal and not
semi-simple;

3. if µn = m1 = m2 then λn1 = λn2 = λn3 ∈ R with algebraic multiplicity equal to
three;

4. otherwise, λn1 will be real and λn2 = λn3 ∈ C \ R.
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None of the situations 1, 2 or 3 was considered to be possible in [13], due to a
small error in the analysis of the characteristic equation. This error becomes more
important if we consider α variable and near 0 since in this case the situation
µn = m1 or µn = m2 will happen for infinitely many values of α. This situation
becomes relevant, for instance, in the work [16].

Remark 2. Case 4 of the previous remark happens for all n ≥ n0, with n0 suffi-
ciently large, or even with n0 = 1 if µ1 is large enough. In this case we can call
λn2 the eigenvalue with positive imaginary part and λn3 its conjugate. Then one can
define the three subspaces F ij with j = 1, 2, 3 as the closed span in Hi of the eigen-

functions {Ψn,i
j |n ≥ n0}. This was done in [13], where the direct sum statement

Hi = F i1 + F i2 + F i3 was claimed (Thm. 5.1, part a5,III) but without a complete
proof. Apart from the possibility of occurrence of the cases 1, 2 and 3 of the previous
remark, that is not so important at this moment, the main gap in their argument
was not to prove that these three subspaces are mutually transversal, that is, with
angles bounded away from zero in the scalar product of the spaces Hi.

This statement was perhaps not important in the goals of paper [13]. But this is
not our case: we understand that the proof of this direct sum statement is almost
equivalent to the existence of the new scalar product we claim, and clearly to its
hardest part which is done in our Lemma 3.1 below. As it is said there, this is not
a short calculation, and even the use of an algebraic manipulator can be needed.
After this proof of the Lemma 3.1 we will present a short argument (Remark 7) to
deduce from it the direct sum statement.

Remark 3. In contrast with the strongly damped case α = 0 studied in [15] there
is no hope to obtain that the operator is self-adjoint in any new metric, because of
the existence of nonreal eigenvalues when α > 0. So, the property of being a normal
operator is the best we can expect.

Remark 4. If we write L = a2A (A being the operator appearing in the acoustic
literature [13]), the condition in Theorem 1.1 will be written as a2µ̃n 6= m1,m2,
for µ̃n the eigenvalues of A. Observe that this is the way that the third parameter
hidden in the operator L plays a role in this statement.

Theorem 1.2. i) Suppose that A is a normal operator in the new scalar product
G obtained in Theorem 1.1. Then, any solution U(t) of (4) decays exponentially
in the corresponding norm as

‖U(t)‖G ≤ eσmaxt‖U(0)‖G, for t ≥ 0

where σmax = σmax(A) < 0 is the supremum respect to n (which sometimes
is a maximum) of the real parts of the solutions of the characteristic equation
(10), that is, the real part of the sometimes called dominant spectrum of A (see
Proposition 3 below for a description of σmax).

ii) This decay is optimal in the sense that for each ω < σmax there exist solutions
U(t) such that

‖U(t)‖G e−ωt →∞ as t→∞.
iii) On the other hand, if we are in the situation where, according to Theorem

1.1, we can not have a new scalar product where the operator A is normal,
the previous optimal exponential decay rate result still holds in another suitable
norm.
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Remark 5. Theorem 1.2 recalls the decay results of [13], but with different tech-
niques that allow to slightly improve them in the sense that what they prove is that
σmax is the so-called growth bound of the semigroup, that is

inf{ω ∈ R; ‖eAt‖ ≤Mωe
ωt ∀t ≥ 0}

(in the usual norm). We show that this infimum is, in fact, a minimum and also
that we can take Mσmax

= 1 in a suitable equivalent norm. This is true even for
the case when σmax = −1/β, the essential spectrum of A (see Propositions 1 and
3).

The results just stated will be developed and proved in the following sections.
More concretely, in Section 3 we will show the existence and form of the new equiva-
lent scalar product for the given range of the parameters and also prove the normal-
ity of the operator in this case and the non-normality otherwise (proof of Theorem
1.1). Also in Section 3, we will prove the optimal exponential decay rate of the
solutions in all the cases (that is, Theorem 1.2). The next Section 2 will be devoted
to the description of the spectrum of A, completing the results of [13].

2. Description of the spectrum of A. In this section we make an accurate
description of the spectrum of A, σ(A). Most of the results can be found in [13],
but we include them here for a better global comprehension. Nevertheless, there
are some differences, that come mainly from the cases where there are three real
eigenvalues associated to the same value of µn, that can even be algebraically double
or triple, cases that were skipped in [13], as it has been said in Remark 1. Our
description is summarized in the following three propositions.

Proposition 1 (The essential spectrum, see [13], Theorem 3.2). In the four func-
tional settings considered in (7) the essential spectrum of the operator A is

σess(A) =

{
− 1

β

}
.

The definition of essential spectrum can be found in [7] or [5].

Proposition 2 (Description of the eigenvalues). The operator A has an infinite
number of isolated eigenvalues all of them with finite algebraic multiplicity. More
concretely, for each µn, n ∈ N, eigenvalue of L, there exist three corresponding
eigenvalues of A, named λn1 , λn2 and λn3 , the three solutions of the corresponding
characteristic equation (10). Moreover, if λnj = an + ibn is nonreal, then an and bn
satisfy:

8αa3
n + 8a2

n + 2an

(
1

α
+ βµn

)
+ µn

(
β

α
− 1

)
= 0, (11)

b2n =
1

α

(
3αa2

n + 2an + βµn
)
. (12)

Under the dissipativeness condition 0 < α < β, these eigenvalues satisfy the
following:

1. (a) If 1
9 <

α
β < 1, then for all n one of the eigenvalues is real and the other

two are complex conjugated: λn1 ∈ R and λn2 = λn3 ∈ C \ R.
(b) If 0 < α

β < 1
9 , the same happens except, maybe, for a finite number of

values of n. In this case 0 < α
β < 1

9 , the roots of a certain Cardano

discriminant m1,m2 given in (8) (see the proof for details) are real and
satisfy 0 < m1 < m2. Then, if m1 < µn < m2 (this can happen only
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for a finite number of values of n) then λn1 , λ
n
2 , λ

n
3 ∈ R. The following

exceptional case can also happen (double root case): if there exist n1 or n2

such that µn1
= m1 or µn2

= m2, then λn1
2 = λn1

3 ∈ R or λn2
2 = λn2

3 ∈ R
is an eigenvalue with algebraic multiplicity equal to two. Alternatively, if
µn /∈ [m1,m2] then λn1 ∈ R and λn2 = λn3 ∈ C \ R, as in (a).

(c) If α
β = 1

9 , then m1 = m2 = 3
β2 > 0 and the same as in (a) also happens

except if there exists n1 such that µn1 = 3
β2 . In this exceptional case,

λn1
1 = λn1

2 = λn1
3 = − 3

β ∈ R is an eigenvalue with algebraic multiplicity

equal to three.
2. (a) If λ is a real eigenvalue of A, then

− 1

α
< λ < − 1

β
. (13)

If λ is nonreal, then

− 1

2

(
1

α
− 1

β

)
< Re(λ) < 0. (14)

(b) If µn < µm and µn, µm /∈ [m1,m2], then Re(λn2 ) > Re(λm2 ).
(c) The limits of the sequences of eigenvalues are the following:

lim
n→∞

λn1 = − 1

β
, (15)

which is not an eigenvalue, but the only element in the essential spectrum
of A (see Proposition 1),

lim
n→∞

Re(λn2 ) = −1

2

(
1

α
− 1

β

)
(16)

and limn→∞ Im(λn2 ) =∞ with

Im(λn2 ) =

√
β

α

√
µn + o (

√
µn) . (17)

(d) Also, one has that limn→∞Re(λn2 ) is lower than limn→∞ λn1 (respectively,

equal or higher), if
α

β
is lower than

1

3
(respectively, equal or higher).

The proof of this Proposition 2 is presented below. The proof focusses in the
cases not considered in [13], of increasing importance as α→ 0.

In the next proposition we describe the dominant part of the spectrum, that
is the part with the highest real part. This real part will be named σmax(A) (or
simply σmax when there is no confusion).

Proposition 3 (Dominant spectrum). Let µ1 be the lowest eigenvalue of L. To
find the dominant spectrum of A one has to solve the cubic characteristic equation
(10) with µn = µ1. Then,

1. (a) If the three solutions of this equation are real (including the case of mul-
tiple solutions), then the dominant spectrum of A will be {−1/β} and
σmax = σmax(A) = −1/β.

(b) If the solutions have the form λ1
1 ∈ R and λ1

2 = λ1
3 ∈ C\R, then the domi-

nant spectrum of A will be either {λ1
2, λ

1
3} or {−1/β} (which is not an ei-

genvalue, but the only point in the essential spectrum), or both, depending
on which has the highest real part. This real part is then σmax = σmax(A).
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(a) σmax = Re(λ1
2) (b) σmax = Re(λ1

2)

(c) σmax = Re(λ1
2) = −1/β (d) σmax = − 1

β

Figure 1. Plots of the eigenvalues of the operatorA (circles) in the
complex plane (in solid lines, the real and complex axes), showing
different possibilities for σmax(A). In all of them, the dashed line

represents Re(λ) = − 1
2

(
1
α −

1
β

)
, which is the limit of the real

parts of the nonreal eigenvalues, and the point marked as a square
is − 1

β , which is the limit of the real ones. In panel (1a), we can

see an example of the α/β > 1/3 case and, hence, σmax = Re(λ1
2),

while in the others α/β < 1/3. In panel (1c) we can see the limit
situation between cases represented in panels (1b) and (1d).

2. We also claim that all the possibilities can occur as it is shown in the next
three significative cases:
(a) In the case 1/3 ≤ α/β < 1 one is in the situation 1(b) above and the

dominant spectrum is {λ1
2, λ

1
3}.

(b) If 0 < α/β < 1/3 and µ1 is large enough one is in the situation 1(b) above
but the dominant spectrum is {−1/β}.

(c) If 0 < α/β < 1/3 and α is sufficiently small, with fixed β and µ1, one is
in the situation 1(a) above and so the dominant spectrum is {−1/β}.

In Figure 1 we can see different examples where the previous situations are attained.

When the dominant spectrum is {−1/β}, then there will be no oscillations in the
dominant part of the solutions and these cases could be qualified as overdamped.

Remark 6. As we will see during the proof, in this result the third parameter
hidden in the operator L plays again a role, as the particular values of its eigenvalues
do (see Remark 4).

Now we proceed to prove the previous propositions. Most of these results can
be found in [13] but we include the proofs here as there are slight but important
differences in some of them.
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Proof of Proposition 2. First of all, let µn, φn be a fixed eigenvalue and eigenfunc-
tion of (L,D(L)). We can look for solutions of (1) of the form u(x, t) = z(t)φn(x).
In this case, z(t) would be a solution of

αz′′′ + z′′ + βµnz
′ + µnz = 0.

This equation has (10) as its characteristic equation. Hence, for each µn eigenva-
lue of (L,D(L)) there exist three solutions of (10), that form the three sequences
λn1 , λ

n
2 , λ

n
3 of eigenvalues of (A,D(A)), as stated. If any of these solutions is nonreal,

we can write it as λnj = an+i bn, with bn 6= 0. Imposing this in (10) and considering
separately the real and the imaginary parts of the equation, it is easy to see that
an, bn satisfy (11) and (12).

To see part 1, we need to see whether this three solutions are real or not. For
that, we will simply apply Cardano’s method to (10) for a fixed µn. The first thing
to do in this method is to apply the change of variable ξ = λ+ 1

3α to (10) normalized
such that the highest degree coefficient is equal to one. We obtain

ξ3 + ξp+ q = 0

with

p =
µnβ

α
− 1

3α2
, q =

2

27α3
− µnβ

3α2
+
µn
α

(18)

Now, it only remains to look at the sign of the Cardano’s discriminant, that we
can think as a function of µn:

d(µn) = 4p3 + 27q2 =
µn
α2
d̃(µn) (19)

with

d̃(µn) =
4β3

α
µ2
n +

(
27−

(
β

α

)2

− 18

(
β

α

))
µn +

4

α2
.

According to Cardano’s method:

i) if d(µn) > 0, the cubic polynomial has one real root and two complex conjugates
ii) if d(µn) < 0, the cubic polynomial has three different real roots

iii) if d(µn) = 0, all of the roots are real, with some of them being multiple.

Observe that, as µn > 0, the sign of (19) is determined by the sign of the second

degree polynomial d̃(µn). The roots of this quadratic equation are the constants
m1,m2 defined in (8) with the constants C1, C2 defined in (9). It can be seen that

C2 = 0 if and only of β
α = 1 or β

α = 9. So, depending on whether m1,m2 are real or
not and positive (to coincide with a value of some µn), we will have these different
possibilities for the sign of the Cardano’s discriminant (19):

(a) Suppose 1
9 < α

β < 1. Then, one can see that C2 < 0, which means that

d̃(µn) will have a constant sign, which is positive. By Cardano’s method, this
concludes that (10) has one real root and the other two are complex conjugates
for all n ∈ N.

(b) Suppose 0 < α
β <

1
9 . Then, one can see that C2 > 0 and C1 < 0. This means

that 0 < m1 < m2 are two different positive real roots for d̃(µn). This allows
us to know the sign of d(µn):

i) d(µn) > 0 if µn ∈ (0,m1) ∪ (m2,∞). So, (10) has one real root and two
complex conjugates if n is such that µn ∈ (0,m1) ∪ (m2,∞) (we have an
infinite number of them).
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ii) d(µn) < 0 if µn ∈ (m1,m2). So, (10) has three different real roots for any
possible n such that µn ∈ (m1,m2) (if we have any of them, they will only
be a finite number).

iii) d(µn) = 0 if there exist n1 or n2 such that µn1
= m1 or µn2

= m2. In this
case, λn1

2 = λn1
3 or λn2

2 = λn2
3 is a real eigenvalue with algebraic multiplicity

equal to two (and the other one is a simple real eigenvalue).
Observe that the last two cases were not considered in [13].

(c) Finally, suppose that α
β = 1

9 . In this case, in (9) we have C2 = 0 and C1 = −216,

so m1 = m2 = 3
β2 > 0. This means that d(µn) > 0 for all n ∈ N except

for, maybe, the case in which there exists µn1 = m1 = m2, for which the
Cardano’s discriminant is zero. But also observe that in this situation we also
have p = q = 0 (see (18)). Hence, by Cardano’s method, (10) has one real root
and the other two are complex conjugates for all n ∈ N except for, maybe, this
certain n1, for which λn1

1 = λn1
2 = λn1

3 is a triple real root. If this triple root
exists, then a simple computation allows to see that it is equal to − 1

3α , which

is the same as − 3
β . This case was not either considered in [13].

This proves part 1 of Proposition 2. Let us now prove part 2. First, to prove
(13), we write as in [13] f(λ) = f1(λ) + f2(λ) with f1(λ) = αλ3 + λ2 and f2(λ) =
βµnλ+µn, and we recall that we are interested in the real solutions of f(λ) = 0. It
is easy to see that for λ ≤ −1/α one has f1(λ) ≤ 0 and f2(λ) < 0. Also, f1(λ) ≥ 0
for λ ≥ −1/β with f1(−1/β) > 0 and f2(λ) > 0 for λ > −1/β. So, all real roots of
f(λ) = 0 must be in −1/α < λ < −1/β, as claimed. This is the same argument as
that of [13], but we note that also holds in the case of three real eigenvalues.

Suppose now that λ is a nonreal root of f(λ) = 0. Then, for these values of
α, β and µn the sign of the Cardano discriminant of (10) defined in (19) is positive.
It is easy to see that the Cardano discriminant of (11) is d(µn)/64, with d(µn)
defined in (19). So, both discriminants have the same sign for the same values of
the parameters, that is, positive in this case. Then, (11) will also have a single
real root, that will be precisely the real part of λ we want to bound. We define

g(a) = 8αa3 +8a2 +2a
(

1
α + βµn

)
+µn

(
β
α − 1

)
, and we write (11) as g(Re(λ)) = 0.

We see that g(−1/2(1/α−1/β)) < 0 and g(0) > 0, and applying Bolzano’s Theorem
we conclude that (14) holds.

To prove claim (b) of part 2 we consider now µ as a continuous variable in the
open set (0,m1) ∪ (m2,∞) or (0,∞) depending on m1 and m2 being real or not.
According to what has been said above, in each of these open sets the equation
g(a) = 0 has a single and simple real solution a = a0(µ). Deriving implicitly in
g(a0(µ)) = 0 we obtain

da0(µ)

dµ
=
−(2βa0(µ) + β

α − 1)

g′(a0(µ))
.

Since we know that a0(µ) > −1/2(1/α−1/β), the numerator is negative. Since the
coefficient of the cubic term of g(a) is positive and g(a) has only one real root, the
derivative of g at this root must be positive.

To conclude the proof of 2(b) we have still to prove that a0(µ) decreases when µ
jumps from µ = m1 to µ = m2. In more strict words, we want to show that

lim
µ→m−1

a0(µ) ≥ lim
µ→m+

2

a0(µ).
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Recall that these two values of µ are precisely the values for which the cubic
equation f(λ) = 0 has a double real root, and for m1 < µ < m2 the equation
f(λ) = 0 has three simple real roots, that we can order and call λ1(µ) < λ2(µ) <
λ3(µ). When µ → m+

1 , two of these roots collide, and become precisely a0(m1),
and the same happens as µ → m−2 , when two of them collide and become a0(m2).
We do not know for the moment which of the three roots collide in each case, but
it is clear that λ2(µ) will be involved in the two collisions, since a collision between
λ1(µ) and λ3(µ) is not possible without involving λ2(µ). So, we conclude that
λ2(µ)→ a0(m1) as µ→ m+

1 and λ2(µ)→ a0(m2) as µ→ m−2 .
So, our claim will be proved if we show that λ′2(µ) < 0 for m1 < µ < m2. The

central root of a cubic equation f(λ) = 0 with three real simple roots and a positive
coefficient of the cubic term is precisely the unique root that satisfies f ′(λ) < 0.
Then, we can derive implicitly with respect to µ in the equation f(λ2(µ)) = 0 and
obtain

dλ2(µ)

dµ
=
−βλ2(µ)− 1

f ′(λ2(µ))
.

The numerator is positive because of the upper bound in (13), and the denominator
is negative because of what we just said. This finishes the proof of part 2(b).

Finally, the proof of part 2(c) can be found in [13] and part 2(d) is a straightfor-
ward computation.

Let us now prove Proposition 3.

Proof of Proposition 3. To prove part 1(a) we observe that because of Proposition 2
all the real eigenvalues of A satisfy λ < −1/β and they accumulate at −1/β. To deal
with the nonreal eigenvalues we observe that, under the hypotheses of 1(a), m1,m2

must be real and m1 ≤ µ1 ≤ m2. This, together with part 1(a) of Proposition
2, implies that the values of µn that will give nonreal roots of (10) will satisfy
µn > m2. Then, following the proof of Proposition 2 part 2(b), and with the same
notation, a0(µn) ≤ a0(m2). Even if µ = m2 is not an eigenvalue of L, the number
λ = a0(m2) will be a real (multiple) root of of (10) with m2 in the place of µn, so
the bound (13) holds for this λ, a0(m2) < −1/β and 1(a) is proved.

To prove 1(b) we have just to observe that, as we said, all the real eigenvalues
satisfy λ < −1/β and accumulate at this point, and, because of Proposition 2 part
2(b), the real parts of the nonreal ones are bounded above by Re(λ1

2) = Re(λ1
3).

To prove 2(a) we observe, as we said in Proposition 2 part 2(d), that if α/β ≥ 1/3
then the vertical line Re(z) = −1/2(1/α − 1/β), where the nonreal eigenvalues
accumulate (from its right hand side), lies at the right of the point z = −1/β which
is larger than all the real eigenvalues, so the real eigenvalues or their limit cannot
be dominant.

Let us prove 2(b). Since α/β < 1/3, the point z = −1/β lies at the right of
the vertical line mentioned above. Since we know, by (16), that the function a0(µ)
as µ → ∞ tends to −1/2(1/α − 1/β), it is clear that if µ1 is large enough then
a0(µn) < −1/β − ε for all n and some ε > 0.

To prove part 2(c) we look at the expression of d(µ1) as in (19) and observe that
d(µ1) < 0 if α is small enough, so we are in the situation 1(a) and the dominant
spectrum will be {−1/β}.
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3. A new scalar product, the normal property and decay of solutions.
Let φn, µn be the eigenfunctions and eigenvalues of L: Lφn = µnφn, in ascend-
ing order (0 < µ1 ≤ µ2 ≤ · · · → ∞) and with the collection {φn} being or-
thonormal in H. We consider the associated decompositions of the spaces in (7)
Hi =

⊕∞
n=1En, for i = 1, . . . 4, where the En are the three-dimensional spaces

spanned by {(φn, 0, 0), (0, φn, 0), (0, 0, φn)}. Observe that the spaces En do not de-
pend on i and that for all i they are orthogonal to each other with the natural scalar
products of the spaces Hi.

These natural scalar products in the cases i = 1 and i = 3 when restricted to the
spaces En (and expressed in the previously given basis) are defined by the matrices

On,1 =

 µn 0 0
0 µn 0
0 0 1

 , On,3 =

 µ2
n 0 0

0 µn 0
0 0 1

 . (20)

We will focus only on H1 and H3 since the spaces H2 and H4 can be related to the
previous ones by the natural isometry L1/2 0 0

0 L1/2 0
0 0 L1/2

 .

Observe also that the scalar product (6) considered in [1], is different, but equiv-
alent, to On,1, as it can be written as 0 1 0

1 α 0
0 1 α

T  a2α(β − α)µn 0 0
0 a2µn 0
0 0 1

 0 1 0
1 α 0
0 1 α

 .

The idea is to define the new scalar product in each of the spaces En by a
symmetric real matrix Gn,i expressed in the basis {(φn, 0, 0), (0, φn, 0), (0, 0, φn)} in

such a way that the eigenfunctions of A, that we call Ψn,i
1 ,Ψn,i

2 and Ψn,i
3 , become

orthonormal once normalized with the natural norm given by On,i. We understand

that each Ψn,i
j is the eigenfunction that corresponds to λnj , once expressed in the

previous basis. Hence, Ψn,i
j = (1, λnj , (λ

n
j )2)T /cn,ij where the cn,ij is the normalizing

constant in the usual norm depending on the space of (7). Then, we define the
matrices

Cn,i = col(Ψn,i
1 ,Ψn,i

2 ,Ψn,i
3 ) and Gn,i = (C−1

n,i )
TC−1

n,i . (21)

When the matrix Cn,i has the previous form it is easy to see that Gn,i is a real,
symmetric and positive definite matrix.

The equivalence between the natural and the new norms is based on the following
result.

Lemma 3.1. For n sufficiently large, all (x, y, z) ∈ R3 (or C3) and all i = 1, . . . 4
there exist numbers M,m > 0 (independent of n) such that

m||(x, y, z)||On,i
≤ ||(x, y, z)||Gn,i

≤M ||(x, y, z)||On,i
(22)

Proof. According to Proposition 2, for sufficiently large n, the operator A restricted
to En has eigenvalues λn1 ∈ R and λn2 = an + ibn = λn3 ∈ C \ R. By the same
proposition, part 2 (c), the limits of λn1 , an and bn are given by (15), (16) and (17).
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Also, one can easily compute

cn,11 =
√

1 + 1
β2

√
µn + o(

√
µn)

cn,12 = cn,13 =
√

β
α + β2

α2 µn + o(µn)
(23)

and

cn,31 = µn + o(µn)

cn,32 = cn,33 =
√

1 + β
α + β2

α2 µn + o(µn).
(24)

Then, one can compute the elements of the matrices Gn,1 and Gn,3. This is not
a short calculation, and the use of an algebraic manipulator can be helpful. The
results, up to leading orders as µn →∞, are

Gn,1 =



2αβ2+3α+β
2αβ2 µn + o(µn) α+β

2αβ µn + o(µn) 4α2β2+β2+3α2

4αβ3 + o(1)

α+β
2αβ µn + o(µn) α+β

2α µn + o(µn) (α+β)2

4αβ2 + o(1)

4α2β2+β2+3α2

4αβ3 + o(1) (α+β)2

4αβ2 + o(1) α+β
2β + o(1)

 (25)

and

Gn,3 =
µ2
n + o(µ2

n)
3αβ−α2+β2

2αβ2 µn + o(µn)
α
β
µn + o(µn)

3αβ−α2+β2

2αβ2 µn + o(µn)
α2+αβ+β2

2αβ
µn + o(µn)

6α2β−3α3+2αβ2+β3

4αβ3 + o(1)

α
β
µn + o(µn)

6α2β−3α3+2αβ2+β3

4αβ3 + o(1) 3α2+αβ+β2

2β2 + o(1)

 .

(26)

Observe that all the leading terms of Gn,3 are positive because α < β. Let us
now first prove (22) for Gn,1. Observe that, intuitively, this result will be true as
both norms have the same diagonal terms (in asymptotic order) and the other ones
are of lower order so they will be controlled by the diagonal ones. To prove that
in a rigorous way, consider (x, y, z) ∈ R3 (or C3) and consider n large enough such
that all the terms of (25) are positive (that is, large enough such that o(µn) and
o(1) do not affect the sign of the coefficients of the leading terms in Gn,1). Also, we
are going to use two inequalities. First:

− 1

2

(
c2a2 +

1

c2
b2
)
≤ ab ≤ 1

2

(
c2a2 +

1

c2
b2
)

(27)

which is true for any a, b ∈ R and c > 0. And secondly, if {sn}, {rn} are positive
real sequences such that limn→∞(sn/rn) = C > 0, it is easy to see that there exist
m,M > 0 such that

mrn ≤ sn ≤Mrn (28)

if n is sufficiently large.
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Now, we start with the lower inequality of (22). From (25) and using the left
hand side inequality of (27)

(x, y, z)Gn,1 (x, y, z)T ≥
(

2αβ2 + 3α+ β

2αβ2
− c21

α+ β

2αβ
+ o(1)

)
µnx

2

+

(
α+ β

2α
− 1

c21

α+ β

2αβ
+ o(1)

)
µny

2

+

(
α+ β

2β
− 1

c22

4α2β2 + β2 + 3α2

4αβ3
− 1

c23

(α+ β)2

4αβ2
+ o(1)

)
z2

(29)

for certain c1, c2, c3 > 0 such that the previous coefficients are positive for n suf-
ficiently large. Observe this is possible just taking c1 > 0 and with 1/β < c21 <
2αβ2+3α+β
β(α+β) , and c2, c3 > 0 and large enough. Observe also that we can choose these

constants independently of n.
The same idea applies to prove the upper inequality of (22). From (25) and using

the right hand side inequality of (27),

(x, y, z)Gn,1 (x, y, z)T ≤
(

2αβ2 + 3α+ β

2αβ2
+ c24

α+ β

2αβ
+ o(1)

)
µnx

2

+

(
α+ β

2α
+

1

c24

α+ β

2αβ
+ o(1)

)
µny

2

+

(
α+ β

2β
+

1

c25

4α2β2 + β2 + 3α2

4αβ3
+

1

c26

(α+ β)2

4αβ2
+ o(1)

)
z2

(30)

for certain c4, c5, c6 > 0 such that the previous coefficients are positive for n suffi-
ciently large. In this case this is achieved simply taking c4 = c5 = c6 = 1.

Finally, with this choice of the constants ci, (28) holds for (29) and (30). Hence,
there exist m1,M1 > 0 such that

m1

(
µnx

2 + µny
2 + z2

)
≤ ||(x, y, z)||2Gn,1

≤M1

(
µnx

2 + µny
2 + z2

)
if n is sufficiently large, which proves this lemma for Gn,1.

The proof of this result for Gn,3 follows the same idea, but with some slight
differences that we will point out. Again, consider (x, y, z) ∈ R3 (or C3) and n large
enough such that all the terms of (26) are positive (that is, large enough such that
o(µ2

n), o(µn) and o(1) do not affect the sign of the coefficients of the leading terms
in Gn,3). We start with the lower inequality of (22). From (26) and using the left
hand side inequality of (27),

(x, y, z)Gn,3 (x, y, z)T ≥
(
µ2
n − c21

3αβ−α2+β2

2αβ2 µn − c22 αβµn + o(µ2
n)
)
x2

+
(
α2+αβ+β2

2αβ µn − 1
c21

3αβ−α2+β2

2αβ2 µn − c23
6α2β−3α3+2αβ2+β3

4αβ3 + o(µn)
)
y2

+
(

3α2+αβ+β2

2β2 − 1
c22

(αβµn + o(µn))− 1
c23

6α2β−3α3+2αβ2+β3

4αβ3 + o(1)
)
z2

(31)

for other c1, c2, c3 > 0 such that the previous coefficients are positive for n suffi-
ciently large and of order O(µ2

n), O(µn) and O(1), respectively. For this to be true,
we will need to choose c2 = c2(µn). It suffices to choose c1 > 0, independent of

n and such that c21 > 3αβ−α2+β2

β(α2+αβ+β2) , c2 = c̃2
√
µn with c̃2 > 0, independent of n
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and such that 2αβ
3α2+αβ+β2 < c̃2

2 < β
α , and c3 > 0, independent of n and such that

c23 >
6α2β−3α3+2αβ2+β3

4αβ2

(
3α2+αβ+β2

2β − α
c̃2

2

)−1

.

For the upper inequality, from (26) and using the right hand side inequality of
(27) one gets

(x, y, z)Gn,3 (x, y, z)T ≤
(
µ2
n + c24

3αβ−α2+β2

2αβ2 µn + c25
α
βµn + o(µ2

n)
)
x2

+
(
α2+αβ+β2

2αβ µn + 1
c24

3αβ−α2+β2

2αβ2 µn + c26
6α2β−3α3+2αβ2+β3

4αβ3 + o(µn)
)
y2

+
(

3α2+αβ+β2

2β2 + 1
c25

(αβµn + o(µn)) + 1
c26

6α2β−3α3+2αβ2+β3

4αβ3 + o(1)
)
z2

(32)

for other c4, c5(µn), c6 > 0 such that the previous coefficients are positive for n
sufficiently large and of the right order. In this case this is achieved simply taking
c4 = c6 = 1 and c5 =

√
µn.

So, as in the case of Gn,1, with the previous choice of the new constants ci, (28)
also holds for (31) and (32). Hence, there exist m3,M3 > 0 such that

m3

(
µ2
nx

2 + µny
2 + z2

)
≤ ||(x, y, z)||2Gn,3

≤M3

(
µ2
nx

2 + µny
2 + z2

)
if n is sufficiently large, which proves the present lemma also for Gn,3.

Remark 7. To prove that the three subspaces F i1,F i2 and F i3 defined in Remark
2 are mutually transversal, with nonzero angles, is equivalent to say that if we
define a new scalar product in the space F i1 + F i2 + F i3 that coincides with the
scalar product of Hi in each of the F ij but makes each of the three to be mutually

orthogonal, this new scalar product will define a new norm in F i1 +F i2 +F i3 that will
be equivalent to the natural norm of Hi. And this is deduced from what is stated
in the previous Lemma 3.1, where it is crucial that the constants m and M can be
chosen independently of n.

Let us now prove Theorem 1.1.

Proof of Theorem 1.1. When µn 6= m1,m2, then in each of the A-invariant three-
dimensional subspaces En defined in the beginning of this Section there are three
different eigenvalues of A and one can consider the scalar product given by the
real symmetric matrices Gn,i defined in (21). We can then extend the definition of
the scalar product to the whole of Hi =

⊕∞
n=1En, by a block-diagonal procedure,

Gi = diag(G1, G2, . . . ).
With the scalar product so defined, the subspaces En are orthogonal to each

other, so the whole set of eigenfunctions

F i = {Ψn,i
1 ,Ψn,i

2 ,Ψn,i
3 ; n = 1, 2 . . . } (33)

becomes orthonormal. The operator A diagonalizes in this basis, its adjoint A∗ is
given by just its conjugate matrix, and so A and A∗ commute and A is a normal
operator.

To see that this new scalar product gives a norm that is equivalent to the old
natural norm, we use the Lemma 3.1 above in En0+1 ⊕ En0+2 ⊕ . . . for n0 large
enough and use in E1⊕E2⊕. . . En0

that in finite dimensions all norms are equivalent.
To finish the reasoning we have still to prove that the family F i of eigenfunctions

is complete in each Hi. Suppose that U ′ = (u′, v′, w′) ∈ Hi is a nonzero vector that
is orthogonal to the whole family F i, and we will arrive to a contradiction. If U ′

is nonzero, then at least one of its three components will be a nonzero element of
H. Because of that, it will have at least a nonzero component in the basis {φn},
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suppose for n = n′, so it will have a nonzero projection in En′ , namely Un′ . Since
the projection U ′ 7→ Un′ is orthogonal in all of the cases i = 1, 2, 3 and 4, we see

that 〈U ′,Ψn′,i
j 〉Gi = 〈Un′ ,Ψn′,i

j 〉Gi , and this cannot be zero for all j = 1, 2, 3 if Un′

is nonzero.
To prove the last part of the Theorem let us suppose µn1

= m1 < m2 (the cases
m1 < m2 = µn2

or µn1
= m1 = m2 are similar). In this case the characteristic

equation (10) has one double real root λn1
2 = λn1

3 and a different simple real root λn1
1 .

The restriction of A, as it appears in (4), to the invariant subspace En1 expressed
in the basis {(φn1

, 0, 0), (0, φn1
, 0), (0, 0, φn1

)} will have the form 0 1 0
0 0 1

−µn1

α −βµn1

α − 1
α

 .

It is easy to see that this matrix has λn1
2 as an eigenvalue of geometric multiplicity

one but algebraic multiplicity two. This is a property that will hold independently
of the scalar product considered. And it is well known that this is impossible for
normal operators, that have the property that geometric and algebraic multiplicities
of eigenvalues always coincide.

Let us now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof of this theorem is the same in all the spaces given
in (7). Hence, our notation will no distinguish among them and we will not include
the superindex i, which distinguishes among the spaces.

i) For the parameter values that make A a normal operator in the suitable new
scalar product G given in Theorem 1.1, it has been shown that there exists
an orthonormal and complete set of eigenfunctions {Ψn

j }, with AΨn
j = λnj Ψn

j ,

j = 1, 2, 3, n = 1, . . . ,∞. If U(0) =
∑
n,j d

n
j Ψn

j , then U(t) =
∑
n,j d

n
j e
λn
j tΨn

j

and, because of the orthonormality of the eigenfunctions,

‖U(t)‖2G =
∑
n,j

|dnj |2e2Re(λn
j )t ≤

∑
n,j

|dnj |2e2σmaxt (t > 0).

ii) We have seen in Proposition 3 that σmax is either Re(λ1
2) or −1/β. In the

first case, the solution U(t) = eλ
1
2t Ψ1

2 itself has the optimal decay rate. In
the second case, if σmax = −1/β, the sequence λn1 tends to −1/β from the
left (see Proposition 2, parts 2(a) and 2(c)) and the corresponding solutions
Un(t) = eλ

n
1 tΨn

1 have decay rates λn1 , which can be taken as close as we want
to −1/β.

iii) The idea of the proof of this part is that when there are non-semisimple eigen-
values they cannot be dominant. To proceed in this way, among the sequence
0 < µ1 ≤ µ2 ≤ · · ·µn ≤ · · · → ∞ of eigenvalues of L we distinguish the finite
set S of those that coincide either with m1 or m2 defined in (8) (see Propo-
sition 2), parts 1(b) and 1(c)) and accordingly decompose H = H0 ⊕H1 and

L =

(
L0 0
0 L1

)
in such a way that σ(L0) = σ(L) \ S and σ(L1) = S (H1 is

finite dimensional). We make the same corresponding decomposition in each

of the spaces given in (7), Hi = H0
i ⊕H1

i , and the operator A =

(
A0 0
0 A1

)
.

Observe that A0 is in the situation described in the first part of Theorem 1.1
and A1 is a finite dimensional operator, with all its eigenvalues being real, and
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some of them being multiple. Hence, according to Theorem 1.1, we can define
a new scalar product 〈·, ·〉G0 in H0

i in which we can obtain the optimal decay
inequality of part i) above

‖eA0t‖G0
≤ eσmax(A0) t for t ≥ 0.

On the other hand, as H1
i is finite-dimensional and according to a well-know

result of Linear Algebra, for each ε > 0 we can define a new scalar product
〈·, ·〉G1,ε in H1

i such that

‖eA1t‖G1,ε
≤ e(σmax(A1)+ε) t for t ≥ 0.

As it is deduced from Proposition 2 part 2(a), σmax(A1) < −1/β. So, we can
choose ε > 0 such that σmax(A1) + ε < −1/β ≤ σmax(A0). Finally, we define
the scalar product G′i in Hi as the orthogonal extension of G0 and G1. It
is equivalent to the natural scalar product of each Hi because it is so when
restricted to each of H0

i and H1
i . And the optimal decay rate result follows in

the G′i norm because the dominant part of the spectrum is in σ(A0) and the
optimality is true for G0 because of part ii) above.
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