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Abstract

We analyse a dynamical scenario where a constantly charged spacecraft (fol-

lower) moves in the vicinity of another one (leader) that follows a circular Ke-

plerian orbit around the Earth and generates a rotating magnetic dipole. The

mass of the follower is assumed to be negligible when compared with the one

of the leader and they are supposed to be in a high-Earth orbit, so the Lorentz

force on the follower due to the geomagnetic field is ignored. With these as-

sumptions, the motion of the leader is not perturbed by the follower and it is

only subjected to the Earth’s gravitational force field, while the charged follower

is under to both the gravitational force of the Earth and the Lorentz force due

to the magnetic dipole of the leader.

We focus on the dynamical characteristics of the system as a function of

its parameters, with special attention to the ratio of the leader’s mean motion

around the Earth to the rotating rate of the dipole. We study the critical points

of the model and their stability, the admissible and forbidden regions of motion

of the deputy using the zero velocity surfaces and the families of periodic orbits

emanating from equilibria. In the normal case we pay special attention to the
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periodic orbits of elliptic type and to the families of 2D tori surrounding them

that are computed by means of a parameterisation method. The result is a fine

catalog of orbits together with an accurate dynamical description suitable to

researchers interested in potential applications of satellite formation flight using

this kind of technology.

Keywords: Relative Dynamics, Periodic Orbits, Invariant Tori, Lorentz Force,

Stability Analysis

1. Introduction

When a charged spacecraft moves in a magnetic field it experiences a Lorentz

force. This propellant-less force, which is perpendicular to both the instanta-

neous velocity of the spacecraft and the magnetic field, offers some advantages

when compared with the traditional chemical propulsion and is a promising tech-5

nology for future space missions. The magnetic dipole of the leader is supposed

to be produced by three concentric and orthogonal high-temperature super-

conducting coils (HTSC) [29], in such a way that it can point along any direc-

tion adjusting the current in the three HTSC. Here we will only consider three

possible orientations: normal, radial and tangential, according to its relative10

position in the orbital plane of the leader.

Previous works in astrodynamics applications of Lorentz forces have mainly

considered the effect of natural magnetic fields on a charged spacecraft, such

as the geomagnetic field [17, 45, 27], or the magnetic filed of other planets [35]

on the spacecraft. Some of the applications that have been studied include the15

determination of new synchronous orbits using the geomagnetic field [40], the

use of the Lorentz force as a means for orbit control and formation flying [28, 43],

the effect of this force in a Jovian orbit insertion [2] as well as in gravity-assist

manoeuvres [42]. Several control strategies using Lorentz force have also been

considered for different kinds of missions [38, 41, 20] .20

Using artificial magnetic fields, Kong [22] introduced the idea of Electro

Magnetic Formation Flight (EMFF), which uses the intersection between the
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electromagnetic fields of several satellites to control the configuration of the

formation; Umair [44] designed a control strategy for electromagnetic satellite

formations in near-Earth orbits; Kwon [23] explored the applicability of EMFF25

for attitude and translation control of close proximity formation flying, and

Porter [32] demonstrated the feasibility of electromagnetic formation flight in a

micro-gravity environment.

Inspired by previous works, a new dynamical scenario was proposed by Peng

[30], where a charged follower moves around a leader spacecraft which produces30

a rotating magnetic dipole pointing along the radial direction defined by the

Earth and the leader. In [31] Peng extended the previous work to study the

planar periodic orbits, suitable for formation flying, when the magnetic dipole

is perpendicular to the orbital plane of the leader. Our paper aims to extend

the work done by Peng considering three possible orientations of the dipole:35

normal, radial and tangential and pursuing a fine dynamical analysis in all the

cases.

From the engineering point of view, there are some technical questions about

the realisation of the system that must be considered. They are mainly related

to the thermal control system of the HTSC, and the satellite charging of the40

follower. They have been studied, among others, by Kwon [23], who designed

a cryogenic heat pipe to cool the HTSC, Baudouy [7], who surveyed the main

cooling techniques at low temperature, and Saaj et al., that showed that current

technology can realise charge-to-mass ratio of the order of 10−6 to 10−3.

Although the device required to generate a steerable electromagnetic dipole,45

using, for instance, three orthogonal electromagnetic coils made of supercon-

ducting wires, is a massive structure, we will assume that the gravitational

interaction between the leader and the follower is negligible, at least when it is

compared with the one due to the Lorentz force.

The above mentioned technical questions are out of the scope of this paper.50

Our main attention is to focus on the dynamical analysis of the model, giving an

accurate description suitable for the exploration of possible applications. The

analysis and numerical simulations will be based on the assumption that all the
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proposed magnetic field or charge-to-mass ratio can be satisfied which, although

might be beyond the current state-of-art technology, we hope that can be reality55

in the near future.

The paper is organised as follows: in Section 2 the dynamical model is in-

troduced, its symmetry properties, and the differentail equations of the three

different cases considered according to the orientation of the magnetic dipole:

normal, radial and tangential. Each one of these cases is studied in Sections 3,60

4 and, 5, respectively. For each case we have computed the equilibrium points

and its evolution with one of the parameters of the model, the zero velocity sur-

faces that determine the allowable regions of motion in the configuration space,

and the periodic orbits emanaiting from the different equilibria. In the normal

case, we have also determined three families of 2D invariant tori with a fixed65

energy value. The methods used for the computation of the symmetric and non-

symmetric periodic orbits emanating from equilibria, and the parameterisation

method for the numerical computation of the 2D invariant tori are given in the

Appendix (Section 7). In the last section we give some conclusions. Possible

applications of the obtained results to formation flying, mainly the ones related70

to the use of some of the periodic orbits determined as nominal trajectories, will

be discussed in a forthcoming paper.

2. Modelling equations and symmetries

As it has been mentioned, we assume that the mass of the follower is negli-

gible when compared with the one of the leader, which is assumed to move in75

a circular high-Earth orbit (such as a GEO), so that the geomagnetic Lorentz

force on the follower is ignored. As a consequence, the follower is subjected

to both the gravitational force of the Earth and the Lorentz force due to the

artificial magnetic dipole. As it is usual in the description of relative motions,

we use a local-vertical-local-horizontal (LVLH) reference system, with the ori-80

gin located on the leader, the positive x-axis (er) pointing from the Earth to

the leader, the z-axis (en) parallel to the leader’s angular momentum, and the
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y-axis (et) completing a right-hand coordinate system (see Fig. 1).
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Figure 1: The local-vertical-local-horizontal reference system (er, en, eT ).

In this LVLH reference system, the equations of relative motion of the fol-

lower with respect to the leader can be written as a perturbation of the Hill-

Clohessy-Wiltshire (HCW) equations in the following way:

ẍ− 2nẏ − 3n2x = fx,

ÿ + 2nẋ = fy, (1)

z̈ + n2z = fz,

where n is the mean motion of the circular orbit of the leader around the Earth,

and (fx, fy, fz)
T are the three components of the Lorentz force fL acting on85

the follower.

It must be noted that if the Lorentz force fL vanishes, then (1) become the

usual HCW equations, which have been extensively studied in the literature

(see, for instance, [8, 15], and [33]). In this case, the dynamics of the problem is

much simpler, since the HCW equations describe the relative dynamics of two90

Keplerian orbits, that is far from the problem considered in this paper, in which

the Lorentz force has a key role.

The value of the Lorentz force is given by:

fL =
q

m
vr ×B =

q

m
· (ṙ − ωc × r)×B. (2)

Here q denotes the charge of the follower, m its mass, vr the relative velocity of

the follower with respect to the rotating magnetic field, B the magnetic rotating
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field, r and ṙ the position and velocity of the follower in the LVLH reference

frame, and ωc the dipole’s rotational velocity. If ωc is the modulus of ωc, we

can write

ωc = ωc(Nx, Ny, Nz)
T , (3)

where N = (Nx, Ny, Nz)
T is the unitary vector in the direction of B.

The magnetic field B is defined as the curl of the potential A (B = ∇×A),

with A given by :

A =
B0

r2
(N × r̂) =

B0

r3
[
(zNy − yNz) (xNz − zNx) (yNx − xNy)

]T
(4)

where r = ‖r‖ =
√
x2 + y2 + z2 is the leader -follower distance, r̂ = (x̂, ŷ, ẑ)T =

r/r, and B0 is the magnetic dipole moment, with units: Wb ·m (see [23]), which

for a coil is defined by

B0 =
µ0

4π
ncicπr

2
c , (5)

where µ0 = 4π×10−7 N/A2 is the vacuum permeability, nc the number of loops

in the coil, ic the current flown intensity, and rc the radius of the coil (see [23]).95

Once the size of the coil (nc and rc) is fixed, the magnetic dipole moment is

determined by the value of current ic passing through, which, according to the

material of the coil and working temperature, is limited by the current density

of the coil. In our mathematical analysis we assume that the coil can carry

enough current to produce the required magnetic moment.100

Using the above notation, the components of the Lorentz force fL can be

written as,

fx =
q

m

B0

r3
[
3(N · r̂)(ẏẑ − żŷ)− ωc(xNz − zNx)

(
3(N · r̂)ẑ −Nz

)
+żNy − ẏNz + ωc(yNx − xNy)

(
3(N · r̂)ŷ −Ny)

]
,

fy =
q

m

B0

r3
[
3(N · r̂)(żx̂− ẋẑ)− ωc(yNx − xNy)

(
3(N · r̂)x̂−Nx

)
+ẋNz − żNx + ωc(zNy − yNz)

(
3(N · r̂)ẑ −Nz)

]
, (6)

fz =
q

m

B0

r3
[
3(N · r̂)(ẋŷ − ẏx̂)− ωc(zNy − yNz)

(
3(N · r̂)ŷ −Ny

)
+ẏNx − ẋNy + ωc(xNz − zNx)

(
3(N · r̂)x̂−Nx)

]
.
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We note that, in principle, the three orthogonal super-conducting wires can

produce the magnetic field in any direction, but in what follows we will only

consider the following three dipole orientations:105

1. Normal case. B is aligned with N = (0, 0, ±1)T : the dipole axis is

parallel to en.

2. Radial case. B is aligned with N = (±1, 0, 0)T : the dipole axis is

parallel to the radius vector er.

3. Tangential case. B is aligned with N = (0, ±1, 0)T : the dipole axis is110

parallel to et.

Following again [30], and in order to simplify the equations of motion, we

introduce a set of non-dimensional units:

• Time unit: τ = n t. The derivative with respect to τ will be denoted by

a prime, and clearly
d

dτ
= n

d

dt
.

• Length unit: α such that

α3 =
∣∣∣ q
m
B0

ωc
n2

∣∣∣ =

∣∣∣∣ qmB0
1

nβ

∣∣∣∣ ,
where the parameter β is defined by β = n/ωc.

Table 1 lists all the parameters that have already been introduced. In115

the three cases associated to the three dipole orientation, and using a non-

dimensional set of units, we will allow to vary only two: the motion angular

velocity ration β, and the sign σ of the charge q.

2.1. Differential equations of motion in the normal case

In the normal case B is aligned with the unit vector N = (0, 0, ±1)T . This

means that the dipole axis is perpendicular to the orbital plane of the leader,
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Table 1: List of parameters appearing in the dimensional equations of motion.

Parameter Physical meaning

(er, en, et) Unitary vectors defining the local-vertical-local-horizontal

reference system

n Mean motion of the leader around the Earth

fL Lorentz force of the leader acting on the follower, fL = (fx, fy, fz)

q Charge of the follower

σ Sign of the charge q

m Mass of the follower

vR Relative velocity of the follower with respect to the leader

B Magnetic rotating force field created by a dipole

N Unitary vector aligned with B, N = (Nx, Ny, Nz)

ωc Angular velocity of the dipole, ωc = ‖ωc‖, wc = wcN

β Ratio between the motion of the leader n and the angular

velocity of the dipole ωc, β = n/ωc

B0 Magnetic moment of the dipole created by a coil

µ0 Vacuum permeability

nc Number of loops of the coil

ic Current intensity in the coil

rc Radius of the coil

α Unit of length used to define the non-dimensional coordinates

pointing to the positive or negative z−axis direction according to the sign of

±1. In this case we have,

fL = ± q

m

B0

r5


−(x2 + y2 − 2z2)ẏ − 3yzż ± ωcx(x2 + y2 − 2z2)

(x2 + y2 − 2z2)ẋ+ 3xzż ± ωcy(x2 + y2 − 2z2)

3z
(
yẋ− xẏ ± ωc(x2 + y2)

)
 . (7)

In the analysis we consider only the case N = (0, 0, +1)T , since the results for

the other case can be easily obtained from this one. Using the non-dimensional

units, and defining X = x/α, Y = y/α, and Z = z/α, the equations of relative
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motion for the follower can be written as,

X ′′ − 2Y ′ − 3X = σ
−β(X2 + Y 2 − 2Z2)Y ′ − 3βY ZZ ′ +X(X2 + Y 2 − 2Z2)

R5
,

Y ′′ + 2X ′ = σ
β(X2 + Y 2 − 2Z2)X ′ + 3βXZZ ′ + Y (X2 + Y 2 − 2Z2)

R5
,

Z ′′ + Z = σ
3Z
[
βY X ′ − βXY ′ + (X2 + Y 2)

]
R5

,

(8)

where σ is the sign of the charge q, and R =
√
X2 + Y 2 + Z2. It must be noted120

that, aside from σ, the only parameter that appears in the above equations is

the angular quotient β = n/ωc.

The above system admits a first integral, to which we will refer as energy,

that is given by,

HN = 3X2 − Z2 − σ 2(X2 + Y 2)

R3
− (X ′2 + Y ′2 + Z ′2). (9)

Next, we consider the symmetries of the model given by the transformations

leaving invariant the differential equations of motion. The general pattern of

the transformations considered is,

(t, x, y, z) −→ (Dt,Ax,By,Cz). (10)

The transformation must be such that if
(
x(t), y(t), z(t)

)
is a solution of (8),

then
(
Ax(Dt), By(Dt), Cz(Dt)

)
must be also a solution. Table 2 lists the seven

sets of values of the parameters A, B, C and D fulfilling the above invariance125

condition. Each set of values has a symmetry element associated, and we have

assigned a label to it, both are given in the table.

The time reversing symmetries (D = −1) will be used for the computation of

symmetric periodic orbits. Once one of these periodic orbits is computed, using

any of the three symmetries preserving time (D = 1) we obtain three periodic130

orbits with the same period (IIIN , IVN , VN ). Some of them are potential

candidates to be used as nominal orbits for formation flying.

2.2. Differential equations of motion in the radial case

In the radial case B is aligned with the radius vector of the leader r, so

N = (±1, 0, 0)T . Again we only consider N = (+1, 0, 0)T and using the
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Table 2: Values of the four parameters of the transformation (t, x, y, z) −→ (Dt,Ax,By,Cz)

that leave invariant the normal differential equations (8).

Model case Label A, B, C, D Symmetry element

Normal IN 1,−1,−1,−1 X axis

IIN −1, 1,−1,−1 Y axis

IIIN −1,−1, 1, 1 Z axis

IVN −1,−1,−1, 1 Origin

VN 1, 1,−1, 1 X − Y plane

VIN −1, 1, 1,−1 Y − Z plane

VIIN 1,−1, 1,−1 X − Z plane

previous notation, the equations of relative motion in non-dimensional units

can be written as,

X ′′ − 2Y ′ − 3X = σ
3X
[
βZY ′ − βY Z ′ + (Y 2 + Z2)

]
R5

,

Y ′′ + 2X ′ = σ
−β(Y 2 + Z2 − 2X2)Z ′ − 3βXZX ′ + Y (Y 2 + Z2 − 2X2)

R5
,

Z ′′ + Z = σ
−β(Y 2 + Z2 − 2X2)Y ′ + 3βXY X ′ + Z(Y 2 + Z2 − 2X2)

R5
.

(11)

The energy integral is now defined by,

HR = 3X2 − Z2 − σ 2(Y 2 + Z2)

R3
− (X ′ 2 + Y ′ 2 + Z ′ 2). (12)

The parameters of the transformation (10) leaving invariant the differential

equations (11), together with the symmetry element and label, are given in135

Table 3.

2.3. Differential equations of motion in the tangential case

In the tangential case N = (0, ±1, 0)T . As in the other two cases we only

consider N = (0, 1, 0)T and the non-dimensional equations of relative motion
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Table 3: Values of the parameters of the transformation (t, x, y, z) −→ (Dt,Ax,By,Cz) that

leave invariant the radial differential equations (11).

Model case Label A, B, C, D Symmetry element

Radial IR 1,−1, 1,−1 X − Z plane

IIR −1, 1,−1,−1 Y axis

IIIR −1,−1,−1, 1 Origin

are given by,

X ′′ − 2Y ′ − 3X = σ
β(X2 + Z2 − 2Y 2)Z ′ + 3βY ZY ′ +X(X2 + Z2 − 2Y 2)

R5
,

Y ′′ + 2X ′ = σ
3Y
[
βXZ ′ − βZX ′ + (X2 + Z2)

]
R5

,

Z ′′ + Z = σ
−β(X2 + Z2 − 2Y 2)X ′ − 3βXY Y ′ + Z(X2 + Z2 − 2Y 2)

R5
,

(13)

with the associated energy first integral,

HT = 3X2 − Z2 − σ 2(X2 + Z2)

R3
− (X ′ 2 + Y ′ 2 + Z ′ 2). (14)

The parameters of the transformation (10) leaving invariant the differential

equations (13), together with the symmetry element and label, are given in

Table 4.140

Table 4: Values of the parameters of the transformation (t, x, y, z) −→ (Dt,Ax,By,Cz) that

leave invariant the tangential differential equations (13).

Model case Label A, B, C, D Symmetry element

Tangential IT −1, 1, 1,−1 Y − Z plane

IIIT 1,−1,−1,−1 X axis

IIIT −1,−1,−1, 1 Origin

11



3. The normal case. Equilibrium points, zero velocity surfaces, peri-

odic and quasi-periodic orbits

3.1. Equilibrium points

Setting X ′ = Y ′ = Z ′ = 0 and X ′′ = Y ′′ = Z ′′ = 0 in the equations of

motion (8), and solving the associated non-linear system, we obtain the location145

of the equilibria, that only depend on the sign σ of the charge q of the follower.

Table 5 gives the results obtained, together with the value of the first integral

H at each equilibrium point.

For a positively charged spacecraft (σ = +1), there are four equilibria in the

Y −Z plane, with label 1N , and four in the X −Z plane, with label 2N . When150

σ = −1 there are only two equilibria, both on the X− axis, with label 3N .

Table 5: Location of the equilibrium points of system (8) and value H of the Hamiltonian (9)

as a function of the sign σ of the charge q.

Label σ X Y Z H

1N +1 0 ±
√

2Z ±
(

2
3
√
3

)1/3
-1.587401

2N +1 ±
(

1
12
√
6

)1/3
0 ±

√
5X -0.629960

3N −1 ±
(
1
3

)1/3
0 0 4.326748

The linear stability of the equilibrium points depends on the eigenvalues

of the Jacobian matrix of the differential equations at the equilibrium point.

Due to the symmetry of the system, the characteristic polynomial p(λ) of the

Jacobian has only odd-order terms, so it can be written as

p(λ) = λ6 + bλ4 + cλ2 + d, (15)

or, denoting by κ = λ2, as the cubic polynomial

q(κ) = κ3 + bκ2 + cκ+ d. (16)

The coefficients b, c and d in the above polynomials depend on the equilibrium

point and the parameter β (see [18]). The discriminant of q(κ) = 0 is given by

∆ = b2 c2 − 4 b3 d− 4 c3 + 18 b c d− 27 d2. (17)
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The roots of q(κ) = 0 can be classified according to the value of ∆. If ∆ > 0,

(16) has three distinct real roots, if ∆ = 0, it has a real root with multiplicity

three, while if ∆ < 0 it has one real root and two complex conjugates ones.

Note that the eigenvalues of the Jacobian, which determine the stability of the155

equilibrium point, come in pairs: i.e., for real ones we have ±λ with λ ∈ R,

while for complex ones we have the conjugated pair λ, λ̄ with λ ∈ C.

In the case under consideration, the characteristic polynomials of the three

different kinds of equilibrium points are:

1N : p(λ) = λ6 +

(
β2

2
+ 2

)
λ4 +

−β2 + 8β + 5

3
λ2 + 6,

2N : p(λ) = λ6 + (14β2 + 12β + 8)λ4 +
−40β2 + 80β − 1

3
λ2 − 60,

3N : p(λ) = λ6 + (9β2 + 12β + 8)λ4 + (90β2 + 120β − 47)λ2 − 270.

(18)

Clearly, all the characteristic polynomials depend on the value of the angular

velicities quotient β = n/ωc. According to this, we have explored the evolution

of the eigenvalues of the Jacobian as a function of β. We have assumed that160

the rate of rotation of the dipole ωc is such that only relative small values need

to be considered. Here we present the resuts for β ∈ [−10, 10], except for the

equilibrium point 1N for which the interval has been enlarged up to a maximum

value of β = 25.

Fig. 2 shows the real and imaginary parts of the six eigenvalues of the equi-165

librium points 1N , 2N and 3N as a function of the parameter β.

The four equilibria with label 1N are either of saddle × saddle × centre type

or complex saddle × centre type, which means that, according to Lyapunov

center theorem, there is always a one-parameter family of periodic orbits around

each of the four equilibrium points. The equilibria with index 2N , and 3N are170

of saddle × centre × centre type; the dimension of their associated stable and

unstable manifolds is one, while the one of the centre manifold is four. For these

points there are two families of periodic orbits associated. It is also observed

that one pair of pure imaginary eigenvalues remain constant for 3N , see Fig. 2

(right).175
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Figure 2: Behaviour of the eigenvalues associated to the equilibrium points 1N (left),

2N (middle) and 3N (right) as a function of β. Only the non-zero values of the real and

imaginary parts of the eigenvalues are plotted. The real and the imaginary part of the same

eigenvalue are in same color: λ1 in magenta, λ2 in green, λ3 in light blue, λ4 in black, λ5 in

red, and λ6 in blue.

3.2. Zero velocity surfaces

The zero velocity surfaces (ZVS) are defined, by means of the energy function

(9), as the set of points (X,Y, Z) in the configuration space such that

X ′2 + Y ′2 + Z ′2 = F (X,Y, Z)−H = 0.

They separate the configuration space in different components determining the

forbidden and allowable regions of motion. Because of this separation property,

zero velocity curves and surfaces have been used a lot in many problems; see,

for instance, [4, 6] for some Celestial Mechanics applications). We will focus180

on energy levels around the ones of the equilibrium points, since the topology

structure of ZVS changes when the energy goes through these values.

Fig. 3 shows the behaviour of the ZVS for values of the energy H close to

H1N = −1.587401, H2N = −0.629960, and H3N = 4.326748.

In any of the regions of the configuration space (X,Y, Z) determined by the185

ZVS, the follower can only move inside certain closed regions or unbounded
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Figure 3: Evolution of ZVS near the equilibrium points 1N , σ = +1 (top), 2N , σ = +1

(middle) and 3N , σ = −1 (bottom), as the energy level varies around its value of at the

equilibrium point HEP . From left to right, the values of H are HEP − 0.05, HEP , and

HEP +0.05, respectively. The surfaces are represented up to their intersection with a symmetry

plane: X = 0 (top row), and Y = 0 (two bottom rows).

ones. For the equilibrim point with label 1N , there are three unconnected

components of motion when H1N < −1.587401. These three components met

at the equilibrium points when H1N = −1.587401 and when H1N > −1.587401

there is only one connected component, where the motion can take place (the190

spacecraft is free to move in the whole configuration space connected through

the ’bottle-necks’ passages around the four equilibria).

For the equilibrim point with label 2N , there is only one connected com-

ponent of motion when H < H2N , when H > H2N , the admissible region of

motion has four components, two of them are closed and near the origin (above195
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and below the (X − Y ) plane), and the other two are unbounded (to the right

and to the left of the two hyperbolic surfaces). These four regions have a contact

at the equilibrium points when H2N = −0.629960.

The behaviour of the equilibrim point with label 3N close to H3N = 4.326748

is similar to the one of 1N .200

3.3. Some families of periodic orbits

In this section we show the numerical results obtained in the computation of

the families of periodic, and quasi-periodic orbits (tori) in the central manifolds

associated to the equilibrium points.

The computation of the families of periodic orbits has been done using the205

arc-parameter in the continuation method, following section 7.1. The symme-

tries of the differential equations (8), previously discussed in Section 2.1, have

been used for the computation of different families of symmetric periodic orbits.

Due to the Hamiltonian character of the system under consideration, there

are three couples of characteristic multipliers (eigenvalues of the monodromy210

matrix) associated to any periodic orbit: (λ1, λ
−1
1 ), (λ2, λ

−1
2 ) and (λ3 = λ−13 =

1) that determine their stability properties. According to their distribution in

the complex plane we have introduced the following four configurations: B1, B2,

B3 and B4, see Figure 4. The non-generic cases, with multiplier +1 with multi-

plicity 4 and 6, are not considered. The first configuration B1 corresponds to a215

real saddle, B2 to a central saddle, B3 to a totally elliptic centre (stable periodic

orbit), and B4 to a complex saddle with multiples as complex quadrupole. When

there is a transition between two of these different configurations bifurcations

may occur [25].

The isoenergetic families of 2D tori have been computed keeping the energy220

H fixed and varying the rotation number and the return time (ρ, T ) during the

continuation, according to section 7.2.
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B1 B2 B3 B4

Figure 4: The four generic configurations of the characteristic exponents around the unit circle.

The stars correspond to (λ1, λ
−1
1 ), the dots to (λ2, λ

−1
2 ), and “(2)“ indicates the multiplicity

of λ3.

3.3.1. Periodic orbits around the 1N equilibria

There are four equilibrium points of type 1N located at (0,±
√

2(2/(3
√

3))
1
3 ,

±(2/(3
√

3))
1
3 )), all of them with one one-parameter family of periodic orbits225

associated. We will focus in the two equilibria with Z > 0, that are symmetric

w.r.t the Y = 0 plane. Since both points are in the Y − Z plane, for the com-

putation of symmetric periodic orbits around them we have used the symmetry,

labelled as VIN , about this plane. Note that only one of these families has

to be computed, as the families around the other equilibrium points are just230

symmetric images with respect to the Z = 0 plane.

For the computations that follow we have used as reference values for the

parameter β the values 2 and −2, as they are qualitatively equivalent to β > 0

and β < 0, respectively.

For β = 2 the associated eigenvalues to the equilibrium points are (±0.6509±

1.0291i, ±1.6520i) and if vc = vcr ± vci denotes the eigenvector associated to

the purely imaginary eigenvalue, ±1.6520i, we have

vcr = [0.2477, 0, 0, −0.1968, 0.7250]T , vci = [0, 0.1191, −0.4389, 0.4092, 0, 0]T .

This data has been used to determine the first orbit of the family of periodic235

around the equilibrium point with Y > 0 : (0,+
√

2(2/(3
√

3))
1
3 , (2/(3

√
3))

1
3 )).

The family ends at the point (0,−
√

2(2/(3
√

3))
1
3 , (2/(3

√
3))

1
3 )), which is the

symmetric of the initial one w.r.t the Y = 0 plane. This is, the families ema-
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nating from both points are connected at any intermediate orbit of them, for

instance, the one represented in black in Fig. 5. This figure shows the computed240

periodic orbits of the families. We note that different colors are used to indicate

different configurations of the multipliers of the periodic orbits, such that B1 is

in blue, B2 in orange, B3 in green and B4 in magenta, only green orbits of type

B3 are stable. The same rule of colors remains through all the paper for both

the orbits and the characteristic curves.245
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Figure 5: For β = 2, 3D representation and 2D coordinate projections of the

periodic orbits of the two connected families around the 1N equilibrium points

(0,±
√

2(2/(3
√

3))
1
3 , (2/(3

√
3))

1
3 )) (left). The right had side plot displays the energy H vs.

period T characteristic curve of the family starting at the equilibrium point and finishing at

the periodic orbit represented in black. The type of orbits follows the transtion: B4(magenta)

→ B1(blue) → B2(orange) → B3(green). The vertical lines indicate the bifurcation points.

Fig. 5 also shows the characteristic curve (energy H vs. period T ) and the

results of the stability analysis. Different colors denote different configurations

of the multipliers of the periodic orbits. Two period-doubling bifurcations are

detected along the family when one pair of multipliers cross −1. They are

indicated by two vertical lines.250

The family starts at the right point of the characteristic curve, with HN =

−1.587402. The period of this orbit is very close to (2π i)/λ = (2π)/1.6520

which, according to Lyapunov theorem, is the limit value of the periods of

the family. The first orbits of the family are of type B4, according to the

clasification previously introduced. The family transits to type B1, when the255

energy goes through HN = −1.597089, and to type B2 (as a real saddle) at
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HN = −1.614741, where a period-doubling bifurcation occurs. The family is

unstable up to HN = −1.854221, where a second period-doubling bifurcation is

detected, afterwards the family is of type B3 (green) and becomes stable. The

black point in the characteristic curve indicates the periodic orbit from which260

later we compute an iso-energetic family of 2D tori (section 3.4).

Due to the type VIIN symmetry, the orbits to the left of the “connecting”

(black) orbit –left branch– are the images of the orbits to the right of this orbit –

right branch–. As a consequence, the characteristic curve of both branches is the

same. The periodic orbit connecting the two branches corresponds to the most265

left point of the characteristic curve, and the associated multipliers correspond

to a degenerated centre with four multipliers equal to +1. Moreover, the middle

(black) periodic orbit is symmetric with respect to both the X − Z plane and

the Y − Z plane, and is “almost” parallel to the X − Y plane; its maximum

displacement along the Z direction is of the order of 1× 10−5 non-dimensional270

units. These “almost” parallel orbits could be used as potential nominal orbits

for a displaced observation mission.
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Figure 6: For β = −2, 3D representation of the periodic orbits of the family around the 1N

equilibrium point (0,
√

2(2/(3
√

3))
1
3 , (2/(3

√
3))

1
3 )) (left). The right had side figure displays

the energy H vs. period T characteristic curve of the family starting at the equilibrium point.

The colors in both figures indicate different configurations of the multipliers. Their types go

through the following transitions: B4 (magenta) to B1 (blue), back to B4 (magenta) and B1

(blue).

Fig. 6 shows, for β = −2, the behaviour of the orbits of the family associated

to the same as before equilibrium point (with Y > 0) together with its character-
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istic curve. The continuation of this family has been stopped when |Z| > 45. It275

can be seen that, as the energy decreases, the orbits become very large along the

Z direction, and their period tends to a value close to π (we have not found an

explanation of this fact). Now, the connection of both families has disappeared,

and one family is symmetric to the other without common orbits. According to

the behaviour of the characteristic multipliers, the orbits are always unstable,280

although their type follows the transitions: B4 → B1 → B4 → B1.
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Figure 7: 3D representation of the families of periodic orbits around the equilibrium points of

type 1N . The left hand side plot shows the four families corresponding to β = 2. The right

hand side shows two of the four families with Z > 0 for β = −2 (the other two families are

symmetric w.r.t the Z = 0 plane).

All four families emanating from the 1N equilibrium points, for β = 2 and

for β = −2, are shown together in Fig. 7.

3.3.2. Periodic orbits around the 2N equilibria

There are four equilibrium points of type 2N with coordinates (±(1/(16
√

6)1/3,285

0,±
√

5(1/(16
√

6)1/3). As in the preceding case, we mainly consider the point

with X > 0 and Z > 0. The periodic orbits around the remaining points can be

obtained using suitable symmetries. As was mentioned in Sect. 3.1, the centre

manifold associated to all these equilibria has dimension four and so it contains

two families of periodic orbits. Fig. 8 shows the orbits of both families together290

with their associated characteristic curves for β = 2. The VIIN symmetry w.r.t.

the X − Z plane has been used for their computation.

Analogously to what happens in the 1N case when β > 0, one of the fam-
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Figure 8: For β = 2, the two families of periodic orbits emanating from the equilibrium point

of type 2N with X > 0 and Z > 0 (left), with the 3D representation of the orbits in the left

hand side figures and the associated characteristic curves at the right hand side ones. Both

families are unstable and of type B2.

ilies (top line of Fig. 8) has its termination at the equilibrium point sym-

metric with respect to the X = 0 plane and, in fact, the families around295

(+(1/(16
√

6)1/3, 0,±
√

5(1/(16
√

6)1/3) and (−(1/(16
√

6)1/3, 0,±
√

5(1/(16
√

6)1/3)

are the same one. All the periodic orbits around these two points are symmet-

ric w.r.t. the X − Z plane, and the orbits around one point are the symmetric

images of the ones around the other point w.r.t. the X = 0 plane (VIN sym-

metry). As a consequence, the characteristic curves of both families are the one300

displayed in the figure but travelled twice. We note that the left point of this

curve corresponds to the orbit that connects the two families and its multipli-

ers correspond to the ones of a degenerated centre with the multiplier +1 with

multiplicity 4. For the other family, in the bottom line of the figure, the left

point of the characteristic curve corresponds to its termination, where the orbit305

is a degenerated real saddle with the multiplier +1 also with multiplicity 4.
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The characteristic curves of the two families, shown in Fig. 8, display a

monotonous linear dependence between the energy and the period, and all the

orbits of both families are unstable of type B2 (saddle × centre).

Along the family displayed in the bottom line of Fig. 8, we have detected six310

bifurcations when one pair of purely imaginary multipliers become equal to +1,

and so one of the traces is equal to +2. The same kind of bifurcation appears in

the three-dimensional restricted three-body problem (see Ref. [26]). The orbits

of the bifurcated families, and the one from which they are born, together with

the associated characteristic curves are shown in Fig. 9. All these families are315

of unstable orbits, with multiplier configuration of type B1 (saddle × saddle)

for the third and fifth families while the remaining ones are of type B2 (saddle

× centre).
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Figure 9: The six bifurcated families of periodic orbits born from bifurcation points when one

pair of purely imaginary multipliers become +1, together with the family from which they

emanate.

The periodic orbits associated to the other three equilibria can be obtained

using the symmetries IIIN , IVN and VN . They are shown in Fig. 10. We stress320

that there is no qualitative difference with other values of β different from the

one shown here.

3.3.3. Periodic orbits around the 3N equilibria

There are only two equilibrium points of type 3N , their coordinates are

(±(1/3)1/3, 0, 0). For any value of β, the Jacobian at these points has four eigen-325
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Figure 10: For β = 2, the six families of periodic orbits emerging from the four equilibria of

type 2N , with the families associated to λ1 in purple and the ones to λ2 in cyan. The orbits

have been represented using the ones computed for X > 0, Z > 0 and the IIIN , IVN and VN

symmetries.

values, ±λ1i and ±λ2i, purely imaginary and two, ±λ3, real. As a consequence,

there are two families of periodic orbits in the centre manifold associated to each

point. Taking β = 2 for illustration purposes (again the qualitative behaviour of

the periodic orbits is independent of β), we have λ1 = 7.6460, λ2 = 3.1623 and

λ3 = 0.6796, so the periods of the two families tend to 2π/λ1 = 0.821761092330

and 2π/λ2 = 1.986903617, respectively. Some orbits of both families, together

with the characteristic curves, are shown in Fig. 11.

The orbits of the family associated with λ1 = 7.6460 are planar. Close to the

equilibrium point the orbits are unstable, at HN = 3.827218 (the first vertical

dashed line) a saddle-node bifurcation is detected and the family transits from335

type B2 (unstable) to B3 (stable). As shown in Fig. 11, close to its end the

orbits become infinitesimal oscillations around the origin, where the family ends.

The orbits of the family associated to λ2 = 3.1623 are 3-dimensional and

reach a planar orbit (Z = 0) with HN = 3.868084, that is marked with an A

in the left plots of the two bottom lines of Fig. 11. The orbits of this piece of340

the family go from type B2 (unstable) to type B3 (stable) at HN = 3.569571,

where there is a saddle-node bifurcation. Very close to the end of the family

(HN = 3.868084), the type changes from B3 to B4, and then back to B3 through

two Neimark-Sacker bifurcations.
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Figure 11: The two families of periodic orbits emanating from the 3N equilibrium point with

X > 0. The top row shows some orbits of the family associated with the eigenvalue λ1

together with the characteristic curve. All orbits of this family are planar; those of type B3

are in green (stable orbits), and those of type B2 in purple (unstable orbits). The second and

third lines show the results for the family associated to the eigenvalue λ2. The evolution of

the family up to the planar orbit with Z = 0 (label A) is displayed in the middle line, the

orbits in green are the stable ones and the colors indicate the type evolution of the orbits,

that follows the sequence B2 (orange) → B3 (green) → B4 (magenta) → B3 (green). The

bottom line shows the orbits obtained from the orbit with label A up to the orbit with label

B with the same color criteria as above. In these last orbits the type transitions follow the

sequence: B2 (orange) → B1 (blue) → B2 (orange) → B3 (green).
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3.4. Some families of quasi-periodic orbits345

In this section we show some of the results obtained in the computation fam-

ilies of quasi-periodic orbits (2D invariant tori) using the procedure explained

in Section 7.2.

We have computed three families of 2D tori: one family is associated to

periodic orbits around the equilibrium 1N , and the other two are associated with350

periodic orbits around the equilibrium 3N . All three families are iso-energetic,

so they are computed keeping the energy H fixed and varying the rotation

number and the return time (ρ, T ) during the continuation. Analogously to

what has been done with periodic orbits, the curve (ρ, T ) can be seen as their

characteristic curve.355

The (ρ, T,H) values of the three periodic orbits where we start the computa-

tions are listed in Table 6 as well as their initial conditions. These three periodic

orbits are the ones displayed with black dots in their associated characteristic

curves in Fig. 5 and Fig. 11.

Table 6: Values of (ρ, T,H) and initial conditions of the periodic orbits around which we have

computed the isoenergetic families of 2D tori.

Label ρ Tp HN χ0 (X0, Y0, Z0, X′0, Y
′
0 , Z

′
0)

1N1 1.454749 2.196629 -1.798693 (0.0, 0.932165, 0.701220, 0.460454, 0.0, 0.0)

3N1 0.745569 2.197733 3.996198 (0.699132, 0.0, 0.0, 0.0, -0.158072, 0.553048)

3N2 0.790994 0.903410 4.008587 (0.338497, 0.0, 0.059964, -0.059654, 1.358685, 0.350506)

The results corresponding to the isoenergetic family of tori around the pe-360

riodic orbit with label 1N1 (HN = −1.798693) are displayed in Fig. 12. The

invariant curves ϕ associated to the tori (top left plot of the figure) start with

a value of the rotation number ρ = 1.454749, and are the small circles in the

middle of the set of invariant tori. As the family evolves the size of the torus

becomes larger and the shape of the corresponding invariant curve turns from365

simple circles to more complicated and bended curves. The family has been com-

puted up to values of ρ close to the resonance ρ = 2π 15
64 , indicated as dashed
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line in the top right hand side plot of Fig. 12 (characteristic curve). The same

figure also shows a 3D representation of some of the computed tori together

with the invariant curve used for its computation.370
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Figure 12: For HN = −1.798693, invariant curves ϕ associated to the isoenergetic family of

2D tori around the periodic orbit with label 1N1 (top left plot). The top right plot shows the

rotation number ρ in front of return time T of the isoenergetic family of tori. The family has

been computed up to values of ρ close to the resonance 15/64. The two bottom rows show

some of the tori of the family. In all the plots we have included the invariant curves ϕ used

for their computation (in black).
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Fig. 13 shows the results obtained for the isoenergetic family of tori around

the periodic orbit with label 3N1 (HN = 3.996198). This family has been

computed up to the resonance with ρ = 2π
29 . As it is clearly seen looking at

the invariant curves, the shape becomes more complex as the tori increase in

size and, as a consequence, the number of frequencies Nf required for their375

accurate computation varies along the family. To show this fact we have plotted

the invariant curves in different colors according to the values of Nf . The

continuation procedure terminates when we approach the 1
29 resonance, that

corresponds to the maximum allowed value of Nf = 128.

Fig. 14 shows the results obtained for the isoenergetic family of tori around380

the periodic orbit with label 3N3 (HN = 4.008587). Recall that this orbit

belongs to the same family as the periodic orbit 3N1. This family has been

computed up to the resonance corresponding to ρ = 2π
27 , when the number of

frequencies required for the computation of the invariant curve ϕ is greater that

the maximum allowed value Nf = 128.385

4. The radial case. Equilibrium points, zero velocity surfaces, peri-

odic orbits

4.1. Equilibrium points

In the radial case, and for σ = +1, there are two equilibria on the Z−axis,

with label 1R. If σ = −1, there are four equilibrium points in the X − Y390

plane with 2R, and four in the X − Z plane, with 3R. Table 8 gives the results

obtained, together with the value of the first integral H at each equilibrium

point.

The characteristic polynomials of the different kinds of equilibrium points
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Figure 13: For HN = 3.996198, invariant curves ϕ associated to the isoenergetic family of 2D

tori around the periodic orbit with label 3N1 (top left plot). The different colors of the curves

correspond to the number of frequencies required for their computation (≤16 magenta, ≤32

green, ≤64 orange and ≤128 blue).The top right plot shows the rotation number ρ in front of

return time T of the isoenergetic family of tori. The family has been computed up to values

of ρ close to the resonance 1/29. The two bottom rows show some of the tori of the family.

In all plots we have included the invariant curves ϕ used for their computation (in black).

considered are:

1R : p(λ) = λ6 + β2λ4 − (6β2 + 3)λ2 + 18,

2R : p(λ) = λ6 +

(
9

2
β2 + 2

)
λ4 + (9β2 − 17)λ2 − 18,

3R (Z =
√
X) : p(λ) = λ6 + (10β2 − 12β)λ4 + (24β2 − 48β − 15)λ2 + 36,

3R (Z = −
√
X) : p(λ) = λ6 + (10β2 + 12β)λ4 + (24β2 + 48β − 15)λ2 + 36,

(19)
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Figure 14: For HN = 4.008587, invariant curves associated to the isoenergetic family of 2D

tori around the periodic orbit with label 3N2 (top left plot). The top right plot shows the

rotation number ρ in front of return time T of the isoenergetic family of tori. The family has

been computed up to values of ρ close to the resonance 2/27. The two bottom rows show

some of the tori of the family. In all plots we have included the invariant curves ϕ used for

their computation (in black).

We have explored the evolution of the eigenvalues of the Jacobian as a func-

tion of β which has been considered between [−10, 10]. Fig. 15 shows the real395
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Table 7: Location of the equilibrium points of system (11) and value H of the Hamiltonian

(12) as a function of the sign σ of the charge q.

Label σ X Y Z H

1R +1 0 0 ±1 −3

2R −1 ±
(

2
9
√
3

)1/3
±
√

2X 0 2.289428

3R −1 ±
(

1
4
√
2

)1/3
0 ±

√
X 1.88988

and imaginary parts of the six eigenvalues of the equilibrium points as a function

of the parameter β.

The two equilibria with label 1R are unstable of saddle × saddle × centre

type and complex saddle × centre type, with a one-parameter family of periodic

orbits around each of them. The four equilibria with index 2R are also unstable400

of saddle × centre × centre type; the dimension of their associated stable and

unstable manifolds is one, while the one of the centre manifold is four. Hence,

there are two families of periodic orbits associated. In the 3R case we must con-

sider different possibilities: if Z =
√
X and β ∈ (−∞,−0.9516) ∪ (3.4525,∞),

or if Z = −
√
X and β ∈ (−∞,−3.4525) ∪ (0.9516,∞), the four equilibrium405

points are totally elliptic and, therefore, there exist three families of periodic

orbits associated to each of them. For some values of β the centre component

of the the 3R points has dimension 1, and for other beta it has full dimension

(or, equivalently, in some cases there is a hyperbolic part of dimension 4 and in

other cases there is no hyperbolic behaviour in the linear approximation); as a410

consequence these equilibria have only one family of associated periodic orbits.

We want to remark that the existence of several families of periodic orbits en-

larges the possibilities of candidates to nominal trajectories in spacecraft future

missions.

4.2. Zero velocity surfaces415

Fig. 16 shows the behaviour of the ZVS for values of the energy H close to

the ones associated to the three kinds of equilibria: H1R = −3, H2R = 2.289428
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Figure 15: Real part (left column) and imaginary part (right column) of the eigenvalues

associated to equilibria with labels 1R(first row), 2R(second row), ,3R with Z =
√
X(third

row), and 3R with Z = −
√
X(fourth row) as a function of β. Only the non-zero values of the

real and imaginary parts of the eigenvalues are shown.

and H3R = 1.88988. As it follows from the figure, the maximum number of

connected components of the admissible regions of motion determined by the
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ZVS is three for the first two cases and four for the last one.420

Figure 16: From top to bottom, evolution of the ZVS near the energy values associated to the

equilibrium points of type 1R, 2R, and 3R.

4.3. Some families of periodic orbits

As we have seen, in the radial case, and for all values of β, we have three

kinds of equilibria: 1R, 2R and 3R. The two equilibrium points of type 1R have

a one-parameter family of periodic orbits around each of them. The second

kind of equilibria is of type centre × centre × saddle, that means we have two425

families of periodic orbits associated to all the four 2R points. Depending on

the value of β, the 3R equilibria can be either centre × centre × centre or centre

× saddle × saddle.

For the computation of the families of periodic orbits we only consider some

values of β. In each case the values are chosen such that the dimension of the430
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associated centre manifold is maximal. We note that once the stability of the

equilibrium point has been fixed, the qualitative behaviour of the periodic orbits

emanating from the point is independent of β, although the size of the orbits

changes with the value of this parameter.

4.3.1. Periodic orbits around the 1R equilibria435

There are two equilibria of type 1R located at (0, 0, ±1). We will focus

on the one with Z = 1. The family of periodic orbits obtained with β = 2 is

displayed in Fig. 17. We stress the qualitative behaviour of the periodic orbits

is independent of β. The family associated to (0, 0, −1) can be obtained by

applying the IIIR symmetry w.r.t. the origin.440
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Figure 17: For β = 2, family of periodic orbits emanating from the equilibrium (0, 0, 1)

of type 1R (Z = 1). The left plot shows the orbits of the family and the right one the

associated characteristic curve. The colors in both figures indicate different configurations of

the multipliers, which along the family goes from B1 (blue) to B4 (magenta).

The orbits in this family are all unstable and the type of the multipliers goes

from B1 to B4, with the transition at HR = −3.159252. No bifurcation has

been detected at this transition. Analogously to the 1N case with β = −2 (see

Fig. 6), the orbits grow along the Z direction as the energy decreases and the

period tends to an upper limit value close to π.445

4.3.2. Periodic orbits around the 2R equilibria

There are four 2R equilibria that located at (±((2/(9
√

3))1/3, ±
√

2(2/(9
√

3))1/3,

0). We will mainly focus on the one with X > 0 and Y > 0. For β = 2, the
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associated eigenvalues are λ1 = ±4.3528i, λ2 = ±1.2784i, and λ3 = ±0.7624, so

there is one family of periodic orbits associated with λ1 and another one with450

λ2. Since the equilibrium points are in the X − Y plane, we cannot determine

symmetric periodic orbits (recall Table 3 for the radial case). The computation

of the non-symmetric periodic orbits of these families has been done using the

method explained in the Appendix taking Z0 = 0. The results obtained for

both families of periodic orbits are displayed in Fig. 18.455
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Figure 18: The two families of periodic orbits emanating from the 2R equilibria with Y > 0.

The first row shows the results for the family associated to λ1. All orbits are unstable and the

transition of their type follows: B2 → B1 → B2 → B1 → B2. Four bifurcations occur at the

transition points, and indicated as vertical lines. The black line on the left, that corresponds

to the orbit also displayed in black, indicates where the two branches emanating from the two

2R equilibria meet and the type of multipliers is a degenerated center with four multipliers

equal to +1. The bottom row corresponds to the family associated to λ2. All orbits are

unstable and their types go through B2 (orange) → B1 (blue) → B2 (orange) → B1(blue)

→ B4 (magenta) → B1 (blue).

Analogous to some previous cases, such as the 1N case with β > 0 or the
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2N case, the family associated to λ1 terminates at the equilibrium point sym-

metric w.r.t. the Y axis. In fact, the family emanating from ((2/(9
√

3))1/3,

+
√

2(2/(9
√

3))1/3, 0) and the one from ((2/(9
√

3))1/3, −
√

2(2/(9
√

3))1/3, 0)

are the same one, because the orbits around one point are symmetric with the460

ones around the other point w.r.t the Y axis (IIR symmetry). As a consequence,

the characteristic curve is, in fact, the one displayed in the top row of Fig. 18

travelled twice. We note that the most left point of the curve corresponds to

the orbit connecting the two families, which is a degenerated centre with the

multiplier +1 with multiplicity 4. It is the black curve on the left hand side465

figure that has been indicated with the vertical line in the characteristic curve.

All the orbits of this family are unstable, and for the right hand side branch,

starting at HR = 2.289428 and ending at HR = 1.271177 (the connecting or-

bit), the transition history of the configuration type follows: B2 → B1 → B2,

with two periodic-doubling bifurcations at the two transitions. For the branch470

starting at HR = 1.271177 (that is to the left of the connecting orbit, and is

symmetric of the right hand side branch w.r.t. Y− axis), the transitions and

the characteristic curve follow a reverse pattern as the ones of the right branch.

The orbits of the family associated with λ2, together with the associated

characteristic curve, are displayed in the bottom row of Fig. 18. The orbits of475

this family are unstable and the transitions follow the sequence: B2 → B1 →

B2 → B1 → B4 → B1. Two period-doubling bifurcations occur at the first and

third transition, a saddle-node bifurcation occurs at the second one, and two

real saddle bifurcations happen at the last two transitions, when the multipliers

transit from two real saddles to a complex quadruple saddle, and vice versa.480

The periodic orbits around the remaining equilibria can be obtained applying

the symmetries IR, IIR or IIIR. The resulting families are displayed in Fig. 19,

together with the two connections detected between each pair of equilibria, that

are symmetric w.r.t. the Y axis.
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Figure 19: All the families of periodic orbits emanating from 2R equilibria when β = 2. The

displayed orbits have been obtained by applying IR, 2R and 3R symmetries from the ones

computed for X > 0 and Y > 0.

4.3.3. Periodic orbits around the 3R equilibria485

There are four equilibrium points with label 3R, located at (±(1/(4
√

2))1/3,

0, ±(1/(4
√

2))1/6). We recall that for the two equilibria with Z = X and

β ∈ (−∞,−0.9516)∪ (3.4525,∞), and also for the two equilibria with Z = −X

and β ∈ (−∞,−3.4525)∪(0.9516,∞), the maximum dimension of the associated

centre manifold is six. In both cases we have three families of periodic orbits490

around each equilibrium point. For the computation of the periodic orbits we

have used the type IR symmetry (which we recall is a symmetry w.r.t. the X−Z

plane).

First we have used β = 6 and considered only the two equilibrium points with

X = Z > 0. The associated eigenvalues for this value of β are λ1 = ±29.6282i,495

λ2 = ±1.4666i and λ3 = ±0.1381i. Fig. 20 shows the results obtained for

the three families of periodic orbits. The first family goes through the type

evolution B3 → B2 → B3 with two saddle-node bifurcations and terminates in

infinitesimal oscillations around the origin. The second one is stable (B3) and

terminates at a degenerated centre, with the multiplier +1 with multiplicity 4,500

while the third family goes from B3 to B2, after a saddle-node bifurcation at

HR = 1.917373, and terminates at a degenerate saddle with the multiplier +1
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also with multiplicity 4.

A connection between the family associated with λ1 and its image w.r.t.

the origin (Type IIIR symmetry) has been detected. The connecting family is505

shown in Fig. 21.
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Figure 20: The three families of periodic orbits emanating from the 3R equilibria, with X =

Z > 0, associated with λ1 (left), λ2 (middle) and λ3 (right). In the family associated with

λ1 the orbits are stable (B3) before a saddle-node bifurcation occurs at HR = 0.755442 and

turn into unstable (B2). At HR = 3.710629 a second saddle-node bifurcation occurs and the

family remains stable (B3) until its termination. The orbits of the family associated with λ2

are stable (B3) and terminate at a degenerated centre at HR = 1.876817. The orbits of the

family associated with λ3 go from B3 (stable) to B2 (unstable). The transition happens at a

saddle-node bifurcation at HR = 1.917373 and the family terminates at a degenerated saddle.
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Figure 21: Connection between the family associated with λ1 and its image w.r.t. the origin

(Type IIIR symmetry).
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Second, we have considered the two equilibrium points with X = −Z, for

β ∈ (−∞,−3.4525) ∪ (0.9516,+∞) have also a 6-dimensional centre manifold

associated. Fig. 22 shows the three families of periodic orbits obtained in this

case when β = −6. The first family (left) goes from B3 (stable) to B4 (unstable)510

type after a Neimark-Sacker bifurcation at HR = −2.046653. Analogously to

what happens to the family associated to the 1R equilibrium point (Fig. 17), the

size of the orbits becomes increases as the energy decreases, while the period

tends to an upper limit close to π. The orbits of the second family (middle) are

all stable and of type B3. This family terminates at a degenerated centre when515

HR = 1.822400 with the multiplier +1 with multiplicity 4. The orbits of the

third family (right) are also all stable and terminate at a degenerated centre at

HR = 2.063967 with the multiplier +1 with multiplicity 4. In the second and

the third families there is a monotonic dependence between the period and the

energy, as is clearly shown in their associated characteristic curves.520
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Figure 22: The three families emanating from equilibria 3R with Z = −X,X > 0 and β = 6.

The family associated with λ1 (left) is stable (B3) up to HR = −2.046653 where a Neimark-

Sacker bifurcation occurs. After this, the orbits become complex unstable (B4). The orbits of

the other two families are stable (B3). The second family terminates at a degenerate centre at

HR = 1.822400, while the third family ends at a degenerated real saddle at HR = 2.063967.

It might be interesting to study the case when β only has one center com-

ponent, in which case only one family of periodic orbits persists, but this has
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not been considered in the present work.

5. The tangential case. Equilibrium points, zero velocity surfaces,

periodic orbits525

5.1. Equilibrium points

In the tangential case the whole Y− axis, except the origin, is of equilibrium

points, with label 3T . These equilibrium points do not dependent on the sign

σ of q. There are also four additional equilibria, two on the Z− axis (label 1T )

and two on the X− axis, with label 2T . Table 8 gives the results obtained. In530

this paper we will not consider the degenerate equilibria 3T with H = 0.

Table 8: Location of the equilibrium points of system 13) and value H of the Hamiltonian

(14) as a function of the sign σ of the charge q.

Label σ X Y Z H

1T +1 0 0 ±1 −3

2T −1 ±
(
1
3

)1/3
0 0 4.326748

3T ±1 0 6= 0 0 0

The characteristic polynomials of the two different kinds of equilibrium

points considered are:

1T : p(λ) = λ6 + β2λ4 + (3− 3β2)λ2 − 36,

2T : p(λ) = λ6 + (9β2 + 8)λ4 + (81β2 − 65)λ2 − 324.
(20)

We have explored the evolution of the eigenvalues of the Jacobian as a func-

tion of β which has been considered in β ∈ [−10, 10]. Fig. 23 shows the real and

imaginary parts of the six eigenvalues of the equilibrium points as a function of

the parameter β.535

The two equilibria with label 1T are either of saddle × saddle × centre type

or complex saddle × centre type and, consequently, there is a one-parameter

family of periodic orbits around each of them. The two equilibria with index 2T

are also unstable but of saddle × centre × centre type; the dimension of their
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Figure 23: Real part (first row) and imaginary part (second row) of the eigenvalues associated

to equilibria with labels 1T (left) and 2T (right) as a function of β. Only the non-zero values

of the real and imaginary parts of the eigenvalues are shown.

associated stable and unstable manifolds is one, while the one of the centre540

manifold is four. Hence, there are two families of periodic orbits associated.

Figure 24: From top to bottom, evolution of the ZVS near the energy values associated to the

equilibrium points of type 1T and 2T .
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5.2. Zero velocity surfaces

In the tangential case, as we already stated, we have only considered the

equilibrium points of type 1T and 2T . According to Table 8, there are only

two equilibrium points of each type with energy values equal to H1T = −3545

and H2T = 4.326748. The evolutions of the ZVS for energy values close to

these two ones are also displayed in Fig. 24. For the first point, the number of

admissible unconnected regions is three if H < H1T , the three regions met at

the equilibrium points when H = H1T = −3, and there is only one component

for H > H1T . The evolution of the number of admissible unconnected regions,550

for values of the energy H close to the one to the second equilibrium point, is

the inverse of the preceeding one, and goes from one to three.

5.3. Some families of periodic orbits

We recall that in the tangential case there are two kinds of equilibrium points:

two 1T equilibria located at (0, 0, ±1), and two 2T equilibria with coordinates555

(±(1/3)1/3, 0, 0). For any value of β, the 1T points have a two-dimensional

centre manifold which embeds a one-parameter family of periodic orbits. The

centre manifold associated to 2T type of equilibria has dimension four which

means that there are two families of periodic orbits around them. As in the

preceding cases, we will focus on the equilibrium point in the first quadrant.560

The results for β = 6, are shown in Fig. 25.

The orbits associated with (0, 0, +1) are all unstable and transit from B1

(real saddle) to B4 (complex saddle) without any bifurcation in between. The

continuation procedure is finished when the orbits become very large (|Z| > 40).

Analogously to the families shown in Fig. 6 and Fig. 22 (top row), an upper565

limit close to π for the period exists, even the size of the orbit grows rather

large.

The two families associated with ((1/3)1/3, 0, 0) are also shown in Fig. 25.

The orbits of the first family associated to this point are of type B2 (unstable)

and transit toB3 (stable) after a saddle-node bifurcation atHT = 3.914646. The570

last orbits of the family are infinitesimal oscillations around the origin, where
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Figure 25: The three families of periodic orbits in the tangential case. The orbits of the family

emanating from (0, 0, +1) (left) are unstable and transit from B1 (blue) to B4 (magenta).

The two families associated with ((1/3)1/3, 0, 0) are shown in the remaining columns. The

orbits of one of the families transit from B2 (orange) to B3 (green) type, after a saddle-node

bifurcation at HT = 3.914646. The orbits of the other family transit from B2 (orange) to

B1 (blue) when a saddle-node bifurcation occurs at HT = 3.955519. This family ends at a

degenerated saddle at HT = 3.965645. At the bifurcation point when the multiplicity of the

multiplier +1 becomes 4, as indicated with the right-hand side vertical line, another family is

born (see Fig. 27).

the family ends. A connection at the origin is detected between the families

associated to ((1/3)1/3, 0, 0) and (−(1/3)1/3, 0, 0), which are symmetric w.r.t.

the origin (see Fig. 26).
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Figure 26: Connection between the families associated to ((1/3)1/3, 0, 0) and

(−(1/3)1/3, 0, 0).
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The orbits of the second family associated to ((1/3)1/3, 0, 0) are unstable575

and transit from B2 to B1 type at HT = 4.326748. The family ends as a

degenerated saddle at HT = 3.965645 with the multiplier +1 with multiplicity

4, which corresponds to the final point of the characteristic curve. One saddle-

node bifurcation has been detected at HT = 3.955519. We have computed

the bifurcated family born at bifurcation point at HT = 4.170688 when the580

multiplicity of the multiplier +1 becomes 4(see Fig. 27).
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Figure 27: Bifurcated family emanating from the bifurcation point at HT = 4.170688 when

four multipliers are equal to +1 appearing in the second family associated to ((1/3)1/3, 0, 0).

6. Conclusions

In this paper we have studied the relative dynamics of a charged spacecraft

moving around a leader spacecraft provided with a rotating magnetic dipole.

The leader is assumed to move following circular orbits around a central body585

(for instance, the Earth). Three basic cases, for the orientation of the dipole,

have been considered: normal, radial and tangential. For the equations asso-

ciated to the three resulting dynamical systems, we have done an exhaustive

analysis of their equilibria, and their stability behaviour with respect to the

parameter β (quotient between the mean motion of the leader and the angular590

velocity of the dipole). We have also explored the admissible regions of motion

in the phase space, by analysing the topology of zero velocity surfaces when the

energy goes through the critical values at the equilibria.
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The phase space around each equilibria has been carefully explored com-

puting the families of periodic orbits associated to them, their continuations,595

bifurcations, terminations, and stability properties. Four kinds of bifurcations:

saddle-node bifurcation, period-doubling bifurcation, Neimark-Sacker bifurca-

tion, real saddle bifurcation, have been detected and several bifurcated families

have been computed. Furthermore, a parameterisation method, based on stro-

boscopic map computations, has been developed and applied to compute 2D600

invariant tori around elliptic periodic orbits. The relation between the Poincaré

map method and stroboscopic map method has been established in terms of the

return time. Several families of 2D tori have been computed, using as initial

seed the linear flow around the elliptic periodic orbits.

The models considered in the paper have great potential use for future space605

mission applications. The overall work provides an exhaustive catalog of peri-

odic and quasi-periodic orbits which can be interesting candidates to be used

as nominal trajectories for formation flying, long time hovering missions, etc.

according to their stability properties and their relative location with respect to

the leader.610

7. Appendix. Computational aspects of periodic and quasi-periodic

orbits

In this section we present the methods used for the computation of the

periodic and quasi-periodic orbits shown in the previously discussed.

The computation of the periodic orbits has been done using a numerical615

continuation method, based on a predictor method followed by a differential

corrector procedure. The initial guess used to start the procedure is given by the

periodic solutions of the linearised differential equations around an equilibrium

point. In most cases, the symmetries of the differential equations have been used

to reduce the computational cost. Some papers related with the computation620

and the linear analysis of periodic orbits in other dynamical models are: [5, 9,

10, 36], and [37].
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Around the equilibrium points we can also expect Lissajous orbits filling 2D

invariant tori. We can imagine them as the coupling of two periodic motions

with non-resonant frequencies ωi and ωj . Close to the equilibrium point the625

frequencies of the tori will be close to the ones of the periodic orbits, but the

frequencies change with the amplitudes and so, they go across resonances. The

proof of the existence of this Cantor set of tori follows the main idea underlying

the KAM theorem (see [19]). We compute them using the parameterisation

method given in Section 7.2.630

7.1. Computation of periodic orbits around the equilibrium points

Let λ1,...,λ6 be the eigenvalues of any of the Jacobians considered. The

solution of the linearised system, around the associated equilibrium point, can

be written as

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · c6eλ6tv6,

where vi, i = 1, ..., 6 are the eigenvectors and ci, i = 1, ..., 6 arbitrary constants.

We assume that the dimension of the centre manifold is, at least, two. Then,

at least one eigenvalue λ1 (together with its complex conjugate λ4) is pure

imaginary and we can write λ1,4 = ±
√
−1s = ±is, with s ∈ R. Setting c2 =

c3 = c5 = c6 = 0 we get

x(t) = c1e
istv1 + c4e

−istv̄1,

where v̄1 is the conjugate of v1. Using this linear approximation, the periodic

orbit used as initial guess for the non-linear system is

X(t) = Xeq + ε
x(t)

‖x(t)‖
,

where Xeq denotes the equilibrium point, ε is a small parameter, that usually

has been taken equal to 10−3, and ‖x(t)‖ is the Euclidean norm of x(t).

Once the above initial orbits have been computed, we can start the predictor-635

corrector scheme for the computation of the family of periodic orbits associated

to λ1, assuming that there are no other non-resonant imaginary eigenvalues

(λj/λ1 /∈ Z for j = 2, 3). Of course, if the dimension of the centre manifold is
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larger than 2, the above procedure can be done for any other pair of imaginary

eigenvalues.640

We consider two main kinds of symmetric periodic orbits: those that are

symmetric with respect to a coordinate plane, and those which have axial sym-

metry. Both kinds of orbits are sketched in Fig. 28. We consider only periodic

orbits such that their initial and final configurations belong to same kind of

symmetry.645

Figure 28: Sketch of the two kinds of symmetric periodic orbits: Arc 0 with coordinate plane

symmetry, and Arc 1 with axial symmetry. The labels V IN and IN correspond to two of the

symmetries defined in Table 2. These symmetries are used for the computation of periodic

orbits integrating them during only half a period.

Let (X0, Y 0, Z0, X ′0, Y ′0, Z ′0) ≡ (X0
1 , X

0
2 , X

0
3 , X

0
4 , X

0
5 , X

0
6 ) be the initial

conditions of any of these symmetric orbits. According to the kind of sym-

metry (as given in Tables 2,3 and 4) and symmetry element (line or plane),

only three components of the initial condition are different from zero, since the

initial conditions are taken on the symmetry element and the velocity at this650

point must be perpendicular to it.

7.1.1. The differential corrector

Due to the symmetries, we can assume that the initial conditions have only

three non-zero components. If, for instance, the periodic orbits are symmetric

w.r.t. the Y − Z plane, the initial conditions will be (0, Y 0, Z0, X ′0, 0, 0)T ,655

and we will ask that the orbit with these initial conditions intersects again the

symmetry plane X = 0 with the same non-zero components. This means that
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at after half a period (at X = 0) the following final conditions must be satisfied:

Y ′f = Z ′f = 0.

Denoting by X = (X0
i , X

0
j , X

0
k)T the vector with the non-zero components

of the initial condition, the non-linear system to be solved is: F1(X0
i , X

0
j , X

0
k) = Xf

m = 0,

F2(X0
i , X

0
j , X

0
k) = Xf

n = 0,
(21)

where, if (Xf
1 , X

f
2 , X

f
3 , X

f
4 , X

f
5 , X

f
6 ) denotes the final condition, (m,n) are the660

indexes associated to the two of its components that must be zero. If the

symmetry element is a plane, then m = i + 3 and n = j + 3. In case it is

an axis, the values of the indices m and n depend on how the final condition

is chosen after half a period. It can be either Xf
j−3 = 0 or Xf

k−3 = 0, so the

periodicity condition to be satisfied is Xf
i+3 = 0 (velocity orthogonal to the axis)665

and Xf
k−3 = 0 or Xf

j−3 = 0. Thus, if Xf
l = 0 is the final condition, then we have

l = k − 3, m = i+ 3, n = j + 3 for the plane symmetry case, and l = j(k)− 3,

m=i+3, n = k(j)− 3 for axial symmetry case.

The above system (21) of two equations with three unknowns can be written

as

F (X) = 0.

This system is solved by means of a modified Newton’s method in which, at each

iteration, we minimise the Euclidean norm of the correction given by Newton’s

method. For K = 1, 2, 3, . . . the equations of the iterative procedure are

XK = XK−1 + ∆XK−1,

∆XK−1 = −GT (GGT )−1 · F (XK−1),
(22)

where G is the Jacobian matrix of F with respect to (X0
i , X

0
j , X

0
k), and is given

by

G =

Φm,i Φm,j Φm,k

Φn,i Φn,j Φn,k

− 1

X ′fl
·

X ′fm
X ′fn

[Φl,i Φl,j Φl,k

]
,

where, Φ is the 6 × 6 state transition matrix, solution of the linear variational

equations after half a period. The iterative procedure defined by (22) finishes670

when either ‖F (XK)‖ or ‖∆XK−1‖ is less than a certain threshold.
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For non-symmetric periodic orbits the above refinement strategy is no longer

valid. In this case the periodicity condition must be adjusted to return to

the same initial state after a full period. In this case we have 7 unknowns

X = [X0, Y 0, Z0, X ′0, Y ′0, Z ′0, T ]T (6 state vector + period), and 6 equations675

Xf −X0 = 0.

To set the initial condition we fix one of its components, for example: Y 0 = 0.

Taking into consideration that the energy is preserved during the integration,

we can eliminate one of the constraints on final state, i.e. Z ′f −Z0 = 0, and as

a consequence we have a system of 6 unknowns and 5 equations. To solve this680

non-linear system we proceed as in the symmetric case, asking at each iteration

for a minimum norm correction. Now, the Jacobian G in (22) is the 6 × 5

matrix Φ − Id, of which we eliminate the 6-th row, because of the constraint

Z ′f − Z0 = 0, and the second column, to remove the correction on initial

component Y 0.685

For the computations we have used a Runge-Kutta-Fehlberg 7-8 propagator

with the following parameters: maximum local truncation error, 10−13; maxi-

mum error in the determination of the final condition on the fixed plane/line,

10−11; and maximum value of ‖F (XK)‖ or ‖∆XK−1‖, 10−10.

7.1.2. The continuation method690

The computation of the families of periodic orbits has been done using a con-

tinuation method, with the arc-parameter, s, as continuation parameter. In this

way, the curve (X0
i (s), X0

j (s), X0
k(s)), in the 3-dimensional space (Xi, Xj , Xk),

is the characteristic curve of the family and satisfies the system of differential

equations (see [14]),

dXi

ds
=

A1

A0
,

dXj

ds
=

A2

A0
,

dXk

ds
=

A3

A0
, (23)

where A0 = (A2
1 +A2

2 +A2
3)1/2, A1 = (F 1

Xj
F 2
Xk
−F 1

Xk
F 2
Xj

), A2 = −(F 1
Xi
F 2
Xk
−

F 1
Xk
F 2
Xi

), A3 = −(F 1
Xi
F 2
Xj
− F 1

Xj
F 2
Xi

), and F
1(2)
Xi(Xj ,Xk)

is the partial derivative

of F 1(2) with respect to Xi(Xj , Xk).

The integration of (23) is done using an Adams-Bashforth method with one,
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two, three or four steps, depending on the number of available points on the695

curve. Therefore, if we suppose, for instance, that four points X0
r ,X

0
r+1,X

0
r+2,

X0
r+3 are known, the integration of (23) will provide a new point Xr+4 near

the curve. Due to the relative low accuracy of this integration procedure, the

resulting point Xr+4 must be refined by means of the differential correction

method previously explained in order to get the accurate initial conditionsX0
r+4700

of the new periodic orbit.

With regard to the (fixed) step size ∆s used in Adams-Bashforth method for

the integration of (23), we have followed the automatic control strategy given

in [36]. From one side, ∆s must be adjusted (decreased) to make sure that

the curvature of the characteristic curve is not too strong, that is, the angle705

between the two segments determined by three consecutive points be less than

some bound (we have used 0.1rad); from the other side, if the number of it-

erations required by Newton’s method is small (less than 3) we can speed up

the computation of the characteristic curve increasing ∆s. Analogously, if the

number of Newton’s iteration is too large (greater than 8) it is convenient to de-710

crease ∆s. The above step-size control must be implemented accurately, adding

or removing points of the characteristic curve, since Adams-Bashforth method

is a fixed step-size propagator. For other developments and implementations of

the arc-length continuation method see [11, 12, 13].

We stop the continuation procedure when either:715

• The required step size ∆s is smaller than a certain amount (10−6), which

usually happens when the family is close to a bifurcation or to its natural

termination (for instance, at another equilibrium point).

• The size of the orbits becomes very large (modulus of the position vector

larger than 50 units). This is because we are mainly interested in the720

application of the orbits obtained to formation flying, in which the follower

is usually required to be in the proximity of the leader.

We remark that the arc-length continuation procedure is able to jump some

bifurcations, remaining along the original family, while in other cases it follows
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the bifurcated families. These possibilities must be analysed carefully by means725

of the stability parameters of the orbits.

7.2. Computation of 2D invariant tori

In this section we explain the method used for the computation of 2D in-

variant tori around periodic orbits of elliptic type. This kind of orbits appear,

for instance, around the periodic orbits associated to the equilibria with label730

3N (see Fig. 11).

There are two commonly used numerical methods for the computation of

2D invariant tori [3]: the stroboscopic map method [10], that we use in our

implementation, and the Poincaré map method [21], which, according to [16],

are also called large matrix methods. Let us show the connection between them.735

Consider, for instance, the differential equations (8) of the normal case, and

write these equations as the first order system,

χ̇ = f(χ), χ = (X,Y, Z,X ′, Y ′, Z ′) ∈ R6. (24)

According to [10], the computation of a 2D torus can be done looking for a

parameterisation of it, ψ(θ1, θ2), with

ψ : R2 −→ R6

(ξ, η) −→ ψ(ξ, η),

where ψ is 2π−periodic in both arguments ξ, η, and invariant under the flow

associated to (24). This is:

ψ(ξ + tω1, η + tω2) = φt
(
ψ(ξ, η)

)
, ∀t ∈ R, ∀ξ, η ∈ [0, 2π], (25)

where ω1, ω2 are the frequencies of the torus, and φt denotes the flow associated

to the differential system. So φt
(
ψ(ξ, η)

)
is the image under the flow of the

point ψ(ξ, η) after t time units.

In order to reduce the dimension of the problem, one of the parameters can

be fixed, for instance taking η = η0 = 0. This is equivalent to fix a curve on the

torus, ϕ(ξ) = ψ(ξ, 0), that must be invariant under φ2π/ω2
. So we have,

ϕ(ξ + ρ) = φT (ϕ(ξ)), (26)
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where ρ = 2πω1/ω2 is the rotation number in radians of the invariant curve ϕ,

and T = 2π/ω2. Once the parameterisation of the curve ϕ has been computed,

the torus ψ can be determined by means of (see [10])

ψ(ξ, η) = φ η−η0
2π T

(
ϕ(ξ − η − η0

2π
ρ)
)
. (27)

Let us assume that the invariant curve ϕ : S1 → R6 that we want to compute

has rotation number ρ, and its truncated Fourier expansion is,

ϕ(ξ) = C0 +

M∑
k=1

(
Ck cos(kξ) + Sk sin(kξ)

)
, (28)

where C0 ∈ R6, Ck ∈ R6, and Sk ∈ R6 are Fourier coefficients to be determined.

The invariance equation for ϕ can be written as,

ϕ(ξ + ρ) = φT (ξ)

(
ϕ(ξ)

)
, (29)

where the return-time T (ξ) is fixed to be the period (or the normal period) of740

the periodic orbit for the stroboscopic map method, while for the Poincaré map

method depends on ξ and it is different at each point.

7.2.1. Indeterminations in the parameterisation of φ

There are two indeterminations in the Fourier representation of ϕ(ξ). One

is due to the location of the invariant curve on the torus, since for any value745

of η0 ∈ [0, 2π], not only for η0 = 0, the curve ϕ(ξ) = ψ(ξ, η0) satisfies the

invariance equation (26). This indetermination can be avoided by fixing one

coordinate of C0. We note that this coordinate needs to be chosen taking into

consideration the geometry of the torus.

The other indetermination is due to possible phase shifts ξ0 in the Fourier

representation. This is, if ϕ(ξ) satisfies the invariant equation (29), then ϕ(ξ +

ξ0), ∀ξ0 ∈ R also does. In fact we have,

ϕ(ξ + ξ0) = C0 +

Nf∑
k=1

(
C̃k cos(kξ) + S̃k sin(kξ)

)
, (30)

with another representation, C̃k = Ck cos(kξ0)+Sk sin(kξ0) and S̃k = Sk cos(kξ0)−750

Ck sin(kξ0).
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The phase shift indetermination can be avoided setting one component of

C1 or S1 equal to zero by an appropriate selection of the value of ξ0 (see [10]),

and with the Fourier coefficients updated to C̃k, S̃k, k = 1 ÷ Nf , by means of

(30). The index J of the component is chosen such that,

‖CJ
1 ,S

J
1 ‖2 = max

j=1,2
‖Cj

1 ,S
j
1‖2.

Between CJ
1 and SJ1 we choose the one with maximum absolute value. Once

both selections have been done, then one unknown CJ
1 (or SJ1 ) and the corre-

sponding column can be removed from the Jacobian.

7.2.2. The system of equations755

When it exists, the saddle component associated to a torus can introduce

instability in the numerical integration. To overcome this problem a multiple

shooting procedure is used (see [10]). In this way, instead of computing just

ϕ(ξ), several curves, ϕj(ξ), j = 0÷m− 1, are computed. They are defined by,

ϕj+1(ξ) = φT/mϕj(ξ), j = 0÷m− 2,

ϕ0(ξ + ρ) = φT/mϕm−1(ξ),
(31)

where ϕ0 is the original curve, and the value of m depends on the instability

of the torus. We have used values of m between 2 and 4. All the curves are

evaluated in a discrete set of points,

ξi = i
2π

1 + 2Nf
, i = 0, ..., 2Nf .

Since we always fix the value of the energy H of the torus, one more equation

is added to the above system. In this way, the final system to be solved using

the modified Newton’s method is,

H(ϕ0(0))−H = 0,

ϕj+1(ξi)− φT/mϕj(ξi) = 0, j = 0÷m− 2,

ϕ0(ξi + ρ)− φT/mϕm−1(ξi) = 0,

(32)

where, in principle, the unknowns are ρ, T,H and the Fourier coefficients A

of dimension 6m × (2Nf + 1). The coefficients A can be expressed as A =
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(A0, . . . ,Aj , . . . ,Am−1) with Aj = (Cj
0 ,C

j
1 , . . . ,C

j
Nf
, Sj1, . . . ,S

j
Nf

) for j =

0÷m− 1.

Since we look for torus embedded in two-parameter families, specified by at760

least two parameters among (ρ, T,H), we always remove one unknown, usually

ρ or H.

7.2.3. Initial guess for the curve ϕ

The computation of an initial guess for the curve ϕ is done following the

ideas given in [10]. We consider a periodic orbit with centre part, this is, with765

at least one pair of the associated eigenvalues on the unit circle, and use the

linear flow around the elliptic periodic orbit to compute the initial seed for the

invariant curve.

Let M be the monodromy matrix associated to an initial point χ0 of the

periodic orbit with period Tp, that is, M = DφTp(χ0). The linear flow around

χ0 is given by,

Lχ0

φTp
(χ) = χ0 +M(χ− χ0). (33)

Let cos γ + i sin γ be an unitary eigenvalue of M and v = vr + ivi the

associated eigenvector. Then we have,

M(vr+ivi) =
(

cos γ+i sin γ
)
(vr+ivi) = vr cos γ−vi sin γ+i

(
vr sin γ+vi cos γ

)
,

(34)

that can be rewritten as,

M [vr,vi] = [vr,vi]R(γ), with R(γ) =

 cos γ sin γ

− sin γ cos γ

 ,

where [vr,vi] denotes the 6× 2 matrix with columns vr, vi.

Let us define a curve close to the periodic orbit by means of,

ϕ(ξ) = χ0 + ε
(
vr cos ξ − vi sin ξ

)
, (35)

where ε is the distance from ϕ to the periodic orbit, and ξ ∈ [0, 2π].770
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The curve ϕ is invariant under Lχ0

φTp
, since

Lχ0

φTp
(ϕ(ξ)) = χ0 +M [vr,vi]

 cos ξ sin ξ

− sin ξ cos ξ

ε
0


= χ0 + [vr,vi]R(γ)R(ξ)

ε
0

 = χ0 + [vr,vi]R(γ + ξ)

ε
0


= ϕ(γ + ξ),

(36)

where γ is the rotation number in radians, and the two basic frequencies of the

associated torus can be approximated by (γ/Tp, 2π/Tp).

We remark that the above equation (36) is the linearised version of the

invariance equation (26) with T taken as the period of the periodic orbit. Since

it defines an invariant curve, with T and ρ close to those of the periodic orbit,

the initial guess of ϕ can be given by,

H = H(χ0), T = Tp, ρ = γ,

C0 = χ0, C1 = εvr, S1 = −εvi, Ck = Sk = 0 for k > 2.
(37)

When the multiple shooting is applied, the Fourier coefficients with k = 0, 1

of the intermediate curves ϕj are given by,

ϕj(ξ) = φ
j
Tp
m

χ0 + ε
(
vjr cos ξ − vji sin ξ

)
, (38)

where vj(r,i) = DφjTp/mv
j
(r,i).

There is another option for the initial guess of the curve ϕ̃(η). It is the

one associated to the centre part of the periodic orbit with T taken as the775

normal period of the centre part. Since this option has not been used in our

computations we omit the details on how to implement it. Further information

can be found in [10].

7.2.4. The differential corrector

System (32) is solved iteratively using the equations given in (22). The780

iterations stop when either ‖F‖ < 10−10 or ‖∆Xk‖ < 10−10 is satisfied.
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The differential of the first energy equation w.r.t. to the unknowns (in fact,

only C0
0 ) can be obtained easily by chain rule. The Jacobian G of the remaining

equations is given by,

G =
[
GA Gρ(GH) GT

]
,

where the last two columns are the differential w.r.t. two unknowns among

(ρ, T,H), and GA is the differential associated to the Fourier coefficients A.

This is,

GA =


G1
A

G2
A

...

G
6(2Nf+1)
A

 ,

where the sub-matrices GiA, i = 0, ..., 2Nf evaluated at point ξi are given by,

GiA =
D F

D A

∣∣∣
ξi

=


D ϕj+1(ξi)

D A
− Φ

D ϕj(ξi)

D A

D ϕ0(ξi + ρ)

D A
− Φ

D ϕm−1(ξi)

D A

 , j = 0÷m− 2, (39)

being Φ the 6 × 6 state transition matrix evaluated after a time-interval T/m.

When m = 1 (no multiple shooting is applied) only the second row remains.

Both Dϕ0(ξi+ρ)
D A and

D ϕj(ξi)
D A are sparse matrices, where the components associ-

ated to the corresponding Fourier coefficients Aj (the remaining ones are zeros)

can be expressed with only 2Nf + 1 diagonal entries Bk:
B0

B1

. . .

B2Nf

 .

The matrices Bi, of dimension 6× (2Nf + 1), can be expressed as,

Bi =


Bi1

Bi2

¨

Bi6


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where Bil = [1 cos(α) . . . cos(Nfα) sin(α) . . . sin(Nfα)] for l = 1÷6; α = ξi+ρ

and α = ξi for D ϕ(ξi+ρ)
D A and D ϕ(ξi)

D A , respectively.

We note that during the iterative procedure the number of frequencies Nf

of the truncated Fourier expansion can change according to the accuracy to be785

achieved. The value is chosen in such a way that the maximum norm of the last

Nf/4 coefficients be one order of magnitude smaller than the required tolerance.

If this condition is not fulfilled, then we double it to 2Nf and initially setting

Ck = 0 and Sk = 0 for k = Nf + 1, ..., 2Nf . We have usually started with

Nf = 16, which is enough for a curve with a regular shape such as a circle or790

ellipse. This value needs to be increased for curves with more complex shape.

However, to avoid too large systems, we have set the maximum of Nf to be 128.

As an important remark about the implementation of the described pro-

cedure we want to mention that the computation of the cos(kα) and sin(kα)

values, for k = 1, .., 2Nf , has been done using the stable trigonometric recur-795

rences given in [39]. This avoids low accuracies when the arguments are large,

moreover it saves CPU time.

Another remark is that we could “fall back” to the starting periodic orbit,

since the periodic orbit itself is also a solution of the system with C0 = 0,CK =

0,Sk = 0. To overcome this problem we have fixed a non-zero component of C0.800

This, in principle, only needs to be done for the computation of the first torus,

since during the continuation, the rotation number ρ and the return time T are

varied, and therefore they are different from the ones of the periodic orbit.

Finally, as it has already been previously stated, two more unknowns need

to be removed to avoid the curve indetermination and the phase shift indeter-805

mination. Again, this it can be done by eliminating the corresponding columns

from G.

7.2.5. Continuation of the 2D tori family

We use a similar predictor-corrector scheme for the continuation of the tori

family as the one described in section 7.1.2 for the continuation of periodic810

orbits. Once an invariant 2D torus is computed close to an elliptic periodic
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orbit, the continuation is done along its tangential space, that is the kernel of the

system Ker(DF ). Thus, let us assume a torus Xk is computed. The prediction

step of a new torus is given byXk+1 = Xk+∆s·v, with v ⊂ Ker(DF ), ‖v‖ = 1,

and then it is refined using the modified Newton’s method.815

We can embed the torus in an isoenergetic family by keeping fixed the energy

H, and varying the value of ρ and T , or vice versa, keeping fixed the rotation

number ρ and letting T and H be the unknowns to vary. However we must note

that the tori are embedded in a Cantorian family with gaps due to resonances.

These gaps can be jumped through if we tune the continuation step carefully, but820

in many cases, the continuation procedure may stop when close to a resonance

or if the shape of the curves becomes complicated.

We remark that, due to the phase shift indetermination, the system of equa-

tion used for prediction and correction are different (see [10]). For the differ-

ential correction of the first torus three unknowns are removed, that include825

one coordinate CI0 to avoid the curve indetermination, one coordinate CJ1 (or

SJ1 ) to avoid phase shift indetermination, and one non-zero coordinate of CK
0

to avoid falling back to the staring periodic orbit. So the system is of dimension

(6m(2Nf +1)+1)×
(
6m(2Nf +1)−1

)
and full-rank. It is solved using a general

QR factorization.830

For the prediction of a new torus we remove only CJ1 to select a curve on

the torus and use the remaining equations to compute Ker(DF ). The system is

rank-deficient and of dimension (6m(2Nf + 1) + 1)×
(
6m(2Nf + 1) + 1

)
. The

computations of Ker(DF ) are carried out using QR factorization with column

pivoting (LAPACK routine DGEQP3 in [1]). Since the set of solutions is two-835

dimensional, among them we choose the one that is orthogonal to the direction

of the phase shift indetermination, which is obtained from the differential of

Equation (30) w.r.t. ξ0.

For the continued curves it is not necessary to consider the falling back

problem to the original periodic orbit, so we only need to remove two unknowns840

CI0 and CJ1 . The system is also rank-deficient and a QR with column pivoting

based Linear Least Squares solver (LAPACK routine DGELSY in [1]) is used
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to solve the system defined by Equation (32) with least-norm corrections.

The value of the continuation step ∆s is adjusted within a certain interval

(for instance [10−5, 10−2]). If the number of iterates of Newton’s method is small845

(less than three), we multiply it by two, and if the refinement fails to converge

or the number of iteration is large (greater than eight), we divide it by two and

we start again the procedure using as prediction the tangential space of the last

successful computed torus. Moreover, to guarantee a smooth continuation, we

ask the angle between the last three curves be less than a given tolerance (we850

use 15◦). If it exceeds this value, we divide ∆s by 2 and restart the prediction

from the previous torus. For the computation of the angle, we consider two

unknowns among (ρ, T,H) and the remaining constant term C0 despite of CI
0 .

We repeat this process until one of the following conditions is satisfied:

1. The continuation step is smaller than the lower bound allowed (10−6).855

2. The magnitude of Fourier coefficients with k ≥ 1 is smaller than the

accuracy required by the refinement (10−10). This means we end up at a

periodic orbit.

3. The number, Nf , of Fourier modes required is larger than the maximum

value allowed (128). This usually happens when we are close to the res-860

onance or the shape of the curve becomes very complex and many times

we are able to jump the resonance.

A trick to jump through possible resonances during the continuation is by

tuning the step ∆s and the value of Nf which can be applied when the procedure

is convergent but Nf needs to be increased. During three iterations we simply865

allow to start again with Nf unchanged and the step size increased to 1.3∆s.

If the iterations fail to converge, we decrease ∆s = ∆s/2 and restart with

Nf = 2Nf . Note that the value of Nf might change during the continuation, so

the dimension of the Fourier coefficients (Ck,Sk) needs to be specified carefully

for the new curve.870
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7.2.6. The relation between the two parameterisation methods for the computa-

tion of 2D invariant tori

In this section we study the relation between the stroboscopic map method

and the Poincaré map method for the computation of 2D invariant tori. The

study is done looking at the return times required by both methods and assum-875

ing that no multiple shooting is used.

Let ϕ be an invariant curve computed using the stroboscopic map method

and ϕ another one with the same rotation number associated to an elliptic

periodic orbit. We assume that they are close, so for each point ϕ(ξ) on the

curve ϕ there is a point ϕ(ξ) close to ϕ(ξ) and on the curve ϕ such that,

ϕ(ξ) = φτ(ξ)
(
ϕ(ξ)

)
, (40)

where τ(ξ) is a small time deviation (positive or negative) depending on ξ.

Looking at the left-hand side of the invariance equation (26), and using

equation (40), we obtain,

ϕ(ξ+ρ) = φτ(ξ+ρ)
(
ϕ(ξ+ρ)

)
= φτ(ξ+ρ)◦φT (ξ)

(
ϕ(ξ)

)
= φτ(ξ+ρ)+T (ξ)

(
ϕ(ξ)

)
. (41)

Similarly, substituting equation 40 in the right-hand side of equation (26) we

get,

φT
(
ϕ(ξ)

)
= φT ◦ φτ(ξ)

(
ϕ(ξ)

)
= φT+τ(ξ)

(
ϕ(ξ)

)
. (42)

Hence, the relation between T and T (ξ) is τ(ξ + ρ) + T (ξ) = T + τ(ξ), which

can be rewritten as the homological equation,

τ(ξ)− τ(ξ + ρ) = T (ξ)− T, (43)

and since both sides of the above equation have zero-average, we have

T =
1

2π

∫ 2π

0

T (ξ)dξ. (44)

The homological equation can be solved using Fourier series

T (ξ) =
∑
k∈Z

T ke
2πikξ, τ(ξ) =

∑
k∈Z

τke
2πikξ,

T 0 = T, τ0 = 0.

(45)
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where the T 0 and τ0 are the constant terms of the series. The coefficients T k can

be computed by evaluating T (ξ) in a regular grid and using a FFT. Moreover

we have,

τ(ξ)−τ(ξ+ρ) =
∑
k∈Z

(
τke

2πikξ−τke2πik(ξ+ρ)
)

=
∑
k∈Z

τk(1−e2πikρ)e2πikξ =
∑
k∈Z

T ke
2πikξ.

(46)

Hence for k 6= 0 we have,

τk =
T k

1− e2πikρ
. (47)

Since τ0 is a free parameter we can take τ0 = 0. If (Cτk , S
τ
k ) ∈ R and (CTk , S

T
k ) ∈

R denote the Fourier real coefficients of τ and T , respectively. Then from

equation (47)it follows that for k 6= 0,

Cτk = 1
2

(
CTk + STk cot(kρ2 )

)
, Sτk = 1

2

(
STk − CTk cot(kρ2 )

)
. (48)

As a final conclusion we can say that the two methods are closely related

and one can easily go from one to the other through the return time. For the

stroboscopic map method there are no geometric constraints in the selection of880

the invariant curve of the torus, which, on the other hand, introduces one more

phase shift indetermination to deal with [10]. In the Poincaré map method,

the initial curve is specified by the intersection of the torus with a prescribed

surface of section, this section needs to be carefully chosen since the vector field

of the torus must be transverse to it. From the computational point of view,885

we can say that the Poincaré map method requires at each step of Newton’s

method the solution of 4(2Nf + 1) ×
(
4(2Nf + 1) − 1

)
linear systems while in

the stroboscopic map method the dimension is 6(2Nf + 1)×
(
6(2Nf + 1)− 1

)
.

We prefer the stroboscopic map method over the Poincaré map method for

our explorations because the reliance on geometry makes it difficult to choose890

a suitable Poincaré section guaranteeing the transversality of the tori with the

section, especially during the continuation.
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