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Abstract 

Many bowel cancer patients are in need of an artificial stoma as part of their surgical treatment, and 

associated post-surgical odors caused by leaking stoma pouches may lead to social isolation, which is 

why inconspicuous monitoring of this situation is important for affected persons. The integration of 

micro- and nanotechnology may offer low-cost, low-power consuming and small solutions to this 

challenge. To this end, we present an inkjet-printed, heterostructured gas sensor that has been built 

by incorporating nanosized p-type semiconducting CuO in a porous n-type ZnO matrix. The functional 



layer is fabricated using a combination of a colloidal suspension and sol-gel approach optimized for 

inkjet printing thus offering an industry-ready method for integration of nanomaterials in 

microelectromechanical systems (MEMS) structures. Using a thermal modulation scheme we enhance 

the information content and classify different events. We demonstrate that a simple MEMS device 

using a novel hetero-nanomaterial may be used to reliably identify situations where stoma pouch 

content escapes. 
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Introduction 

About 18% of new cancer diagnoses are associated with the digestive system [1]. If surgical treatment 

is necessary it may be accompanied by installation of artificial exits, so-called ostomies. Even though 

this technique is well-established, it is still cumbersome to maintain a sealed stoma pouch on a regular 

basis, which causes frequent leaks and associated bad odors. So apart from the oftentimes dire outlook 

for patients, a secondary effect associated with bad odor upon escape of pouch content in combination 

with a decreasing sense of smell limits the social engagement, ultimately leading to a deterioration of 

social participation [2]. In fact, a recent study found that stoma pouch leak problems are among the 

top research priorities [3]. This situation gives rise to the need for unsuspicious monitoring of the state 

of the stoma pouch. We propose to tackle this using a hybrid nanomaterial integrated into a 

microsystem to detect leaks in the pouch, which would allow for a low-cost, mass deployable system. 

Previously, we showed that a hotplate-based miniature system with an autonomous operation time of 

several days can be successfully fabricated and used [4]. 



Here, the central building block of the gas sensing micro device is a hybrid layer made of two types of 

functional nanomaterials. The chemical composition of human faeces is highly complex and the bad 

odour emitted is a blend of a plethora of sulphur and amines containing molecules, including but not 

limited to hydrogen sulfide (H2S), methylmercaptan (CH3SH), triethylamine/trimethylamine ((C2H5)3N), 

and ammonia (NH3) [5]. Because of the properties in selective trace gas detection [6]–[10] towards 

sulphur containing molecules we use copper(II)oxide as additive in a zinc oxide (ZnO) layer, which is 

among the best researched materials for gas sensing applications [11]–[15]. Using thermal modulation 

protocols the reaction between CuO and sulphur containing molecules may be tailored to achieve 

highly selective trace gas sensing components [16]. Using inkjet printing technology we produce a 

heterolayer of p-type semiconducting copper(II)oxide (CuO) nanospheres integrated into porous n-

type zinc oxide, thus forming p-n junctions at the interface between both types of materials. In the 

past the combination of these materials has been fabricated in numerous ways and its gas sensitive 

response has been investigated. In 1990 Nakamura et. al. [17] have showed increasing selectivity of 

ZnO/CuO heterojunctions and in recent years nano-sized matrices haven been fabricated and 

researched. Among the realizations are core shell CuO-ZnO nanocomposites [18], nanoflakes [19], Al 

doped CuO-ZnO structures [20], free-standing ZnO-CuO nanowire arrays [21], CuO decorated ZnO 

hierarchical structures [22], and CuO-ZnO nanorods [23]. CuO-ZnO heterojunctions have also been 

obtained using a sol-gel approach [24], sputtering [25], hydrothermal process [26] as well as derived 

from powders [27] or a combination of sputtering and chemical vapor deposition [28]. Also, the 

incorporation of a ZnO/CuO heterostructure on a hotplate also has been achieved recently using 

sputtering of brass [29]. Nonetheless, so far the potential of inkjet printing of colloidal suspensions for 

the deposition of heterolayers on arbitrary platforms has been explored less frequently. Some 

advantages of using colloidal suspensions are the facile control of size and shape of the nanoparticles 

[10], the precise control of layer thickness [30], [31], as well as using a flexible, industry ready 

deposition technique that may be used to deposit suspensions on arbitrary substrates [32], [33].  



In this contribution both materials are produced using a scalable, wet-chemistry synthesis route to 

obtain a printable ink containing both nanomaterials. By mixing inks made up of colloidal CuO 

nanospheres and a sol-gel solution for ZnO, the CuO nanoparticles are incorporated into a matrix of 

porous ZnO as depicted in Figure 1.  

 

Fig. 1: Using inkjet printing technology a novel type of hybrid nanomaterial is deposited onto low-

power consuming MEMS structure that enables electronic read-out of the layer as well as thermal 

control.  

Both inks feature a low solid content, such that a scalable, precise control of the final layer’s thickness 

becomes possible [30]. Using the inkjet printing technology offers a way to bridge the gap between 

nanoscience and MEMS and integrate hybrid nanomaterials in a flexible, reproducible fashion. Thermal 

control and electronic read-out of the final functional layer is achieved using a micromachined, low-

power consuming suspended hotplate device featuring a heating structure and two interdigitated 

electrode structures [34], [35]. Using this simple device in combination with a temperature modulation 

scheme different odor scenarios are classified. 

Experimental 

Ink preparation 



As a first step we prepare cuprous oxide (Cu2O) nano-particles according to our previously described 

synthesis method [30]. 0.4832 g trihydrated copper nitrate Cu(NO3)2•3H2O is dissolved in 40 ml water 

(H2O) and then kept stirring for about 30 min at 250 rpm. Meanwhile, 0.4 g polyvinylpyrrolidone (PVP, 

average MW = 55,000) is dissolved in 60 ml water. After complete dissolution the PVP solution is added 

dropwise to the Cu(NO3)2 solution and the reaction mixture is stirred for 2 h. Then, 90.6 μl of hydrazine 

(N2H4) solution (35% N2H4 in water) is added to the reaction mixture drop-wisely. The color of the 

solution changes into orange immediately after the introduction of N2H4, which indicates the 

production of Cu2O nanoparticles. The resulting solution is kept stirring for 20 min at room 

temperature and then washed with H2O and ethanol (EtOH) several times by centrifugation and 

redispersion (Multifuge 3 SR, Heraeus: 900 g, 45 min, 21°C). In a final step the Cu2O nanoparticles are 

redispersed in 6 ml EtOH and stowed away in the dark until further use. Prior to mixing with the ZnO 

ink, the Cu2O ink is further diluted using 1 ml of above ink diluted into 5 ml ethanol in order to avoid 

agglomeration. Secondly, ZnO ink is prepared based on the recipe presented in [36]. 0.5 mmol zinc 

acetate dehydrate (Zn(OAc)2·2H2O) (Sigma-Aldrich) and 1.25 mmol NaOH (Sigma-Aldrich) are dissolved 

in 100 ml 2-propanol under stirring at 50°C. Then 0.1 g PVP (Mw=40,000, Sigma-Aldrich) is added to 

the solution under stirring. The above solution is brought into an ultrasonic bath for two hours. The 

final product is washed using water and EtOH for three times. The white ZnO particles are dispersed in 

3 ml ethanol, leading to a stable ink. Finally, 1 ml ZnO ink is mixed into 2 ml Cu2O ink under stirring for 

two hours. The original orange Cu2O ink becomes light-colored due to the addition of ZnO ink. The 

complete process is schematically displayed in Figure 2.  



 

Figure 2. The process for preparation of ZnO@CuO composite functional layer starts from individual 

ZnO and Cu2O inks. The ZnO@CuO composite layers are produced by mixing the two single inks, 

depositing the resulting mixture onto interdigitated electrode structures and subsequently burning off 

the superficial polymer, which simultaneously promotes the conversion of Cu2O to CuO. 

 

Integrated microsystem  

We deposit the composite nano-material onto a hotplate structure that has been optimized for the 

employed DIMATIX-DMP 2831 inkjet printing system [34]. A two-array hotplate chip is used as 

substrate, which contains two interdigitated electrode (IDE) structures with areas of (280 x 135) µm2 

with 7 pairs of electrodes and (220 x 115) µm2 with 6 pairs of electrodes, respectively. The inter 

electrode spacing as well as width of each electrode are 5 µm. A single heater provides control over 

the temperature of the two IDE structures to reach the target, simultaneously. To deposit the ink, the 

print head cartridge is filled with 1.5 ml of the ink and a voltage of 29 V is applied to the piezoelectric 

nozzle of the inkjet printer to release an ink drop. The ZnO@Cu2O layer is produced in a pattern of 3 x 

1 dots with a set spacing of 15 µm between each dot. This deposition is repeated 3 times at the same 

area. Finally, the solvent as well as the PVP are removed via heating of the layer to 400°C for 4 hours 

in air, which also converts Cu2O to CuO while maintaining the nanoparticle shape [10]. We have 

performed scanning electron microscopy (SEM) analysis and x-ray powder diffraction spectroscopy 

(XRD) on the CuO and ZnO material after the thermal treatment. SEM has been performed using a 



Hitachi SU-70, and XRD on CuO has been taken from our previous work [30], while XRD for ZnO has 

been carried out using a STOE Stadi P driven by Cu K-α radiation. 

 

Laboratory test 

Using a custom build measurement apparatus leaning on the one presented in [37], we exposed the 

sensing chip to different odor scenarios. We place samples of a stoma pouch, urine and water into a 

500 ml polypropylene co-polymer (PPCO) container each. The sample bottles are filled with 300 ml in 

the case of water, approximately 125 ml for urine and between 100 and 250 ml for the stoma pouch 

content, depending on sample consistency. Each measurement is performed with a new stoma sample 

of a different volunteer donor and collected and used at the same day to ensure odor sampling. The 

air above each container is sucked through a pipe system and directed to the sensing chip located in 

an airtight box with a volume of 2.3 l. The setup is schematically depicted in Figure 3. 

 

Figure 3. Schematic drawing of the experimental setup to present different gas matrices to the MEMS 

device. Using 4 different odour channels the gas composition inside the measurement chamber is 



controlled by sucking the air above the respective odour reservoirs and directing the flow to the sensor 

unit. Using a flowmeter a constant flow is ensured. 

 

Each odor channel is equipped with a valve, such that only one of the channels actually conducts 

sample air to the sensor, and a flow meter to control a continuous flow of one liter per minute. 

Automatic control of the valves allows for annotating each situation. The sensor is exposed to each 

situation for 20 minutes with a clean air step between every situation consisting of exposure to 20 

minutes of laboratory air as reference scenario. We have performed a total of 74 measurements over 

a 5-day time span using a layer temperature of 330°C.  

 

Calibration model 

We have built a calibration model using the acquired dataset to show the ability of the developed 

sensor technology to detect odors coming from stoma pouches in a reliable manner. Specifically, we 

have followed the traditional steps for chemical gas sensor data [38], [39]. First, we applied a pre-

processing step consisting on a linear interpolation to correct for missing data points that the time 

signals may contain. Next, for each sensor exposure, we have extracted six different features. In 

particular, we computed four steady-state features: the maximum value (f1), the minimum value (f2), 

the signal amplitude (f3=f1-f2), and the relative amplitude (f3/f1). We also considered two features that 

account for the sensor dynamics during the increasing transient of the sensor response. In particular, 

we used the exponential moving average (ema) that has already been applied in chemical sensing [40]. 

The output of filtered sensor signals depends on the smoothing parameter α. We have extracted the 

features from the maximum values after applying the ema filter to the sensor signals, for α=0.1 (f5) and 

α=0.5 (f6). These features aim at incorporating the information contained in the dynamics of the 

sensors into the model. Therefore, each experiment is represented by an aggregate of 6 features. We 

have built classification models based on Linear Discriminant Analysis (LDA) using a double-cross 



validation approach to train and test the model. First, 20% of the samples were set aside for evaluating 

the performance of the model. The model was built with the remaining 80% of the samples. In 

calibration, the features were normalized to zero mean and unit variance. The process was repeated 

five times until all the samples were left for test once. The reported performance is the mean of the 

performance after the five repetitions. 

 

Results and Discussion 

Material characterization 

The result of SEM analysis of the individual nano materials is shown in Figure 4. The Cu2O ink results in 

spherical CuO nanoparticles with a diameter of about 260 nm after thermal treatment. The phase 

transition from Cu2O to CuO does not change the shape or size of the nanoparticles and XRD reveals a 

complete transition from the Cu2O phase to pure CuO. The ZnO ink results in a thin, nanoporous layer, 

which is expected to exhibit high sensitivity. XRD analysis shows that pure ZnO is obtained via this 

process.  

 

Fig. 4: (a) The colloidal suspension leads to a layer of CuO nanospheres with low polydispersitivity 

index. Analysis of SEM images indicate an average size of 260 nm. (b) The ZnO ink leads to a porous 

ZnO nanolayer which serves as a matrix into which the CuO nanospheres are embedded.  



The SEM analysis of the combined ZnO and CuO inks is shown in Figure 5 and reveals that the resulting 

layer is composed of a porous ZnO into which the CuO nanoparticle are embedded, forming a p-n 

junction at their interface. The technique may be further expanded to add different additive or dopants 

to a porous functional layer. E.g. the incorporation of well-defined, nanoscaled catalyst into a gas 

sensing layers using an industry ready, scalable inkjet process becomes possible.  

 

Fig. 5: (a) Overview of the area between two electrodes of the interdigitated electrode structure 

covered with the CuO@ZnO heteromaterial. The low density of CuO nanoparticles in combination with 

the PVP shell help to prevent the formation of clusters. (b) A 80,000 fold magnification shows how the 

CuO nanosphere are embedded into the porous ZnO matrix.  

 

The XRD analysis of CuO and ZnO is shown in the Figure 6. The results on CuO indicate the complete 

phase transformation from Cu2O to CuO taking place after the PVP polymer is burn off in the air. The 

result in on ZnO confirms the production of a pure ZnO layer. The width of the reflection peaks of ZnO 

confirm nano-particles composed of crystallites with an estimated average size of 3.4 nm according to 

the Debye-Scherer equation [41]. 



 

Fig. 6: (a) X-ray powder diffraction measurements confirms the phase transformation from Cu2O to 

CuO after PVP is burned off in the air. The data is taken from [30]. (b) XRD of the ZnO layer also confirms 

that the product is made of pure ZnO nanoparticles but including a minor unknown impurity (JCPDS 

card No. 36-1451) 

 

Odor recognition using ZnO@CuO 

Figure 7 clearly shows the sensitivity of the developed sensor technology to odours coming from a 

stoma pouch. However, sensor drift and cross-sensitivities to uncontrolled environmental conditions 

and other volatiles still represent a major hurdle in chemical sensing [42], [43], especially when 

operating in applications beyond the laboratory [44], [45]. As a result, the definition of a threshold that 

operates over the sensor amplitude would not provide a reliable calibration model. For example, 

Figure 7 shows sensor responses under the same stimulus in two consecutive days. A calibration model 

that goes beyond the mere sensitivity test is therefore necessary. 

 



 

Fig. 7: Acquired time signals of the sensor when exposed to odor coming from stoma pouch in two 

consecutive days (day 1, left; day 2, right). The sensor is sensitive to the odor, although the amplitude 

and baseline of the signal changes due to uncontrolled environmental conditions and drift.  

 

We have obtained high classification performance for stoma pouch odor with the LDA calibration 

models. After double-cross validation process, once all the samples were left once for test, only one 

sample was not correctly detected (96 % sensitivity), with no false detections (100% specificity). 

However, water and urine samples were mixed up. Hence, the developed sensor coupled to a simple 

classification model is able to detect leaks in the stoma pouch. The system shows limited performance 

in the discrimination between water and urine (72% of classification rate) due to the difficulty of the 

task and the similar chemical signature of the samples. However, the discrimination of water and urine 

does not seem a limiting factor in the envisioned application for stoma pouches, especially since we 

have been able to show that separation is indeed possible [4]. Figure 8 shows the calibration data and 

test data for one of the iterations. One can confirm the ability of the model to correctly classify stoma 

pouch human waste with respect the other two types of samples. Figure 8 also shows that train and 

test data show similar distributions in the space, confirming thereby the generalization capability for 

the calibration models. 



 

Fig. 8: Example of a calibration model trained with 80% of the samples and tested with the remaining 

20% of the samples. In this example, the model is able to successfully separate human faces (green) 

from urine (blue) and water (red). Calibration (circle) and test (triangle) data show similar 

distribution, confirming the generality of the model. 

 

Conclusion 

In this contribution we have presented a novel method to incorporate CuO nanospheres into a matrix 

of nanoporous ZnO. By combining a colloidal suspension with a sol-gel based material we achieve an 

inkjet printable ink that results in a heteromaterial featuring a p-n junction. The approach allows for 

producing functional layers with well-defined thickness on arbitrary structures. Here, we have used a 

low-power consuming MEMS platform to demonstrate that the integration of advanced nanomaterials 

into microtechnology is feasible using industry-ready technologies. The resulting sensor is capable of 

detecting odors emitted by a leaking stoma pouch and can consequently be used as basis for a system 

that inconspicuously notifies affected people and help maintain their social inclusion.  
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