Abstract. In this paper, given a network we consider a subdivision network of it and we show how the group inverse matrix of the normalized laplacian on the subdivision network is related to the group inverse matrix of the normalized laplacian of the initial given network. Our approach establishes a relationship between solutions of related Poisson problems on both structures and takes advantage on the properties of the group inverse matrix.

Keywords. Subdivision network, normalized laplacian, group inverse, Poisson problem

1 Preliminaries

In this paper $\Gamma = (V,E,c)$ denotes a simple network; that is, a finite, with no loops, nor multiple edges, connected graph, with n vertices in V and m edges in E. We call conductance to the symmetric function $c : V \times V \to [0, +\infty)$ satisfying $c(x,y) > 0$ iff $x \sim y$, which means that $\{x,y\} \in E$. For every vertex in V, let $k(x) = \sum_{y \in V} c(x,y)$ be the degree of vertex x, then $\text{vol}(\Gamma) = \sum_{x \in V} k(x)$.

Let $\mathcal{C}(V)$ be the set of real functions on V, the normalized laplacian of Γ, introduced by Chung and Langlands in [2], is the linear operator $\mathcal{L} : \mathcal{C}(V) \to \mathcal{C}(V)$ that assigns to each $u \in \mathcal{C}(V)$ and at each $x \in V$

$$\mathcal{L}(u)(x) = \frac{1}{\sqrt{k(x)}} \sum_{y \in V} c(x,y) \left(\frac{u(x)}{\sqrt{k(x)}} - \frac{u(y)}{\sqrt{k(y)}} \right).$$

Easily $\ker(\mathcal{L}) = \text{span}(\sqrt{k})$ and given $f \in \mathcal{C}(V)$ the Poisson problem, i.e. the linear system $\mathcal{L}(u)(x) = f(x)$, is compatible iff $f \perp \sqrt{k}$. In this case, two different solutions differ up to a multiple of \sqrt{k}, so there exists a unique solution orthogonal to \sqrt{k} to every compatible linear system $\mathcal{L}(u) = f$ (Fredholm’s alternative).

© This work has been partially supported by the spanish Programa Estatal de I+D+i del Ministerio de Economía y Competitividad, under the project MTM2014-60450-R
2 Group inverse matrix of the normalized laplacian on subdivision graphs

In particular, \(L u = \varepsilon x - \sqrt{\frac{k(x)}{\text{vol}(\Gamma)}} \sqrt{k} \) has a unique solution which is orthogonal to \(\sqrt{k} \), that we denote by \(L^\#(\cdot, x) \). The \(n \times n \) matrix \(L^\# \), whose columns are \(L^\#(\cdot, x) \) for any \(x \in V \), is the group inverse of \(L \).

A subdivision network \(\Gamma^S = (V^S, E^S, c^S) \) of \(\Gamma \) is obtained from it by inserting a new vertex in every edge, so that each \(\{x, y\} \in E \) is replaced by two new edges, say \(\{x, v_{xy}\} \) and \(\{v_{xy}, y\} \) where \(v_{xy} \) is the new inserted vertex. We denote by \(V' \) the set of new generated vertices assuming that \(v_{xy} = v_{yx} \). Thus \(V^S = V \cup V' \) and the order of the subdivision network is \(n + m \) while its size is \(2m \). Moreover, we define the conductances on the new edges as \(c^S(x, v_{xy}) = c^S(y, v_{xy}) = 2c(x, y) \).

Then the degree function on \(\Gamma^S \), \(k^S \in \mathcal{C}(V^S) \), satisfies \(k^S(x) = 2k(x) \) when \(x \in V \), and \(k^S(v_{xy}) = 4c(x, y) \) for those vertices in \(V' \). Moreover, it holds that \(\text{vol}(\Gamma^S) = 4\text{vol}(\Gamma) \).

The subdivision procedure has attracted the attention of some researchers, see for instance [3, 4] in the context of graphs, and [1] for the case of networks. In these works different parameters associated with the combinatorial Laplacian have been studied as eigenvalues, resistances, kirchhoff index.

2 The group inverse of the normalized Laplacian for a subdivision network

The first main result we present in this work sets the precise relation between the solution of a compatible Poisson problem for the normalized laplacian on a subdivision network \(\Gamma^S \) and the solution of a conveniently well posed Poisson problem for the normalized Laplacian on the base network \(\Gamma \).

With the aim of usefulness we consider some definitions: firstly, a coefficient

\[
\alpha(x, y) = \sqrt{\frac{c^S(x, v_{xy})}{k^S(x)}} = \sqrt{\frac{c(x, y)}{k(x)}}
\]

for every pair of adjacent vertices \(\{x, y\} \in E \), and secondly two function operators: (a) let \(h \in \mathcal{C}(V^S) \) its contraction to \(V \) is

\[
h(x) = h(x) + \frac{1}{\sqrt{2}} \sum_{y \sim x} \alpha(x, y) h(v_{xy})
\]

and (b) for any \(u \in \mathcal{C}(V) \) (and related to an \(h \in \mathcal{C}(V^S) \)) the extension to \(V^S \) as

\[
u^h(v_{xy}) = h(v_{xy}) + \frac{1}{\sqrt{2}} \alpha(x, y) u(x) + \frac{1}{\sqrt{2}} \alpha(y, x) u(y)
\]

for \(v_{xy} \in V' \), while \(u^h(x) = u(x) \) for those vertices in \(V \).
The following result links the solution of a Poisson problem in the subdivision network with an appropriate Poisson problem on the base network. From now on \(L_S \) denotes the normalized laplacian of the subdivision network \(\Gamma_S \).

Theorem 1. Given \(h \in \mathcal{C}(V^S) \) such that \(\langle h, \sqrt{k^S} \rangle_{V^S} = 0 \), then \(\langle h, \sqrt{\mathcal{K}} \rangle_V = 0 \). Moreover, \(\pi \in \mathcal{C}(V^S) \) is a solution of the Poisson equation \(L_S(\pi) = h \) in \(V^S \) iff \(u = \pi|_V \) is a solution of the Poisson equation \(L(u) = 2h \) in \(V \). In this case, the identity \(\pi = u^h \) holds.

Corollary 1. Given \(h \in \mathcal{C}(V^S) \), such that \(\langle h, \sqrt{k^S} \rangle_{V^S} = 0 \), let \(h \in \mathcal{C}(V) \) be its contraction to \(V \); let \(u \in \mathcal{C}(V) \) be the unique solution of \(L(u) = 2h \) that satisfies \(\langle u, \sqrt{\mathcal{K}} \rangle_V = 0 \); and the constant

\[
\lambda = - \frac{1}{\text{vol}(\Gamma^S)} \sum_{v_{xy} \in V'} u^h(v_{xy}) \sqrt{k^S(v_{xy})}.
\]

Then, \(u^\perp = u^h + \lambda \sqrt{\mathcal{K}} \) is the unique solution of \(L_S(u^\perp) = h \) that satisfies \(\langle u^\perp, \sqrt{\mathcal{K}} \rangle_{V^S} = 0 \).

Taking into account the relation between Poisson problems for the normalized laplacian on \(\Gamma^S \) and \(\Gamma \), we obtain the expression of the group inverse for the normalized laplacian of a subdivision network, \(L^\#_S \), in terms of the group inverse of the base network \(L^\# \).

From now on we consider \(\nu = \text{vol}(\Gamma^S) \), and \(\pi^S \in \mathcal{C}(V) \), defined as \(\pi^S(x) = \frac{1}{\sqrt{2}} \sum_{y \sim x} \alpha(x, y) \sqrt{k^S(v_{xy})} \).

So we definitely obtain the expression of the group inverse matrix of \(L^S \) in terms of the group inverse matrix of \(L \).

Proposition 1. Let \(\Gamma^S \) be the subdivision network of \(\Gamma \), then for any \(x, z \in V \) and \(v_{xy}, v_{zt} \in V' \), the entries of group inverse of \(\Gamma^S \) are given by

\[
L^\#_S(x, z) = 2L^\#(x, z) - \frac{2\sqrt{2}}{\nu} \sum_{\ell \in V} \left[\sqrt{k(z)}L^\#(x, \ell) + \sqrt{k(x)}L^\#(z, \ell) \right] \pi^S(\ell)
+ 4 \frac{\sqrt{k(x)} \sqrt{k(z)}}{\nu^2} \sum_{r, s} L^\#(s, r) \pi^S(r) \pi^S(s) + 2 \frac{\sqrt{k(x)} \sqrt{k(z)}}{\nu^2} \sum_{r \sim s} k^S(v_{rs}).
\]
Group inverse matrix of the normalized laplacian on subdivision graphs

\[
L_S^\#(v_{xy}, z) = \frac{\sqrt{2}}{\nu^2} \sqrt{k_S(v_{xy})} \sqrt{k(z)} \left(-\nu + \sqrt{2} \sum_{r,s} L_S^\#(s, r) \pi^S(r) \pi^S(s) + \sum_{r \sim s} k_S(v_{rs}) \right) \\
+ \sqrt{2} \left(\alpha(x, y) L_S^\#(x, z) + \alpha(y, x) L_S^\#(y, z) \right) \\
- \frac{\sqrt{2}}{\nu} \sum_{\ell \in V} \left(\alpha(x, y) L_S^\#(x, \ell) + \alpha(y, x) L_S^\#(y, \ell) \right) \pi^S(\ell) \\
- \sqrt{2} \frac{k_S(v_{xy})}{\nu} \sum_{\ell \in V} L_S^\#(z, \ell) \pi^S(\ell),
\]

\[
L_S^\#(v_{xy}, v_{zt}) = \epsilon_{v_{zt}}(v_{xy}) - \frac{\sqrt{2}}{\nu^2} \sqrt{k_S(v_{xy})} \sqrt{k_S(v_{zt})} \sum_{r,s} k_S(v_{rs}) \\
+ 2 \frac{\sqrt{k_S(v_{xy})}}{\nu} \sqrt{k_S(v_{zt})} \sum_{r,s} L_S^\#(s, r) \pi^S(r) \pi^S(s) \\
+ \alpha(x, y) \alpha(z, t) L_S^\#(x, z) + \alpha(x, y) \alpha(t, z) L_S^\#(x, t) \\
+ \alpha(y, x) \alpha(z, t) L_S^\#(y, z) + \alpha(y, x) \alpha(t, z) L_S^\#(y, t) \\
- \frac{\sqrt{2}}{\nu} \sum_{\ell \in V} \left(\alpha(x, y) L_S^\#(x, \ell) + \alpha(y, x) L_S^\#(y, \ell) \right) \pi^S(\ell) \\
- \sqrt{2} \frac{k_S(v_{xy})}{\nu} \sum_{\ell \in V} \left(\alpha(z, t) L_S^\#(z, \ell) + \alpha(t, z) L_S^\#(t, \ell) \right) \pi^S(\ell).
\]

References

