
Synthesis of asynchronous control circuits with automatically
generated relative timing assumptions

’ Jordi Cortadella: 2Michael Kishinevsky, 2Steven M. Burns and 2Ken Stevens ’ Univ. Polit5cnica de Catalunya, Barcelona, Spain and 2Strategic CAD Lab, Intel Corporation, USA

Abstract
This paper describes a method of synthesis of asyn-
chronous circuits with relative timin . Asynchronous com-
munication between gates and motules typically utilizes
handshakes to ensure functionality. Relative timing as-
sumptions in the form “event a occurs before event b” can
be used to remove redundant handshakes and associated
logic. This aper presents a method for automatic gen-
eration of rerahve timing assumptions from the untimed
s ecification. These assumptions can be used for area and
&lay optimization of the circuit. A set of relative timing
consfrants sufficient for the correct operation .of the cir-
cuit is back-annotated to the designer. Ex erimental re-
sults for control circuits of a prototy e iA52 instruction
length decoding and steering unit c d e d RAPPID (“Re-
volvin Asynchronous Pentium@Processor Instruction De-
coder’? shows significant improvements in area and delay
over speed-independent circuits.

1 Introduction
Asynchronous communication utilizes handshaking to en-
sure functionality that require some area and dela penalty
with respect to synchronous design. Timing in&rmation
can be used to combat the full handshake overhead in area
and delay b removing redundant handshakes and associ-
ated logic. Bnce absolute timing information is mostly un-
known until layout is complete, relative timing information
in the form “event a occurs before event 6” is a natural rep-
resentation of timing that can be used in the design flow.

Relative ti,ming (RT) was used for design, of a protot pe
iA32 instruction length decoding and steering uni t c d e d
RAPPID (“Revolvin Asynchronous Pentium@Processor
Instruction Decoder’5 that was fabricated and tested suc-
cessfully [15, 161. Silicon results show si nificant advan-
ta es in particular, performance of 2.5-4.finstructions per
n,f - with manageable risks using this design technolog
RAPPID achieves three times faster performance and harf
the latency dissi ating only half the power and requiring a
minor area penayty as a comparable 400MHz clocked cir-
cuit. Another experiment with a circuit based on timing
assumptions is described in [2].

The design flow for synthesizing relative timing circuits
is as follows. Relative timing assumptions are provided by
the user or extracted b the algorithm presented in this pa-
er. The circuits are txen designed using the assumptions

for area and delay optimization. RT circuits can be opti-
mized with respect to the untimed circuits for two reasons:

0 RT assumptions reduce the set of reachable states
and hence increase the number of don’t care states
for logic optimization of all signals.

0 It is possible to extend the set of states in which a si -
nal is enabled without chan ing the set of reachabfe
states if other enabled signa& are known to be or can
be made faster than the early enabled (a.k.a. lazy)
signal. This additional flexibility adds local don’t
cares that can differ from one signal to another.

This work was suported by ii grant from Intel Corporation and was done during
;I visit to SCL in summer 1998.

0-7803-5832-5/99/ $10.00 Q 1999 IEEE

A (possibly relaxed) subset of timing assumptions used for
optimization is back-annotated b the tool and become tim-
ing constraints. Different validlnetlists require dilferent
timin constraints. The circuits are then designed to meet
the refative orderings, or verified that the restrictions are al-
ready part of the dela s in the system. Methods based ,on
separation anatysis [6f yomerric timin 1. LO], and relative
timing can be eployed or verification fl21.

In [3] it is shown that relative timing synthesis can be
automated using lazy transition systems i n which enablin
and firing.regi0n.s for signal transitions arle distinguishet
This paper enhances the method of [3] in three major ways.

0 A method for automatic generation of timing as-
sumptions starting from a speed-independent (un-
timed) specification is presented. Most of the timing
assumptions used in RAPPID circiiits can be auto-
matically extracted. Only architectural or environ-
mental assumptions on the inputs ncaded to be spec-
ified by the user.
A method for automatic backannotation of RT con-
straints sufficient for the correct oper;ition of a circuit
is developed.
A method for timin aware state encoding is de-
ployed. It reduces t ie number of state si nal and
generates timing assumptions,for state signa% if nec-
essary. It has a significant positive effect on both area
and performance.

Section 2 presents basic theory and models. Section 3
described a method for automatic generation of RT as-
sumptions. Section 4 resents technique for extracting tim-
ing constraints for a &rived RT netlist and briefly describe
timing-aware state encoding. Section 5 presents experi-
mental results.

2 Basic notions
For brevity, we assume the reader to be faimiliar with Petri
nets, a formalism used to specify concurrent s \terns. We

tion systems and fazy state graphs were introduced in more
detail in [3].
2.1 Transition Systems and State Grap.hs

A transition system (TS) is a quadruple [131 T S =
(S,E,.T,S;,~), where S is a non-empty se1 (:if srates, E is a
set of events, T C S x E x S is a transitiori ,relalion, and si!,
is an initial state. The elements of T are called the fmnsi-
tions of TS and will be often denoted by s 4 s’ instead of
(s, e, s‘) .

State Graphs are binary interpreted transition systems:
every state is assigned a binary vector of signal values in
the specified circuit; every.event is interpreted as, a risin,g
(a+) or falling (a-) transition of a si nal a. Notation a* is
used if one is not specific about the firection of the signal
transition. The set of signals of an. SG is called X = I U 0,
where I and 0 denote the set of input ancl output signals
respectively.

A labeling function v : S + (0, I}” assigns a vector of
signal values to each state (n = 1x1). We will call v , , (s) the
value of signal c1 in state s. An SG is consisrent if rising

refer to [9] for a eneral tutorial on Petrj nets. c: dzy transi-

324

x

d

(h)

M
(U)

Fig. 1: (a) Petri net, (b) Transition System.

(d) (d (10

Fig. 2: (a) STG for the xyz example, (b,e) SGs with timing
domains, (c,d,e) Circuits.

and falling transitions alternate for every signal on any path
in the SG. An example of a TS and a SG are given in
Figure 1 .(b) and Figure 2.(b), correspondingly.

2.2 Signal Transition Graph

A Si nal Transition Graph (STG) is a Petri net (PN) in
whick transitions are labeled with rising and falling signal
transitions like in a SG. An example of a PN is shown in
Figure 1 .(a). This PN corresponds to a TS in Figure 1 .(b).
An STG has an associated SG in which each reachable
marking corresponds to a state and each transition between
a pair of markings to an arc labeled with the same event
of the transition. Figure 2.(a) depicts an STG with three
signals, x,y, and z corresponding to the SG in Figure 2.(b).
For simplicity, places with only one input and output tran-
sitions are often omitted in STGs.
2.3 Excitation and quiescent regions
The excitation region of an event a*, denoted by ER(a*), is

the set of states such that s E ER(a*) ($ s 3. The quiescent
region ofa+, denoted by QR(a+), is the set of states such
that s E QR(a+) vo(s) = 1 A s 6 ER(a-). Similarly,
s E QR(a-) ($ v,(s) = 0 A s 6 ER(a+). In Figure 2.(b),
ER(x-) = (101,111) andQR(x-) = (001,011,010).

2.4 Lazy transition systems
The main distinctive feature of a lazy system is that it can
assume a non-zero dela between enabling of transition and
its firing. Due to this, t l e set of states in which a transition
is enabled might be larger than the set of states in which the
transition fires.

Definition 2.1 (Enabling and firing regions) The
enabling region, EnR(a*), ?fa signal transition a* is a the
set ofstutes in which transition U* is enabled. The tiring
region, FR(a*), of a signal transition a* is the set of states

from which a* canfire, i.e. s E FR(a*)

A potentially enabling re ion, PEnR, gives an upper
bound for a set of states whica can be selected as an actual
enabling region in the RT-implementation. The freedom in
choosing the enabling region within the PEnR gives addi-
tional ossibilities for lo ic optimization. It is easy to see
the fofowing correspon%ence between the introduced re-
gions: FR(a*) C EnR(a*) g PEnR(a*). We will defer
discussion of examples until Sections 4.1 -4.2.

Definition 2.2 (Lazy state graph) A trunsition
a* is called lazy ifEnR(a*) # FR(a*). A srute gruph is
called lazy (lazy SG) $at least one transition is lazy ‘.

The correctness properties of SGs can be easily trans-
ferred onto lazy SGs. A lazy SG is consistent, determinis-
tic and commutative if the underlying SG has these pro er
ties. Persistenc property must be generalized for enab&&,
and firings as dscussed In Section 2.8.

2.5 Timing assumptions
Timing assumptions could be conservativcl defined in the
form telling that one event is happening beEbre or after an-
other.
Difference assumptions. A difference assumption b* <
a* (reads b* before a*), involving two potentially concur-
rent events a* and b*, assumes that, due to certain tim-
ing characteristics, whenever b* and a* are both enabled,
b* always fires earlier than a*. In an SG this assump-
tion can be represented by the concurrency reduction of a*
with respect to bt. RT difference assumptions allows one
to eliminate states unreachable in timing domain similar
to state elimination based on absolute timin information
in [10, 111. The are not sufficient however kr expressing
lazy behavior o?signals.

Early enabling assumption. Suppose that transition a*
trig ers the firing of transition b*, i.e. U* and ht are ordered
in t ie specification. Assume that a* can be made “fater”
than b* in the circuit. Then the enabling ofh* can be started
earlier, e.g., from the events triggering a*, and the proper
ordering of a* before b* will still be ensured by the timing
properties of the implementation. In lazy SG this results
in the backward expansion of PEnR(b*) into FR(u*).
Simultaneity assumption. The simultaneity assumption
is a relative notion, which is defined on a set of concurrent
transitions T with respect to a reference transition a*. It
tells that from the point of view of LI* the skew of firings
times of transitions from T is negligible. This assumption
can be viewed as a local fundamentul mode of T with re-
s ect to a and hence as a generalization of burst-mode ma-
cRines [14, 171.. An cxample of the application 01‘ simul-
taneity assumption IS discussed in Section 4.2.

Assumptions relating only input events cannot be au-
tomatically generated from the circuit behavior and can be
provided by the designer or generated from the implemen-
tation of the environment.
2.6 Next-state functions
The implementation of an SG as a logic circuit is done
through the definition of the next-state junction for each
output signal and binary vector. For SGs it is defined as
follows:

3s’ : s 3 s‘.

- otherwise

‘As we are targeted at optimization of output signals ol’ ii circuit iuzy hehaviors
of input signals is not considered.

325

The next-state function f u is correctly defined when
the SG has the CSC property, i.e. there is no pair of
reachable states (s,s‘) such that V (S) = v(s‘) and (s E
ER(a+) U QR(a+) or s’ E ER(a-) U QR(a7)) . Note
that fu is an incomplete1 specified function with a don’t
care (DC) set correspondkg to those binary vectors with-
out any associated state i n the SG. The logic netlist is
speed-independent if SG is deterministic, commutative and
output-persistent[4].

In the SG of Figure 2.(b), the DC set is empty since
all binary vectors have a corresponding state in the SG.
As an example, fx (lOl) = O;f,,(lOl) = fi(lOl) = 1 since
signals x and y are enabled, and z is stable in that state. The
Karnau h maps for the next-state functions are depicted in
Figure !?.(a).

For a lazy SG the next-state functions are defined dif-
ferently:

- otherwise
Note that this definition generally gives more don’t care
vectors that the definition for a SG due to two reasons:

0 More states are unreachable, since timing assump-
tion can reduce concurrency

0 States in (PEnR - FR) do not belong to either FR,
or QR, and hence are included into the DC-set.

As an example, in the lazy SG of Figure 2.(e), f x (101) =
-;fy(101) = fl(101) = 1 as explained in Section 4.2.

The conditions for speed-independent implementability
can be trivially extended to lazy SGs.
2.7 Logic synthesis
From the next-state functions ofa SG, a s eed-independent
circuit can be derived by implementing t ie boolean e ua-
tion of each out ut signal as an atomic complex gate [a or
as a generalize8C-elements [l, 71. For example, a speed-
independent complex gate implementation for the STG in
Figure 2.(a) is a netlist:

Similarly, from the next-state function specification corre-
sponding to a lazy SG, an RT-circuit can be derived in the
form of complex gates or generalized C-elements as illus-
trated by an example in Sections 4.1-4.2.
2.8 Monotonic covers
Not every logic function derived from the definition of
the next-state function satisfies hazard-freedom conditions,
and hence valid. The following definition is related to haz-
ards in the behavior of asynchronous circuits.

Given two sets of states SI and S2 of an SG such that
S2 C SI, we will say that SI is a monotonic cover of S2 if
for each transition s 4 s’:

x=-; y = x + z ; z=x+zy .

(s E SI - S2 + S‘ E SI) A (S E S2 + S’ # s1 - 5’2)
Only monotonic covers of FRs can be selected as EnRs

for hazard-free solutions for logic netlist [3]. If SI =
EnR(a*) and S2 = FR(a*), then (1) no disabling of a* is
possible and (2) there are no transitions from FR(a*) to
EnR(a*) - FR(a*), i.e., no disabling of firings for a* is
possible either. Hence, persistency of a* in the RT imple-
mentation is guaranteed. For example, in the SG of Fig-
ure 2.(b), the set { 101,110,111) is a monotonic cover of
ER(x-). However, the set { 100,101,111) is not, since the
transition 100 -% 110 violates the conditions for mono-
tonicity.

3 Automatic generation of relative timing as-
sumptions

3.1 Ordering relations
Let TS = (S, T,E,so) be a transition system. Assume that
every event in E corresponds to a single connected excita-
tion region.

Definition 3.1 (Conflict) An eventel E E‘ disables another
event e2 E E i f 3sl 3 s2 such that SI E ER(e2) and s2 #
ER(e2). Two events el,e2 E E are in direct conflict i fel
disables e2 or e2 disables el.

Definition 3.2 (Concurrency) Two events e l , e2 E E ure
concurrent (denoted by el 11 e2) if they ,jbrm a .state dia-
mond, i.e.

1. ER(e1) n ER(e2) # 0,
2. Vs E ER(e1) n ER(e2) : (s 1 S I) E T A (s 7 s2) E

T =+ 3x3 E S : (SI 1 3 3) E T A (~ 2 3 . ~ 3) E T .

Definition 3.3 (Trigger) An event el E E triggers another
event e2 E E (denoted by el -+ e2) if 3.~1 3 s2 such that
SI # ER(e2) and s2 E ER(e2).

Definition 3.4 (Enabled before) Let e l , 9 E E be two
concurrent events. el can be enabled betore e2 (denoted
by el ae2) $31 + $2 such thatsj E ER((.[) - ER(e2) and
s2 E ER(e1) n ER(e2).

Definition 3.5 (Enabled simu1taneously:l Let e I e? E E
be two concurrent rvents. e l und e? can he ennbled SI-
multaneously (denoted by elOe2) Lf I s [+ s 2 such that
SI # ER(e1) U ER(e2) and s2 E ER(el) nER(p2) .

Definition 3.4 can be extended to sets of events as fol-
lows.

Definition 3.6 (Enabled before a set of events) Let e E E
be an event pairwise concurrent with all the events in the
set X = {el, . . . ,e,,) c E. e can be enabled before X (de-

noted by e ax) i f 3 1 4 s:! such that SI E ER(e) - ER(X) .
s2 E E R (e) n E R (X) ande’eX, where ER(X) = ER(e1)U
... U ER(e,,).

Figure 1.b depicts the transition system derived from
the Petri net of Figure 1.a. The following facts can be de-
rived using the definitions above: -.(a 11 b), c 11 ,f, c a f
, cOe, etc. Event d cannot he enabled before { e , f } ,
but can be enabled before { e , f , g) since: there is a tran-
sition s9 3 s19 such that s9 E ER(d) - E R ({ e , f , g }) , $19 E

3.2 Delay model
A delay model for events presented in this section gives an
in ormal intuitive motivation for the automatic generation
o f timing assumptions. This model refers to the delay of
the events in the 7s. The delay of an event is defined as
the difference between its enabling time and its firing time.
Three types of events are considered:
Non-input events: its delay is in the interval [1 -‘E, 1 + E]

Fast input events: its delay is in the interval (I + E , -)
Slow input events: its delay is in the interval [A,-)

The synthesis approach also assumes (hat (I) the delay
of a gate implementing a non-input event can be lengthened
by delay padding or transistor sizing, (2) the delay of two
gates can always be made longer than the delay of one gate.

n ER({e , f ,g)> and h # { e , f , g l .

326

Hence, one can assume that E < 1/3, (3) the circuit will
never take longer than A time units (minimum delay of a
slow input event) in becoming stable from any state of the
system and a quiescent environment.

The previous assumptions on the timing behavior of the
circuit can be translated into assumptions on the firing order
of the events.
3.3 Rules for deriving timing assumptions
We present rules for deriving timing assumptions in the fol-
lowing format: (1) ordering relations that must be satisfied
in a (Lazy) SG for a rule to be applied, (2 automatic timing

cation of a rule based on the above delay model.

3.3.1 Assumptions between non-input events

The following rules can be applied for deriving timing as-
sumptions between non-input events, el ,e2,e3 E E :

assumption that can be generated, and (4) informal justifi-

I. Event enabled before another event.
Orderingrelations: (e l 11 e2)A(el a e z) A (e z f i e l) A (e l (bel).
Difference timing assumption: el fires before e2
Delay assumptions: one gate shorter than two gates.

11. Events simultaneously enabled.
Ordering relations: (el 11 e?) A (etoez) A (e2 fier).
Difference timing assumption: el fires before e2
Delay assumptions: delay of e2 longer than delay of el.

111. Event triggered by events simultaneously enabled.
Ordering relations: (el 11 e2) A (el $e2) A (e2 $cl) A

Simultaneity timing assumption: el and e2 simultaneous wrt e j .
Delay assumptions: one gate shorter than two gates.

IV. Early (speculative) enabling for ordered events.
Ordering relations: (el --+ e2).
Early enabling timing assumption: el fires before e2 (but e2 can be

Delay assumptions: delay of e l shorter than delay of ez.

[(CI * e ,) v (e2 * en)].

enabled concurrently with e l) .

Let us illustrate the previous cases with the example of
Figure 1 assuming that all events are non-input. Timing as-
sumptions of type I can be derived for the pairs of events
(c, f) , (c ,g) and (e,d), where the first element of the pair is
assumed to fire before the second. Timing assumptions of
type I1 can be applied to the pairs (b,h) and (c ,e) . Timing
assumptions of type 111 can be applied, e.g., to the events
triggered by the pair (b ,h) that triggers the events c, e and
g. Timing assumptions of type IV can be applied, e.g., to
the event d triggered by the event c. If this assumption ap-
plies, then potential enabling region for d includes states
(s2,~5,s8,s12,s15,sl8,~2l} as don’t care states for the
values of the next state function for signal d in addition to
the originally present states (s3, s6, s9, s 13, sl6, sl9, s22).

3.3.2 Assumptions between non-input and input

Assume that el e2 E E are a non-input and an input event
respectively and they are concurrent.

events

V. Input not enabled before non-input event.
Ordering relations: (el 11 e2) A e2 f ie] .
Difference timing assumption: el fires before e2.

This assumption covers the ones of ty e I and I1 for the
case in which e2 is an input event. The ielay assumption
used in this case states that the response time of the envi-
ronment will always be longer than the delay of one gate.

3.3.3 Assumptions between non-input events and slow
input events

Assume that e E E is a slow input event, X = {el, . . . ,e,,} C
E is a set of non-input events and e is pairwise concurrent
with all the events in X.

Ordering relations: (Ve; E X : e 11 e;) A e fix.
Difference timing assumptions: X fires before e .
Delay assumptions: delay of slow input event longer than A (delay

of stabilizing the circuit under a quiescent environment).

To illustrate the meaning of this timing assumption we
will consider that h is an input event and c l is a slow input
event in the example of Figure 1 . The rest of events are
non-input. After firing the events a, b and c a state i n which
d, e and h are enabled is reached (state s3). At this point
it can be assumed that e and f will fire before d (two gate
delays vs. slow environment). However, no assumptions
can be made about the firing order between d and g since g
is preceded by an input event (h) for which no upper bound
on its delay can be assumed. In case h would be a non-input
event, d would be assumed to fire before h and g also.

4 Backannotation of timing constraints
After logic synthesis, the validity of the tiiiiing assumptions
must be verified or validated to ensure the correct I’unction
of the circuit. However, the circuit may he correct for a set
of states larger than the one defined by the time<! d<)main,
which,can be obtained by a set of less stringent timing as-
sumptions. In other words, some of the timing assump-
tions are redundant for a particular logic synthesis solution,
while some other can be relaxed. This section attempts to
answer the following question:

Can we derive a minimal set of timir1.g assump-
tions sufJicient for a circuit to be correct.?

This set of timing assumptions backannotated for a
$,en logic synthesis solution is called timing constraints.

iming assumptions (both manual and auroniatic) are part
of the specification and provide additional freedom for
logic synthesis, while timing constraints i s a part o f the im-
plementation, since they constitute requiretnenh to he inet
sufJlcient for a particular netlist solution to be valid.

4.1 Example 1
Let us analyze the example in Figure 2. The shadowed
states in SG of Figure 2.(b) correspond to the timed domain
determined by the timing assumptions

Under these assumptions, lo ic synthesis can be erformed
by considering the states 1 1% and 00 I unreachagle, i.e. in
the don’t care set of the logic functions for all signals x,y,z.

The circuits of Figures 2.(c) and 2 4 4 have a correct
behavior under the previous assumptions. Looking at the
circuit of Figure 2.(c) we observe that:

0 The gates x = z + Xv and = x + z ;ire corrcct imple-
mentations for the whole untiined domain.

0 The gate z = .I- is a correct impleinentation for all
the states except for 001. In this state .Y = 0 and
z- should have been enabled accc!rdin 7 to the next
state function of the implementation, k u i i t is not
enabled in this state according to the original state
graph specification.

Thus, even the circuit may have been obtained using
the two previous assumptions, only one relative timing con-
straint y+ < x- must be ensured for the circuit to he cor-
rect. In general, each ate of the circuit is correct for a
subset of the untimed &main which is also a superset <)f
the timed domain. The circuit is correct for those states in
which all gates are correct.

z + < y + and y + < x -

__.

327

zoo 01 11 10

O I O O O
I l O O l m
v z o o 01 11 10
X

0

1

zoo 01 11 10
O O I I O

1 1 1 1 1 m
zoo 01 11 10

0 0 1 1 0

1 1 1 1 1 m
.Lvzoo 01 11 10

.Lvzoo 01 I 1 10

zoo 01 11 10 ..TI
1 1 1 1 1 --

LEGEND:
@j

~ Specificutinn global DC - Iiicul DC

j ~inpiementatiiin: /‘h . required
‘-I liniinr consintints r e ~ u e ~ l l n

@ -concurrency ;;uglcha6le

..................... ^.........______......................._....................I’

Fig. 3: Next state functions for q l z example: (a) Original
untimed specification; (b) Specification for RT assumptions
“z+ < y+ and y+ < x-”; (c,d)Im lementations from Fig-
ures 2.(c,d); (e) Specification for kT assumption :‘y+,z+
simultaneous with respect to x-”; (f) Implementatioyfpm
Figure 2.(f).

4.2 Example2
Let us consider the same example under a simultaneity
assum tion “x+ and y+ are simultaneous with respect to
x-”. finder this assumption state 001 is unreachable and
becomes a don’t care for all signals. In addition states 101
and 1 10 becomes don’t cares for signal x, since both belong
to the potential EnR(x-) according to the semantics of
the simultaneity assumption. Only one timing constraints,
z+ < x - , is sufficient for the circuit in Figure 2.(f) to be
correct. Gate x = j j is not enabled in 101, hence concur-
rency is reduced in this state with respect to the original
untimed SG and state 001 becomes unreachable under any
gate delays. State 110 on the contrary corres onds to the
concurrency expansion for enabling of x- . &is enabling
is lazy since 110 E EnR(x-) A 110 $! FR(x-).

Figure 3 shows Karnaugh maps for the next state fun-
stions of signals x , y , and z for specifications and imple-
mentations corresponding to the exam les above. A le end
shows that timin assum tions p rov ig two types of i on?
care vectors in R? spedigations: global don’t cares corre-
sponding to states unreachable due to timing assumptions,
and local don’t cares that differ for different signals. In the
RT implementations some states become unreachable due
to untimed concurrency reduction and therefore discrepan-
cies in the corresponding values of the next state functions
compared with the original untimed specification can be ig-
nored; some discrepancies corresponds to concurrency re-
duction (disabling of signal transitions without persistency
violation), and finally, other discrepancies correspond to
lazy enabling and require timing constraints for correct cir-
cuit behavior.

4.3 Correctness of RT circuit
Let S be an original uiitimed SG with a finite set of reach-
able states U and initial state so. Lct G be il circuit
netlist implementing S under timing constraints C. A pair
< G,C > is called a relative timin.g circuit (RT circuit). It
defines a lazy SG, L<G,c>, with a set o f reachable states
UL. The RT-circuit implementation can contain mo!e si
nals than the original specification S if some state sign&
are inserted for resolving state conflicts. L,et us assume that
S has n signals and L has k ,k 2 n, signals. Then for com-
paring states one needs to use a homomor.hism h : Bk c) B”,
that given an implementation state hider; (k - n) new in-
ternal signals and obtains a specification state. Homo-
morhism, h, is naturally extended to sets of states.

A RT-circuit is said to be correct i f thc following con-
ditions are satisfied:

1. h (2 f ~) U, i.e. no states outside original untimed
domain are reachable by the RT-circuit.

2. All signals persistent in S are also persistent in lazy
SG L<G,c>. All state signals inserted in L<c;,c> are
persistent. Commutativity and dete:rminism are pre-
served.

3. The initial state is preserved with respect to the I/O
interface, i.e., if so E S and do E L<:~;,c> are the ini-
tial states of‘the original SG and the lazy SG corre-
sponding to the implementation, then there is a path
so 3 h(sb) or h(sb) 3 SO in S such that sequence T
contains only events of internal signals, not ohserv-
able by the environment.

4. No events disappear: If ERs(e) # 69, then FR,,(e) #

5. No new deadlock states appear in L<G,c>.
0 A WRL(.)) E E w e)

4.4 Theory for backannotation
For the ease of exposition let us assume that no state sig-
nals are inserted in the RT circtlit, and therefore the number
of si nals stays the same for S and L. We will briefl dis-
c u s s ~ ~ ~ state signal insertion is done in Section 4.8: Let
U be the set of states reachable i n the untimed domain of
a state graph and I E U the set of states reachable under
a set of timing assumptions, inanual - provided by the user
and automatic - derived for synthesis accordincr to thc rules
of Section 3. Let us assume that we have. a ctf-cuit with M
output signals, (1 1 , . . . ,a,,,. Let G = { g a , (X) , ..., gc ,,,, (X)}
(where X is the set of signals) be a set of gates implement-
ing the RT circuit, where g u j (X) denotes the boolean func-
tion implemented by the gate of signal ai.

Reachable states in the untimed domain

Let us call R (G) the set of states reachable in the un-
timed domain for the circuit G. Note that, i n general,
U - X (G) # 0 due to the reduction of concurrency im-
posed by the circuit, and K(G) - U # 0 due to expansion
of concurrency for enablin for lazy transitions. The lat-
ter states are not generate8 hy our procedure since they
must be unreachable in RT domain anyway. The former
states are of interest, since they do not re uiie any tim-
ing constraints (see examples 4.1 and 4.2).\e; us denote
UG = R (G) f l U. UG can be calculated ;IS follows:

1. For each output signal ai, calculate disubled(a;) =
EnRG(ui) A s E ERs(ui)}, i.e. states in {s E U I s

20ur implementation is currently limited by the bounrlrd untimed STGs and
SGs. It can be easily extended to unbounded untimed STGs by making unbounded
(infinitely growing) markings of STGs unreachable in RT domain.

328

Fig. 4: Formulation of the backannotation problem.
(CJ,C~,C~} is the set of timing constraints sufficient for
correctness of RT solution.

which a; was enabled in the untimed domain in SG,
S, but made stable by the circuit.

2. For each output signal a;, remove all arcs s from
the SG for all states s E disabled(aj).

3. Calculate the new set UG = $(G) n U of reachable
states.

States with incorrect behavior

Let us call incorrect(G) c UG the set of states inside UG
that are re uired to be unreachable for the correctness of
the circuit.%'hese states can be calculated as follows:

I . For each output signal a;, calculate incorrect(a;) =
{s E (U - T) 1 s E EnRc(a;) A s E QRs(a ;)) , i.e.
states in which U , was stable i n the untimed domain,
but enabled in the circuit.

2 . incorrect(G) = U G n (Uu, incorrect(ai))

Backannotation: problem formulation

We need a set of constraints that make the states in
incorrect(G) unreachable. A trivial solution to this prob-
lem is to take the complete set of timing assumptions used
for logic synthesis, i.e. those for which I is the set of
reachable states. Our goal, however, is to find the less strin-
gent set of constraints sufficient to make the circuit correct.
Given a set of timing constraints C = {Cl,. . . ,C,)}, we will
call x (C) C U the set of states reachable after applying
C in the untimed domain. In general, the problem can be
formulated as follows (see Figure 4):

Find U set of Constraints C with the largest q(C) such
that

f. I C_ R(C) 2 U-incorrect(G)
2. VS E I : (S E EnRG(ai*) A s 6 ERs(ai*)) + 3aj :

S Y S I A SI E I A (ai* <ai*) E c

The first condition guarantees that no incorrect states
inside U are reachable (constraints Cl,C2 in Figure 4),
whereas the second makes sure that no states outside U
can be reached in the RT circuit (constraint C' in Figure 4).
4.5
Relative timing constraints are defined in terms of firing or-
der of events. Constraining a firing order between a pair of
events makes only sense when they can be enabled simul-
taneously and fire in any order, i.e. when the are concur-
rent. Thus, each timing constraint Ci can be dknoted by an
ordered pair of concurrent events, e.g. Ci = (e j < ek).

Given a constraint Ci = (e,i < ek), we define the set of
arcs disabled(Cj) as

Finding a set of timing constraints

disabled(C;) = { s 3 s' I 3s -+ s1 -+ . . . + s,* :
S I , . . . ,sn-l E ER(ek) A s,~ E ER(ek) n ER(ej)}

order uiireachable
b<d (~ 4 6 7)
b<e {s7)
L<d \4,SS,,7.\8 1
c<e (\7,s8)
d<b [\2,s3}
d<c (s3)
e<b 1 \2,s3,sS.s6)
e<c (b3,s6)

Fi . 5: Example for backannotation with table of unreach-
abfe states for each pair of ordered events.

In particular, the path SI -+ . . . -+ s,, can be empty if
s E ER(ej) n ER(ek). disabled(Ci) is the set of arcs with
label ek that must not fire in order for ej to fire before ek,
i.e. those arcs with source states in which both events are
concurrent or preceding ER(e,j) n ER(ek) inside ER(ek).

Given a set of constraints C = {Cl,. . . ,Cl,}, q(C) is
the set of reachable states after removing the arcs i n

U disabled(Cj)
CjEC

4.6 Example3
Figure 5 shows an example for deriving a set 01' timing
constraints for backannotation. Initially we have U =
{SO,. . . ,s10} and I = {so ,s~ ,s~,s~,s~,s~,sIo}. Let us as-
sume that S6 and s7 are the states in.which the behavior
of the circuit is incorrect. The table in Figure 5 contains
the set of states that become unreachable by reducing the
concurrency between each pair of concurrent events'. For
example, by imposing the order d < 6, the states s2 and s3
become unreachable.

The problem to be solved is the following: find a set of
ordering constraints between pairs of events such that the
new set of reachable states covers 1 and does not intersect
the set of incorrcct states {s6,s7}. Moreover, we want to
maximize the set of reachable states, i.e. to find the less
stringent set of timing constraints.

The roblem can be posed as a coverin.g problem. The
cells of tRe table in bold correspond to those constraints that
do not remove any state from I. The covering problem can
be formulated as follows:

(e < c) A (b < d V b < e)

with the minimum-cost solution C = {e < c,h < e} and

4.7 Solving the covering problem
The covering problem for backannotation does not corre-
spond to a mate covering problem, since the cost 01' the
final solution (number of disabled arcs) is not the sum of
the cost of each constraint.

Currently, petrify uses a greedy approach to solve
the coverin roblem that can be easily im lemented by
s mbolic B%b-based techniques. It mere& consists in
cioosing the constraint that removes the maximum num-
ber of arcs whose destination is in incorrect(G) and that
have not been removed b previous constraints. This pro-
cess is iteratively repeateJunti1 all incorrect states become
unreachable.

$(c) = {SO, SI 9 s2, $4 SS 7 $8 7 SY *ylO}

?For simplicity, unreachable states are wported i n the table for this example. In
general, the analysis must be performed hy tzilctiliiting thi. removed c l i ~ ~ ~ h l i d arcs.
In this particular case, the resulting annlysis is the same.

329

, -t ni.

10. + (C)

11. - I,* n, - ,I+ 10. 11%. rl. n.

; ,,_. ...-.._.-
11-, k * r r . * w rlt ., \..I \,.;r I*

,- .._.__.
(bl

la1

Fig.. 6: (a) FIFO controller, (b) Specification, (c) Specifi-
cation with state encoding signal, (d) RT implementation
with gC elements, (e) Timing constraints sufficient for cor-
rectness.

In some cases, not all the incorrect states can be made
unreachable since the timed state space has been produced
by early enabling some events. In those cases, a similar
iterative rocess is executed to cover those incorrect states
that can \e legalized b early enabling. As an example,
consider the state sg in h g u r e 5. Assume that S6 is incor-
rect since the next-state function indicates that f is enabled
in that state. The state could be made correct by extend-
ing EnR(f) towards S6 and imposing the type-IV constraint
e < f .
4.8 Timing aware state encoding
The problem of state encoding is in inserting state signals
for resolving CSC conflicts. State encoding in our im le
mentation is automatically solved using an extension ofthe
method presented in [4]:

0 Only those encoding conflicts reachable in the RT
domain are considered in the cost function such that
no effort is invested in solving conflicts unreachable
in RT domain, 1.

0 Automatic timing assumptions can be enerated for
inserted state signals using rules from Eection 3 im-

1 ing that the state signals can be implemented as k? logic.

5 Experimental results
5.1 Academic examples
The results for the well-known benchmarks used at
academia are presented in Table 1. Tables l.(a) and l.(b)
present the results for specifications with and with state
coding conjlicts respectively. SI,, SI, and TI represent area
and delay optimization for speed-independent design, and
relative timing results, correspondingly.

For each experiment, area is estimated as the number
of literals of the set and reset networks of generalized C
elements. Delay (response time) is estimated as the aver-
age number of non-input events in the critical path between
the firing of two input events. Com aring the columns SI,
and TI, we observe a reduction of aiout 40% in area. The
reduction in response time is less than 5% if we consider
all events to have a delay of one time unit. However, the
performance improvement is much more pronounced if it
were evaluated with actual delays, given that the logic of
the timed implementation is much simpler. We report this
analysis in Section 5.2.
5.2 Example: a FIFO controller
In this section we trace the development of a FIFO cell
(specified in Figures 6.(a),(b)), a simplified abstraction of
a. part of the RAPPID design. The modules at the left and
right sides of the controller have a similar speed as the con-
troller itself. In fact, these events are generated by. twin
modules connected at each side. For this reason, it IS not
wise to assume that the input events are slow.

We simulated four FIFOs using different implementa-
tions of the FIFO cell and measured a cycle time of the

.. res U e
SI reshuWed 7.6

Table 2: Performance comparison of FIFOs normalized to
a fan-out four inverter delay
FIFO and a forward latency (an average event propagation
time from li to ro) of a cell. The results normalized to the
delay of an inverter with fan-out four i n a given technology
are shown in Table 2 .

For the first relative timing FIFO (reported in the first
row) we use a RT circuit derived by petri f y using on1
automatic timing assumptions presented in .Figures 6.(e).
proper transistor sizin is required for correct operation of
the circuit. No user-cfefined assumptions on the environ-
ment are used. The timing analysis explained in Section 3
has been applied to the s ecification, ,and state encoding
has been automatically soyved as desribed in Section 4.8.
With this strategy, only one additional state signal, x, was
required as shown i n Figure 6.(c)'. Therc are some inter-
esting aspects of this implementation:

0 The state signal x is is switching concurrcntly with
other activity in the circuit.This is a result olthe state
encoding strategy of petrify that attempts to in-
crease the concurrency of new state signals until they
disappear from the cKitical paths according to the de-
lay model explained in Section 3.

0 The response time of the circuit with regard to the
environment is only one event (two inverters), i.e. as
soon as an output event is enabled it fires without
requiring the firing of any other internal event.

Finally, the implementation of Figure 6.(d) requires some
timing constraints to be correct. After applying the method
proposed in Section 4, five timing constraints between pairs
of concurrent events have been derived that are suficient
for the circuit to be correct. They are graphically repre-
sented in Figure 6.(e).

The constraints I,,+ < x- and rfJ+ < .r- are noi inde-
pendent. Since the implementation of x is x = 1,, + rfJ, it
is always guaranteed that one of them will hold, whereas
the other must be ensured. Sjnce ff!+ and rb+ are enabled
simultaneously, these constraints will alwa 's hold if the de-
lay of two gates is longer than the delay orone gate. From
the rest of constraints, the most stringent is x- < r;+. In
the worst case, both rj+ and x- will be enabled simultane-
ousl by rcJ+. In this case, it is required the delay ofx- to
be siorter than the delay of ri+ (trom thc enviroment),.In
case of a very fast environment, i t can be fiarced by ditter-
ent techniques, e.g. transistor sizing or delay padding for
gate x.

For the second FIFO (the second row of the table) we
derived a speed-independent circuit using petrify in the
mode of automatic concurrenc reduction 1151 without con-
straining U 0 concurrency of d e cell. Because of concur-
rency reduction only one state si nal was required [4] like
in the case of the automatic RT sofution. However, the state
signal was on a critical cycle and the implementation of lo
and ro contained additional p-transistors, which made the
speed-independent circuit 20-30% slower than the RT one.

5.3 RAPPID control circuits
In this section we com are manually optimized RT control
circuits used for RAPPYD [16, 151 with thwe derived auto-
matically with petrify. For cach example, Table 3, re-
ports: manual (obtained by applying relative timing man-
ually), automat ic (obtained automatically by petrify

~~ ~~ ~~ ~~ ~

4 ~ i s new speciticution is iitit strictly ii Prtri net. siiice the iircs troni /,,+ iind v,,+
to the OR place indicate an or-causuliry relation: L- is triggered by llic tirst event
to fire, whereas the token produced by the liitesl event is iiiirilicilly cwsiinicd. An
equivalent Petri Net is n bit more cumbersome and is oniittetl for simplicity.

330

circuit
a .&it
a&-outbound
master-read

I mmu0 I 33 47 20 I 2.31 1.38 1.38 I 3 3 0 I

Area Response time State signa
SI, SI, TI SI,, Sit TI SI,, SI, $1

ii $ i: % !::: !:!:
65 79 45 2.29 1.33 1.29 7 7 3

mmu I

nak-aa

Sbuf-Wdd-ctl
seq3
seq-mix
vmebus
Total

nowick 18 19 i.50 i 3 i.00 1 ram-read-sbuf I 30 26 5 I 1.10 1.00 1.00 I ! 6 I sbuf-ram-write 24 44 24 1.63 1.00 1.00 2 2 1
18 21 16 2.00 1.50 1.50 1 1 I
18 22 18 1.50 1.00 1.00 2 2 2
23 28 24 1.40 1.20 1.10 2 2 2
22 33 17 2.29 1.57 1.57 I I 0

424 3 5 0 - - - ~ - 3 2 3 - ~ ~

Design

circuit
chu 133
chu 1 50
converta
ebergen
half
hazard
inslatch
trimos-send
var 1
vbe5b
vbefic
vbe6a
vbel0b
wrdatab

Area (# tr.) Worsl case Average case
response time response time

8 8
24 20
30 21
18 8
13 12
IO I O
18 24
32 26
35 33

:E-;
Bvte-cntr

Table 1 : Experimental results: specifications without CSC (a) and with CSC (b).

m a s m a s m a s

32 27 71 4.0 3.0 5.0 8.0 2.5 4.1
:: :: 2 9:: 3:: ;:: ::: ;:: :::

f i g u n i t 11 31 47 I12 I 4.0 4.0 8.0 I 40 2.7 6 9
S u m m q (1 101 1 1 1 275 . I . . 7 1 29 . 775 . . I 7 0 2 4 . - 56

Table 3: Com arison for two generic representative exam-
ples (fifo) a n t two control circuits from RAPPID (byte-
control, tag-unit). Response time is measured in gate de-
lays, area in transistors. m: manual, a: automatic, s: speed-
independent.

and applying relative timing) and speed- independent
(obtained automatically by petrify without concurrency
reduction).

From the table it can be deduced that automatic solu-
tions are uite comparable with manually optimized RT
designs. ?he improvement in response time by applying
relative timing is about a factor of 2, substantially better
than for the examples of Table 1. This is because the de-
signers of these circuits had a stronger interaction with the
tool and provided affressive timing assumptions on the en-
vironment that cou

6 Conclusions
The method for automatic generation of timing assump-
tions presented in this paper allows the designer to concen-
trate on defining those timing assumptions that can only
be deduced from a detailed knowledge of the environ-
ment. The techni ue for automatic back-annotation of tim-
ing constraints rgative to a particular RT circuit provides
necessary timing information for the down-stream tools.
Timin -aware state encoding allows arealdelay optimiza-
tion O ~ R T circuits.

Relative timin presents a “midd1e;ground” between
clocked and asyncaronous circuits, and is a fertile area for
CAD development. Both burst-mode[14, 171 and speed-
independent specifications are at opposite extremes of a
more general class of relative timing specifications.
Ackowledgments We would like to thank Shai Rotem,

Lucian0 Lava no, Alex Kondratyev and Alexandre
Yakovlev for tieir contributions in motivating this work
and developing the theory for synthesis with relative tim-
ing.

References

not be derived automatically.

[I] S. Bums. General conditions for the decomposition of state holding
elements. In Internutioncif Symposium on Advunced Reseurch in
Asynchrfiniius Circuits ctnd Systems, Aizu, Jupun, March 1996.

[2] W S. Coates J K Lexau I. W Jones S M. Fairbanks and I E
Sutherland. A fifo data swhch design eiperiment. In Pro;. Inter&

fionul Sympfisium on Advunced Reseurch in A.svtrchrnnous Circuits
undSysfems, pages 4-17, 1998.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
A. Taubin, and A. Yakovlev. Lazy transition systems: application to
timing optimization of asynchronous circuits. I n Proceedinxs of’the
Internutbtu11 Conference on Computer-Aided Design, p g e s 324-
331, November 1998.

[4] J. Cortadella. M. Kishinevsky, A. Kondratyov, L. Lavatgiio, and
A. Yakovlev. A region-based theory for state rtssignment i n speed-
independent circuits. lE&& Trcinrctctiorw on Conputer-Aided De-
sign, 16(8):793-8 12, August 1997.

[SI J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavigno, and
A. Yakovlev. Automatic synthesis and optiinization of partially
specified asynchronous systems. I n DAC, pages 100-1 IS, June
1999.

[6] Henrik Hulgaard and Steven M. Burns. Hounded delay timing anal-
ysis of a class of CSP programs with choice. I n Pro[:. Interneitioncd
Sympcisium on Advunced Reseerrch in A.synchr~onous Circuifs und
Systems, pages 2-1 I , November 1994.

[7] Alain J . Martin. Synthesis of asynchronous VLSI circuits. In
J. Straunstrup, editor, Formctl Methods .fiir VLSI De.vign, chapter 6,
pages 237-283. North-Holland, 1990.

[8] D. E. Muller and W. C. Bartky. A theory of asynchronous circuits.
In Annuls of’ ComprtfinR Luborcitory of’ Hctrvcid Univemity, pages
204-243, 1959.

[9] T. Murata. Petri Nets: Properties, analysis and applications. Pro-
ceedings ofthe IEEE, pages 541-580, April 1989.

[IO] Chris J. Myers. Crnnputer-Aided Synrhesis u r d \/c.r$ccrfion c!fGerre-
Level Timed Cireuifs. PhD thesis, Depl. of Elec. Eng., Stanford Uni-
versity, October 1995.

[I I] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asyn-
chronous circuits. /&EE Tretnsuc/ions on VLSI Sy.sietns. I(2): 106-
119, June 1993.

[121 Radu Negulescu and Ad Peters . Verification o f speed-dependences
in single-rail handshake circuits. In Proc. Interncttiorzul S~wiposium
on Advunced Research in Asynchronous Circu/ts und Sy.riems, pages
159-170, 1998.

[I31 M. Nielsen, G. Rozenberg, and P.S. Thiaganjan. Elementary transi-
tion systems. Theomticuf Computer Science, 963-33, 1992.

[141 S.M. Nowick. Aurri/nutic Synthe.ris of Bursr-Modc As,vnchmnous
Contrdfers. PhD thesis, Stanford University, Depi. of Computer
Science, 1993.

[IS] S. Rotem, K. S. Stevens, R. Ginosar, P. A. Seerel. C. J . Myers.
K. Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev. RAPPID:
An asynchronous instruction length drcodcr. 111 Proc. ASYNC. April
1999.

[I61 K. S. Stevens, S . Rotem, and R. Ginosar. Relalive timing. I n Proc.
ASYNC, April 1999.

[I71 Kenneth Yi Yun. Synthesis c~f’Asyrrclirnnous Confrollersfiw Hetero-
geneous Systems. PhD thesis, Stanford University, August 1994.

331

