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Abstract—Latex presents high variability due to inherent differences among varieties from different 

countries, producers or crop seasonality. Natural rubber formulations from natural latex, to be used in 

insulating materials intended for high-voltage applications, require a wide variety of compounding and 

multitude of industrial processes. These aspects make it very difficult ensuring the same dielectric properties 

of the final product. At manufacturing level, it is very important to apply strict control processes to ensure 

that the final product fulfills all quality specifications. In this paper, a promising approach was applied to 

automatically identify natural rubber samples with suitable dielectric behavior from those with unsuitable 

dielectric behavior. This approach is based on the study of FTIR spectral data by applying suitable 

multivariable methods, such as principal component analysis, canonical variate analysis and k-nearest 

neighbors. The accurate and fast results reported in this work prove the suitability and potential of the 

proposed approach. 

 

Keywords—Natural rubber, multivariable methods, infrared spectroscopy, identification, chemometrics, 

high-voltage. 

1. INTRODUCTION 
Natural rubber (NR) is an elastomeric material derived from latex, which currently is widely applied 

because of its appealing properties once vulcanized, including high elasticity, low-temperature flexibility, 

fatigue and tearing resistance, building tack or low heat buildup, among others. These properties confer NR 

distinctive advantages over different types of synthetic rubbers in numerous applications [1].  

Vulcanized NR is broadly used to manufacture a wide range of products, including tires, adhesives, 

protective thin films and coatings, joints, medium- and high-voltage gloves, surgical gloves, or as 

suspension elements in civil structures [2–4]. However, NR used in such applications require extensive 

compounding to achieve its commercial grade [5,6]. NR recipes are usually based on different formulations 

[7] and processing [8], which heavily determine the properties of the final product. The formulations 

include elements such as elastomeric polymers, fillers, plasticizers, antidegradants, processing and 

vulcanizing agents, or vulcanization accelerators and activators, among others [2]. These additives include 

polymeric and inorganic materials, being solid at room temperature [9]. 

Titanium dioxide (TiO2) and zinc oxide (ZnO) are the most cost effective and used as inorganic reinforcing 

fillers added to unvulcanized latex [9]. ZnO improves the heat resistance of the vulcanized material while 
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acting as a crosslinking agent, since it activates the rate of sulfur cure, jointly with the use of accelerators 

[10,11]. TiO2 is added to increase protection against UV radiation.  

Insulating materials intended for high-voltage applications require enhanced dielectric properties [12], 

including improved voltage at breakdown, reduced leakage current or high reliability [13]. In particular, when 

such products are used in life-line maintenance works under live conditions, safety issues are given top 

priority. Live-line maintenance involve different practices which become essential to reduce electrical 

failure occurrence, while ensuring power system availability and reliability [14]. Therefore, by applying 

suitable safety practices and protections, including NR safety elements, workers’ exposure against current 

paths can be effectively minimized and prevented. Improved safety levels require minimizing the amount 

of leakage current through the insulation [15]. To this end, the rubber industry is developing rubber 

composite materials with enhanced dielectric and mechanical properties. NR compounds are widely applied 

to manufacture protective barriers, including insulating gloves and sleeves, insulating boots, flexible 

coverings, or blankets, among others [16].  

NR, once suitably compounded and cured, results in a thermostable material with excellent dielectric and 

mechanical properties. However, both the dielectric and mechanical properties of NR compounds are 

greatly influenced by the specific compounding formulation. Significant work is being done to improve the 

dielectric behavior of NR based protective elements.  

The dielectric behavior of composite materials depends on the volume fraction, size and shape of the 

compounding elements or fillers, or processing methods, among others [17]. Polymeric composites with 

structural inhomogeneity present decreased dielectric performance [18]. Solid fillers already present within the 

polymeric matrix tend to distort the local electric field, this distortion depending on the size of such particles. 

The breakdown electric field strength in NR composites depends on the mobility and density of field-

dependent charge carriers, and the trapping probability of such charge carriers. Depending on 

electromechanical and thermal conditions, dielectric breakdown can occur at reduced electric field strength 

[19].  

With the same volume fraction of fillers, the local electric field strength tends to enhance with the size of the 

particles. Agglomerates inside the polymeric matrix  generates conductive pathways, which increase porosity, 

leakage current through electronic and moving charges conduction, electrical conductivity [12] and dielectric 

loss [18,20]. Consequently, dielectric properties are boosted when homogenizing the microstructure 

[9,13,18,20,21]. Therefore, the addition of well dispersed particles of reduced size tends to improve the 

dielectric performance of the polymer composite [22]. This improvement owes to the greater superficial area of 

the small aggregates, and the slower dynamics of the polymer chains wrapping the small particles [23].  

Insulating NR formulations intended for high-voltage applications have to withstand different standard 
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chemical, mechanical and electrical tests, the latter ones providing relevant information about the electrical 

behavior of the samples. However electrical tests are usually carried out once the product is fully 

manufactured, and thus, if the samples do not pass such tests, nothing can be done to remediate this 

situation. Therefore, simple and nondestructive intermediate tests providing insight about the electrical 

behavior of the samples, which can be performed during the manufacturing process, are highly appealing. 

By this way, any problem occurring during the manufacturing process can be solved.  

Few instrumental methods are available to measure electrical properties of polymer samples. Contact 

methods cannot be applied due to the deformation induced by the probes [7]. Methods requiring the value 

of some physical properties such as the dielectric constant, the refractive index or the sound can lead to 

substantial errors, because of the need for accurate parameter estimation. BDS (broadband dielectric 

spectroscopy) has been applied to study molecular and collective fluctuations, phase transitions, or 

polarization and charge effects in semi-crystalline [24,25], amorphous [8,26], and elastomeric composites 

[27,28]. Because of the non-contact nature, optical techniques often present better performance [7]. 

Although there are analytical techniques to determine the degree of curing and the possible interactions of 

the compounding elements, these chemical methods are usually time-consuming and destructive. 

Therefore, infrared Fourier transform spectroscopy (FTIR) using the total attenuated reflection (ATR) 

configuration, can be very useful to identify possible changes of specific functional chemical groups in the 

NR samples [29]. The non-destructive nature of ATR-FTIR, makes it suitable to be applied in process 

control for industrial applications. FTIR is among the most applied infrared techniques, because it offers 

high resolution spectra [30]. FTIR has been applied in the rubber industry for determining the content of 

vulcanizing accelerators and antioxidants [31] or to identify structural changes when applying a mechanico-

chemical devulcanization process [32]. In [33] it is proved that changes in the chemical structure of NR are 

reflected in the FTIR spectrum. The position and intensity of the characteristic bands in the FTIR spectrum 

is directly related to the nature and proportion of the functional groups in the compound. Thus, the FTIR 

spectrum is affected by any structural change in the sample [34], so a measure of these changes can provide 

information of the final properties of the manufactured material. In other works [35] this technique has 

been used to identify samples based on the degree of vulcanization. Having into account the possibilities 

offered by this technique, in this study FTIR is selected to identify manufactured samples with a suitable 

dielectric properties from those that do not meet the required specifications. 

The proposed approach combines an instrumental measurement method, the ATR-FTIR spectrometer, and 

specific data processing to discriminate NR samples with suitable and unsuitable dielectric behavior for 

high-voltage applications. It is proved that this measurement system allows a fast, non-destructive and 

accurate discrimination of such samples. Appealing advantages of the approach proposed in this work 
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comprise no consumption of chemical products, no need of sample pre-treatment, laboratory grade facilities 

or a qualified laboratory technician. 

As reported in the technical literature, mathematical multivariable methods are often applied to FTIR 

spectral data, since this approach allows identifying minor differences between spectra [36]. The 

simultaneous application of PCA (principal components analysis) together with CVA (canonical variate 

analysis) has proved the accuracy and applicability of this approach in different areas, including  testing of 

food authenticity, paper identification, or in the rubber industry among others [37–41]. This works is aimed 

to evaluate the applicability of PCA jointly with CVA to transform FTIR spectral data, in order to highlight 

structural changes in natural rubber composites used as insulating medium for high-voltage applications, 

which are related to the dielectric behaviour.  

Since NR is derived from natural latex, which exhibits high variability between samples of different 

countries, producers and crops, its processing is very complex. In addition, the rich compounding required 

and the multitude of industrial processes applied under different ambient conditions, makes it difficult to 

ensure the same electrical and mechanical properties of the final product. Therefore, it is of paramount 

importance to apply strict control processes at industrial level, to ensure that the final product fulfills all 

specifications imposed by the international standards and costumers. This paper is focused in this direction, 

since it aims to identify vulcanized NR samples with suitable dielectric behavior (SDB) from those with 

unsuitable dielectric behavior (UDB), so that quality control methods can be simplified and expedited. In 

the case that samples of a particular production lot are identified as UDB, immediate corrective actions can 

be taken at production level, to minimize materials and economic losses. Therefore, due to the high 

variability of vulcanized NR samples, this results in a challenging problem, because of the heterogeneity 

and complexity of the analyzed data sets. It is worth noting that the fast and nondestructive approach 

proposed in this paper offers several advantages, since it does not require sample pretreatment or 

consumption of chemicals, thus being economically attractive because it avoids the need of laboratory 

grade facilities and a qualified laboratory technician.  

2. EXPERIMENTAL 
2.1 Materials 

The natural latex from which the samples analyzed in this work were prepared, is a colloidal suspension, 

which was doubly centrifuged to rise the concentration of rubber particles. It was bought from diverse 

suppliers, mainly from Malaysia and Brazil, and was applied as received. Fillers and other ingredients 

added in the formulations were also of commercial grade. They were prepared by using commercial grade 

fillers and other ingredients and reagents. Titanium dioxide (TiO2) and zinc oxide (ZnO) were acquired 

from Sigma Aldrich Spain. Reagent grade sulfur powder was used as vulcanizing agent, whereas ZDBC 



 
 

5 

(zinc dibuthyl dithiocarbamate) was applied as vulcanizing accelerator.  

Typical formulations of the NR samples analyzed in this paper have expressed in % phr (mass parts per 

hundred of rubber) are as follows, ZnO (8.0% phr), TiO2 (5.0% phr), antioxidant (8.0% phr), accelerator 

(6.0% phr), sulfur (6.0% phr), others fillers (7.0% phr) [9].  

The manufacturing process of solid rubber films includes two main steps. Liquid NR was first masticated 

for 5 min and afterwards ZnO is added and mixed for 2 min. Then, the mixture is further mixed with stearic 

acid during 2 min. TiO2 is then added into the mixing chamber after the pre-sonication and dispersion 

explained before. Next, the mixture is dumped out and ZDBC (zinc dibutyldithiocarbamate) is added and 

mixed during 2 min. Then, sulfur is incorporated and further mixed for 2 min. Next, the emulsion is stirred 

during 30 min before dipping tube tests into the liquid suspension. Then, the tubular shaped specimens are 

introduced in an oven to pre-vulcanize for 3h at 76ºC, thus obtaining solid specimens. Finally, specimens 

are washed in a distilled water bath, dried, and then cured for 24 h before passing the electrical test.  

The samples analyzed in this work present a high variability, which depends upon several factors, 

including latex origin, environmental conditions, or the conditions of several manufacturing processes, 

among others. Other important factors during the manufacturing stage, are the washing and vulcanization 

processes. The latex origin is an important factor, since NR could present a higher content of minerals or 

non-rubber products, such as proteins, which also affect the electrical properties. During washing, all 

compounds which do not react effectively during the pre-vulcanization process must be eliminated, 

otherwise the final properties can be greatly affected. Environmental conditions greatly impact the final 

properties of NR samples. NR is also sensitive to high temperature, since agglomerates can be generated 

within the material, these heterogeneities greatly affecting the electrical properties. Sample thickness also 

plays an important role on the final dielectric properties, since thicker samples tend to present more 

agglomerates and inhomogeneities. 

Samples were collected samples at different seasons of the year, they include different types of washing 

processes and a broad range of thickness, comprised between 0.75 and 2.9 mm. Since samples were 

collected during one full year, the incoming latex presented diverse origins. This is a challenging problem 

due to the high variability of the samples analyzed. 

The electrical test, which is schematized in Fig 1, consists in introducing the tubular latex samples into 

osmotized water, and measuring the leakage current between the high-voltage electrode, which is placed 

inside the tubular specimen, and the ground electrode. The specimen passes the test if the leakage current is 

below a threshold value. 
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Fig. 1. Electrical test applied to the analyzed NR specimens to measure the leakage current. The specimens that pass the 
electrical are classified as SDB (suitable dielectric behavior), the remaining ones being classified as UDB (unsuitable dielectric 
behavior). 

2.2 Infrared spectroscopy 

Transmittance spectra of the NR samples were acquired by using a PerkinElmer Spectrum One (S/N 

57458) FTIR spectrometer, which included an attenuated total transmittance (ATR) accessory (S/N 

P0DL01101418). Spectral data with a resolution of 1 cm-1 were acquired within the interval 4000–650 

cm−1, at 25±1ºC. Spectra were obtained by averaging 4 scans per sample. 

3. MULTIVARIATE DATA ANALYSIS METHODS   
As operated in this study, raw the ATR-FTIR instrument provides 3351 wavenumbers per spectrum (4000–

650 cm−1 with a resolution of 1 cm-1). This is a large amount of data, so it becomes imperative to apply 

efficient and very fast multivariate methods to solve this problem. To this end, the problem dimensionality 

is reduced, thus concentrating the information that is analytically relevant into a reduced set of inferred 

variables, while removing the random noise included in the raw spectral data. These new variables are the 

latent variables and are calculated by means of weighted combinations of the original ones [36,42]. The 

methods intended for this purpose are called feature extraction methods. Methods intended for feature 

extraction are divided into supervised and unsupervised methods. Supervised methods are more suitable to 

deal with classification problems, since they use class labels for the calibration set, which are based on the 

criterion of an expert user to guide the classification process [40]. 

To calibrate the algorithms it is essential to split the total number of samples into a calibration and a 

prediction set. The calibration set of samples is used to calibrate the mathematical multivariate methods, the 

prediction set being used to test the performance of the mathematical model over samples which were not 

included during the calibration stage. 

Although other multivariate techniques are well suited to identify samples from the spectral information, 
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previous works [35,36,40]  have observed that the combination PCA  (principal components analysis) + 

CVA (canonical variate analysis) + kNN (k nearest neighbor) provides simplicity, a very fast and accurate 

response (in the order of some milliseconds), thus being a reliable and feasible option for this purpose. 

CVA is a supervised feature extraction method intended for dimensionality reduction [43,44] in multi-class 

problems. CVA takes the samples described by the original variables (transmittance at each wavenumber) 

and determines the directions in space boosting the differences between the analyzed data groups [45,46]. 

CVA calculates the non-orthogonal latent variables, known as canonical variates (CVs). There are as many 

CVs as the number of classes minus one. CVA needs data sets with more samples than original variables, 

this being its main weakness. Since ATR-FTIR spectra have 3351 variables, it is unfeasible to deal with 

data sets with a higher number of samples. Consequently, the number of variables must be decreased 

previous to the application of CVA. This dimensionality reduction is carried out by means of the 

unsupervised PCA algorithm [47,48] before application of CVA. PCA converts the original set of 

correlated variables, into a reduced number of orthogonal uncorrelated PCs (principal components), which 

are obtained by linearly combing the original variables. PCA outputs as many PCs as original variables in 

the spectra. PCA ranks the PCs from highest to lowest variance [49], and only retains the first PCs that 

explain a suitable amount of the total variance, so the remaining ones are disregarded to avoid overfitting 

[50]. References [45] and  [46,51] detail the mathematical background of CVA and PCA, respectively.  

Once reduced the dimensionality of the problem by means of the use of the PCA + CVA algorithms, the 

classification process is performed by applying the supervised kNN classifier algorithm. kNN assigns 

unknown incoming samples to their pertinence group according to the majority-voting rule. To this end, for 

each analyzed prediction sample, the kNN algorithm locates the k nearest neighbors within the calibration 

sample set in the space defined by the CVs. Once located, kNN gives k votes to the nearest neighbor’s class 

and k - 1 votes to the class of the second nearest neighbor. This process is repeated until giving one vote to 

the class of the k-th nearest neighbor. Finally, kNN assigns the unknown incoming sample to the most 

voted class [52]. Although the technical literature has explored different values of the parameter k, values 

of k in the range 3-6 are often applied [38,53,54]. kNN generates as many outputs as classes defined in the 

problem, which are normalized in the 0-1 range, indicating the membership level to each class of the 

incoming samples. 

It is worth noting that the FDA algorithm, which is in essence a combination of the CVA algorithm applied 

in this paper jointly with the application of a discriminant function, which is useful for discrimination and 

assumes identical a priori probability for each class, can also be applied to solve this problem [43]. 

However, the kNN algorithm is applied in this paper instead of the discriminant function, since it is one of 

the most effective classifiers [41,55]. 
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A summary of the classification strategy proposed in this paper to classify unknown incoming NR samples 

is shown in Fig. 2.  

It is noted that to validate the results provided by the PCA + CVA + kNN approach, all NR samples were 

electrically tested according to the requirements of the IEC 60903 international standard [56]. These 

leakage current tests are routinely applied for quality control purposes in the production line. 
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Fig. 2. Process applied to classify an unknown incoming sample from the information of the ATR-FTIR spectrum. Electrical tests 
were applied to all samples to determine their electrical behavior according to the IEC 60903 international standard [56]. 

4. RESULTS AND DISCUSSION   
The samples studied were analyzed by means of ATR-FTIR spectroscopy. Fig. 3 shows the ATR-FTIR 
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spectra of two samples of the two analyzed groups, that is, two samples of the SDB group and two more 

samples of the UDB group. 
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Fig. 3. ATR-FTIR transmittance spectra of some samples analyzed in this work.  

Table 1 summarizes the characteristic bands of the NR samples and assigns the corresponding functional 

groups.  

Table 1. Functional groups and wavenumbers of the ATR-FTIR spectra of the insulating NR samples. 

Assignments  Wavenumbers,  (cm-1) Nature of vibration  
-C-H groups 2916, 2846 stretching 

 1541, 1449, 1378 bending 
 833 out-of-plane bending vibrations 

=C-H groups 2957 stretching 
 1656 bending 

Vulcanized NR include -C-H and =C-H bonds. The more vulcanized the NR is, the double C=C bonds tend 

to decrease. The band around 1656 cm-1 characterizes the double bonds C=C. Since it is very small in all 

spectra, it indicates that all analyzed samples are vulcanized.  

From a direct visual analysis of the ATR-FTIR spectra of the two groups of NR samples, no differences can 

be observed in the bands of the functional groups indicated in Table 1. Therefore, to perform a 

classification of incoming unknown samples into one of the two groups for a suitable control and 

supervision of the NR insulating samples, it requires to analyze the spectral information by means of 

appropriate multivariate mathematical methods. To this end, the spectra of all samples are sequentially 

transformed by applying PCA, CVA and finally, the kNN algorithm. By this way each unknown incoming 

sample of the prediction set is assigned to their pertinence classes according to their composition.  
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The two groups or classes of samples analyzed in this work have different dielectric performance because 

of the different chemical structure. It is assumed that these subtle differences are revealed by their ATR-

FTIR spectra.  

This work deals with 78 NR samples, 45 of which exhibit suitable dielectric behavior, whereas the 

remaining ones show inappropriate or unsuitable dielectric behavior. Therefore, the 78 samples were 

divided into two groups or classes, that is, suitable (45 samples) and unsuitable (33 samples). Next, the 

calibration and prediction sets were generated, which include roughly 50% of the NR samples each, which 

were randomly selected. Table 2 shows the number of samples in each set. 

Table 2. NR samples dealt with in this work. 

Data set Number of samples 
Calibration set 40 
Prediction set 38 
SDB (total) 45 
UDB (total) 33 
SDB (Calibration set) 23 
UDB (Calibration set) 17 
SDB (Prediction set) 22 
UDB (Prediction set) 16 
SDB: suitable dielectric behaviour 
UDB: unsuitable dielectric behaviour 

The initial data matrix containing the raw spectral data has 78 rows (samples) and 3351 columns 

(wavenumbers interval).  So the matrix describing the calibration set has 40x3351 data points, whereas the 

matrix defining the prediction set includes 38x3351 elements. The data matrixes described above were 

transformed into their first- and second-derivatives, since this procedure is habitually applied in 

chemometrics [36,57]. Next subsections describe the results attained by means of the initial raw spectral 

data matrixes and those from the first and second derivatives. 

Experimental current leakage tests according to the setup shown in Fig. 1 were carried out in order to 

classify the 78 NR samples as SDB or UDB. Table 3 summarizes the results obtained.  

Table 3. Results of the leakage current tests to classify the NR samples as SDB or UDB 

Maximum thickness (mm)  0.5 mm 1 mm 2.3 mm 2.9 mm 3.6 mm Total 
samples 

Data set        
SDB (Calibration) NoS 2 4 4 7 6 23 
 Current (mA) 8.1 - 11.9 4.2 - 9 7.6 - 9 8.7 – 11.2 8.2 – 11.5  
SDB (Prediction) NoS 2 5 5 4 6 22 
 Current (mA) 4.1 - 11.9 7.5 - 10 7.5 - 10 8.2 – 10.1 9.3 - 12  
UDB (Calibration) NoS 4 3 0 2 8 17 
 Current (mA) 14.6 - 25 21 - 22 - 34.9 – 35.0 30 - 49  
UDB (Prediction) NoS 2 3 0 5 6 16 
 Current (mA) 15 - 17 18 - 25 - 23 – 40.5 29 - 47  
Current limit (mA) [56]  12 12 16 18 22  
NoS = number of samples 
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4.1 Results attained from the raw spectral data  

This section classifies the prediction set samples from the raw data of the ATR-FTIR spectra. Firstly, the 

mathematical classification model is calibrated by means of the calibration set. Since it includes 40 

samples, the associated data matrix has 40x3351 data points. Next this matrix is processed via PCA, 

resulting in a matrix of 40x3351 elements (3351 PCs). After being ranked in descending order with respect 

to the variance explained, only the 18 first PCs explaining 99.5% of the total variance were considered, 

thus resulting in a matrix of 40x18 data points, thus allowing to apply the CVA algorithm. Finally, the 

CVA algorithm was applied to the former matrix, resulting in a matrix of only 40x1 components. It is noted 

the great reduction of the dimensionality of this problem. 

Fig. 4 displays the cumulative variance of the first principal components outputted by the PCA algorithm, 

as well as the location of the samples of the calibration and prediction sets in the space defined by the only 

canonical variate arising from the CVA algorithm. 
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Fig. 4. Classification results attained from the raw spectral data by applying the PCA+CVA algorithms. a) Cumulative variance 
explained against the number of principal components retained. b) Samples of the calibration and prediction sets (40 and 38 
samples, respectively) plotted in the space defined by the only CV after application of the PCA when retaining the first 18 PCs. 

Finally, the kNN classifier is applied with k = 3, 4, 5, and 6, the results being summarized in Table 4.  

Table 4. Raw spectral data. Classification results when applying PCA (18 PCs) + CVA (1 CV) + kNN to the samples of the 

prediction set. 
k  Correctly classified samples Success rate (prediction samples) 
3  34/38 89.5% 
4  35/38 92.1% 
5  35/38 92.1% 
6  35/38 92.1% 

Results shown in Table 4, show a moderately high classification accuracy when applying consecutively 

PCA (20 PCs) + CVA + kNN, since around 90% of the samples in the prediction set are correctly 

classified. 

4.2 Results attained from the first derivative of the spectral data  

In this section the samples of the prediction set are classified by taking into account the first derivative of 
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the spectral data. It is calculated by applying the Savitzky–Golay algorithm, which considers five right-

sided and five left-sided spectral data points in each spectrum. Therefore, once the spectral matrix with 

40x3351 elements defining the calibration set has been derived, it results in a 40x3341 data matrix with the 

first derivative of the spectra. It is used to calibrate the classification model and it is transferred to the PCA 

algorithm. The first 20 PCs are retained, since they explain 99.5% of the variance. Finally, the CVA 

algorithm is applied. 

Fig. 5 shows the cumulative variance of the first principal components generated by the PCA algorithm, 

and the distribution of the samples of the calibration and prediction sets in the space defined by the 

canonical variate generated by the CVA algorithm. 
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Fig. 5. Classification results attained from the first derivative of the spectral data by applying the PCA+CVA algorithms. a) 
Cumulative variance explained against the number of principal components retained. b) Samples of the calibration and prediction 
sets (40 and 38 samples, respectively) plotted in the space defined by the only CV after application of the PCA when retaining 
the first 20 PCs. 

Next, the kNN classifier is applied, taking into account k = 3, 4, 5, and 6. These results are summarized in 

Table 5.  

Table 5. First derivative of the spectral data. Classification results when applying PCA (20 PCs) + CVA (1 CV) + kNN to the 

samples of the prediction set. 

k  Correctly classified samples Success rate (prediction samples) 
3  36/38 94.7% 
4  36/38 94.7% 
5  36/38 94.7% 
6  36/38 94.7% 

Results summarized in Table 5, show a high classification accuracy when applying consecutively PCA (20 

PCs) + CVA + kNN, since 94.7% of the samples in the prediction set are correctly classified with k = 3, 4, 

5 and 6. 

4.3 Results attained from the second derivative of the spectral data  

The last test was carried out taking into account the second derivative of the spectra, which was obtained by 

means of the Savitzky–Golay algorithm, considering ten right-sided and ten left-sided data points. After 

this transformation, the data matrix of the calibration set includes 40x3331 elements, which is the input 
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data of the PCA algorithm. In this case the first 20 PCs are considered, since they explain 99.5% of the 

variance, so although PCA calculates 3331 PCs, only the first 20 are retained. Finally, the CVA algorithm 

is applied.  

Fig. 6 illustrates the cumulative variance of the first principal components generated by the PCA algorithm, 

and the samples distribution of the calibration and prediction sets in the space defined by the canonical 

variate arising from the CVA algorithm. 
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Fig. 6. Classification results attained from the second derivative of the spectral data by applying the PCA+CVA algorithms. a) 
Cumulative variance explained against the number of principal components retained. b) Samples of the calibration and prediction 
sets (40 and 38 samples, respectively) plotted in the space defined by the only CV after application of the PCA when retaining 
the first 20 PCs. 

Finally, the kNN classifier was applied, with k = 3, 4, 5, and 6. The results obtained are shown in Table 6.  

Table 6. Second derivative of the spectral data. Classification results when applying PCA (20 PCs) + CVA (1 CV) + kNN to the 
samples of the prediction set. 

k  Correctly classified samples Success rate (prediction samples) 
3  38/38 100% 
4  38/38 100% 
5  38/38 100% 
6  38/38 100% 

As shown in Table 6, classification results obtained by applying consecutively PCA (20 PCs) + CVA + 

kNN, results in 100% correctly classified samples with k = 3, 4, 5 and 6. 

4.4 Results summary 

This subsection summarizes all results obtained in this paper. For each incoming sample, the kNN classifier 

generates two normalized output values, which corresponds to one output per class. These values are within 

the interval [0,1]. The output values quantify the degree of membership of the samples to each class. When 

the output value of an unknown incoming sample is higher than 0.5, it is assumed that this sample belongs 

to the class corresponding to this output. Output values less than or equal to 0.5 indicate no pertinence of 

the incoming sample to the class considered. Therefore, extreme values closer to 1 or 0 indicate almost total 

confidence in the classification result. However, output values denoting membership levels around 0.5, 

present high uncertainty. To assess the accuracy of the results obtained, the predictive residual error sum of 

squares (PRESS) is often used as an indicator, which is defined as, 
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yi [0,1] being the output value of the kNN algorithm for the i-th prediction sample, and iŷ is the actual value 

of yi. The actual values of iŷ  , which are either 1 or 0 are settled by an expert, so they are already known. 

According to (1), small values of PRESS indicate high accuracy of the classification results.  

Table 7 shows the classification results of the samples in the prediction set, obtained by applying the PCA 

+ CVA + kNN approach. 

Table 7. Summary of results attained with the PCA + CVA + kNN approach 
Type of data kNN classifier Classification success rate PRESS 
 k = 3 34/38 (89.5%) 3.25 

Raw data k = 4 35/38 (92.1%) 3.17 
(18 PCs) k = 5 35/38 (92.1%) 3.20 

 k = 6 35/38 (92.1%) 3.20 
 k = 3 36/38 (94.7%) 2.00 

First derivative k = 4 36/38 (94.7%) 2.00 
(20 PCs) k = 5 36/38 (94.7%) 2.00 

 k = 6 36/38 (94.7%) 2.00 
 k = 3 38/38 (100%) 0.17 

Second derivative k = 4 38/38 (100%) 0.24 
(20 PCs) k = 5 38/38 (100%) 0.24 

 k = 6 38/38 (100%) 0.24 

Results summarized in Table 7 clearly indicate that the best results are obtained with the second derivative 

of the ATR-FTIR spectra. Furthermore, when dealing with the raw spectra and the first derivative of the 

spectral data, the classification success rate to identify unknown incoming samples of the prediction set is 

between 89.5% and 94.7%. Results presented in Table 7 also show that in order to speed up the 

calculations, with k = 4 neighbors it is enough, since there are no further improvements with k = 5 or 6. 

5 CONCLUSION 

Natural rubber products applied as insulating medium for high-voltage applications require strict quality 

controls to ensure suitable dielectric behavior. However, the final properties of such products highly depend 

on latex origin, compounding and processing conditions, among others. Therefore, it is of paramount 

importance to develop strict quality control methods to ensure that the final product fulfills all 

specifications. To this end, this work has suggested a noninvasive, very fast, easy-to-apply and accurate 

approach to identify vulcanized NR samples with suitable dielectric behavior from those with unsuitable 

behavior. It is highlighted that this approach does not need any sample treatment, or the use of chemicals or 

reagents, thus being compatible for continuous quality control of the production process of insulating NR 

goods. The proposed approach is based on a multivariate chemometric treatment of ATR-FTIR spectral 

data by means of the PCA+CVA+kNN sequence to identify vulcanized NR samples with suitable dielectric 
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behavior from those with unsuitable dielectric behavior, thus allowing to simplify and expedite quality 

control methods. Experimental results reported in this paper have shown the suitability and applicability of 

this approach since the success rate in classifying unknown incoming NR samples can be as high as 100%. 

The results presented in this paper prove the potential of the proposed approach to be applied in the NR 

industry to control industrial processes.  
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