2009 International Conference on Parallel Processing

Using Coherence Information and Decay Techniques to Optimize .2 Cache Leakage
in CMPs

Matteo Monchiero'
matteo.monchiero@hp.com
!Exascale Computing Lab

HP Labs
Palo Alto, CA 94034

Abstract—This paper evaluates several techniques to save
leakage in CMP L2 caches by selectively switching off the less
used lines. We primarily focus on private snoopy L2 caches.
In this case, coherence must be enforced in all situations and
specially when a line is turned off to save power. In particular,
we introduce three techniques: the first one turns off the cache
lines by using the coherence protocol invalidations, the second
one is an implementation of a cache decay technique specific
for coherent caches, the third one is a performance-optimized
decay-based technique for coherent caches.

Experimental results, carried out by using accurate
performance/thermal/energy models, show that appreciable
power savings can be achieved by properly designing a leakage
optimization technique. We target a CMP composed of 4 cores
and 1 to 8 MB of total cache. For 4MB, the proposed techniques
show a 13%, 30%, and 21% energy reduction, respectively, at
the cost of 0%, 8%, and 2% performance loss. For other cache
sizes the behavior is qualitatively similar.

Keywords-leakage; chip multiprocessor; CMP; Multicore;
Cache Decay; Coherence;

[. INTRODUCTION

Static power is one of the most important sources of power
consumption in modern processors. This is mainly due to the
subthreshold and gate-oxide leakage currents which are in-
trinsically high in deep sub-micron devices. Efforts in high-k
materials have reduced the gate-oxide leakage; nevertheless
lower voltages increase dramatically subthreshold leakage.
Both academic and industrial studies show that a large part
of the power consumption of a state-of-the-art processor is
due to the static component [1]-[3]. According to the ITRS
[4], efficiently managing low-leakage devices and operation
modes is a key challenge for next generation systems.

Multicore architectures have recently emerged as a well
established trend in processor design. This approach — aka
Chip Multiprocessor (CMP) — permits to efficiently deal with
power/thermal issues dominating advanced processes and
makes it easy to exploit thread level parallelism of modern
applications.

In this context, the memory hierarchy design is critical to
both performance and power. This paper faces the problem
of optimizing leakage energy in the secondary (L2) caches
of CMP systems. L2 caches are typically much larger than
L1 caches, featuring larger static power contribution.

0190-3918/09 $26.00 © 2009 IEEE
DOI 10.1109/ICPP.2009.28

Ramon Canal?
rcanal @ac.upc.edu
2Dept. of Computer Architecture
Universitat Politecnica de Catalunya
Barcelona, Spain 08034

Antonio Gonzdlez2??
antonio.gonzalez @intel.com
3Intel Barcelona Research Center

Intel Labs - UPC
Barcelona, Spain 08034

Many literature papers have proposed techniques to reduce
static power in the caches of single-processor systems. Most
of these techniques are based on the common idea of
selectively turning off (or switch to a low-leakage state)
a portion of the cache [5]-[8]. A SRAM cell may be
switched off by using a transistor to gate the power supply
or the ground path. A quite successful low-leakage cache
microarchitecture, first introduced in [6], is based on the
concept of line decay (or cache decay). According to this
technique, a cache line is allowed to be on and inactive —
i.e. not accessed — at maximum for a given time, named
decay time. A counter is associated to each line. Once a
time equal to the decay time has elapsed, if the line has not
been accessed, the line is turned off. Otherwise, when the
line is accessed, the counter is reset to its initial value (decay
time). Cache decay has been mostly studied in the context
of L1 caches and only recently has been considered also for
L2 caches [9], [10].

This paper aims at proposing several leakage-aware
schemes for secondary caches in CMPs. We focus on private
snoopy L2 caches, since these present more interesting
challenges. In this case, data coherence must be enforced
when a line is turned off. In detail, the main contributions
can be summarized as follows: i) a technique which uses
the coherence protocol to switch off L2 cache lines; ii) an
implementation of a cache decay technique for a private
(snoopy) L2 cache; iv) a technique (Selective Decay), to
improve the performance of the decay scheme by avoiding
to decay lines which may generate ‘costly’ side-effects, such
as misses in the primary caches.

This paper is organized as follows. Section II presents the
related work. In Section III, we discuss the implementation
of a turning off mechanism suitable for L2 caches of
CMPs. The techniques explored in this paper, based on
the mechanism of Section III, are described in Section IV.
Section V, presents the experimental framework. Section
VI, discusses the results. Finally, Section VII concludes the

paper.
II. RELATED WORK

The problem of reducing the energy consumption of cache
memories has been thoroughly faced in past years. A

IEEE
computer
psoaety

plethora of techniques to minimize the dynamic consumption
was proposed: subbanking, line buffers, filter cache, bitline
segmentation, cache re-configuration,... We therefore focus
on those works targeted at static power reduction.

High-V;;, cells are typically used to build low-leakage
circuit blocks [11], but leakage saving comes at the cost
of slower speed. This approach can be adopted for caches
as well. In particular, it is attractive for L2 caches since they
are not frequently accessed. Nevertheless, the current trend
makes L2 caches smaller, possibly backed up by a large
L3 cache, and often tightly bound with the primary caches.
We think this argument motivates the need for low-leakage
techniques for high-speed L2 caches.

Powell et al. [5] discuss several Gated-Vy, techniques to
turn off a portion of caches. They show that the leakage
power of a gated cell can be reduced virtually to zero, at the
cost of 8% slower access time and 5% area increase. They
also propose a dynamically resizable instruction cache.

In [7], Flautner et al. introduce the Drowsy Cache, whose
idea is to put the cache lines into a state preserving,
low-power drowsy mode. Other state-preserving techniques
have been proposed in [9], [12]. This may be achieved
by lowering the Vg4. It may involve two power supply
voltages, as in [7], or a single one [12]. Regardless of the
number of supply voltages, the noise margin of the cell
is reduced. Since precise and stable threshold voltage is
difficult to achieve in deep submicron processes, this makes
the cells more susceptible to soft errors and metastability.
Furthermore, in [9], several architectural techniques that
exploit the data duplication across the different levels of
cache hierarchy are proposed and compared to multi-level
decay techniques both exploiting state-preserving and state-
destroying mechanisms. For the reasons above, this work
focuses only on state-destroying techniques (i.e. decay).

Kaxiras et al. [6], [13], propose two mechanisms of cache
decay: Fixed Decay Interval an Adaptive Decay Interval.
The first one assumes a fixed decay time for the whole
cache and program execution. The latter increases the decay
interval — for a single line — if a miss occurs soon after a
line have been switched off. On the other hand, if a miss
takes place a long time after turning off the line, the decay
is decreased.

Zhou et al. [8] introduces another decay-based technique,
named Adaptive Mode Control. In this case, a global decay
interval exists for the whole cache, but this may be dynam-
ically modified on the basis of a periodic sampling of the
miss rate.

In [10], Abella et al. specifically target L2 caches. They
propose a predictor which suggests a decay time by monitor-
ing the time between hits for a cache line. Zhang et al. [14]
use the compiler to determine the regions of code not used
in the near future and thus deciding the lines to be turned-
off. Finally, several works [15], [16] combine both state-
preserving (drowsy) and state-destroying (decay) techniques
in a single cache to optimize leakage reduction.

In this paper, we consider only state-destroying techniques

External Bus (to L3 or Memory)

Shared Bus

L2 Cache

L2 Cache
Write MSHR Write MSHR
Buffer e Buffer
L1 L1

Cache m Cache

Figure 1. Private L2 CMP architecture

(i.e. the line is switched off). In particular, we assume Gated-
Via [5], as enabling technology for any turn-off technique.
In addition, We focus on fixed decay techniques. Plus, most
of the work presented in this section is orthogonal to our
approach and can be easily combined.

Self-invalidation [17], [18] was proposed to early inval-
idate active lines. In this way, the invalidation overhead
under sequential consistency is reduced. The authors do not
analyze the energy behavior of these techniques, which could
be used in conjunction with some of our proposal to save
leakage by exploiting protocol invalidates.

This work, differently from many previous work [6], [8],
[10], uses a detailed temperature-dependent leakage model
to carry out energy estimation.

Many literature works have appeared about power/-
performance optimization of multicore architectures. Most
of them focus on the exploration of the design space,
in terms of number of cores, processor complexity, and
memory hierarchy [3], [19]-[21]. Dynamic Voltage and
Frequency Scaling (DVES), in the context of CMPs, has
been discussed as well [20], [21].

Dynamic cache resizing have been proposed by Intel
starting from the Centrino Duo [22]. Anyway, the resizing
can be performed only in the C4 state, which corresponds
to periods of very low utilization and idle residency.

This paper contribution differentiates from the previous
ones. We face the problem of minimizing the static energy
in CMPs caches, analyzing issues of cache coherence, and
proposing a detailed evaluation of several leakage saving
techniques.

III. IMPLEMENTING A MECHANISM TO TURN OFF L2
CACHE LINES IN A CMP

When dealing with a shared memory multiprocessor with
coherent private-L2 caches, some issues may arise if a L2
line is simply eliminated. L2 caches, in a system like the one

Table I
SUMMARY OF THE VARIOUS SITUATIONS RELATED TO LINE STATE AND POSSIBILITY OF TURNING OFF

Single processor or shared L2
L1 is Write-Through |

L1 is Write-Back |

Multiprocessor — private L2
L1 is Write-Through

L2 line state Clean Turn off
Dirty Write back
and turn off

sketched in Figure 1, are typically inclusive. This means that
the lines in the L1 caches must be also in the L2. If this does
not happen, any invalidation of a data residing only in the L1
will not be transmitted by the L2. Even if more sophisticated
techniques can be devised [23], in this paper, we consider
that L2 is inclusive, and to facilitate inclusion, the L1 cache
is Write-Through. This solution stems for ease of design,
while others may reveal additional complexity.

Figure 1 shows some more details of the system that we
consider: Both L1 and L2 own a MSHR, which allows that
multiple hits are served under a pending miss. The primary
cache uses a Write Buffer to propagate writes. We assume L2
caches are snoopy and coherence is enforced on the shared
bus — and propagated to the upper level. We consider a MESI
snoopy protocol.

Any possible shared cache behaves as a coherent device.
In this case, many issues existing for private caches do not
arise.

The goal of this section is the definition of an architectural
primitive capable of switching off a line of a secondary
cache, without violating the consistency of the cache hier-
archy. Issues related to when this should happen (the global
scheme/algorithm used to turn off cache lines) are discussed
in the next section.

We compare the multiprocessor case with the uni-
processor. Table I compares the various situations that may
arise, and whether a line may (or may not) be switched
off. We assume that an external furn-off signal exists for
each block and, when raised, it means to switch off that
block. Depending on the state of the block in the L2, and
the corresponding one in the L1, some conditions must be
met. In detail, for the uni-processor:

o LI is Write-Back. If the block in the L2 is clean, it may

be evicted. The corresponding block in the L.1 may be
clean or dirty, but this does not make any difference.
If clean, the block will be discarded. If dirty, the new
value(s) will be possibly allocated in the L.2 (depending
on the write policy) — and thus the old values need not
to be kept. Should the line size among L1 and L2 be
different, the L2 (or the subsequent level of the memory
hierarchy) should allow partial writes.
If the block in the L2 is dirty, the L2 line can be turned
off, and the newest copy of the dirty block (which can
be either at L1 or L2) must be written back to the
memory.

o LI is Write-Through. If the block in the L2 is clean, it
may be evicted. In this case, the corresponding block
in the L1, should be clean. Nevertheless, the L1 write

Turn off, if no pending write
Turn off, if no pending
write, and write back

Turn off, if no pending write
Turn off, but invalidate
the upper level

Grant/Flush

Figure 2. How to modify the MESI protocol to deal with external turn-off
signal. TC and TD are transient states for a line being invalidated in the
upper level. Labeling of the diagram edges is similar to [23]

buffer should be checked whether the L1 is writing that
block to the L2.

Otherwise, if the L2 line is dirty, this means that the L1
line is dirty too, and the two values are coherent (unless
there is a pending write). Also in this case the L2 block
can be evicted (updating the memory), without touching
the L1.

If the L2 cache is a snoopy cache (private-L2 multipro-
cessor), we must take care of the cache consistency when
turning off a line. If the line is clean, this means that the
corresponding line in the L1 is clean too (Write-through),
so there is no problem in switching off the line. Otherwise,
if the line is dirty, the line maybe turned off, but the L1 line
must evicted. This is because inclusion must be maintained.

Figure 2 shows a modified version of the MESI protocol
which accounts for the possibility of turning off lines. The
diagram includes two states, TC (Transient Clean) and TD
(Transient Dirty), which are transient states for a clean or
dirty line, being invalidated in the upper level. This exten-
sion belongs to the traditional implementation of multilevel
protocols.

We marked with dashed lines additional edges, and we
labeled with shadowed boxes additional conditions/actions.
The turn-off signal may trigger a state transition only from a
‘stationary’ state, that is Modified, Exclusive, Shared. If the
line is in any transient state, it must wait to reach the next

stationary state. Other transient states are not shown in the
diagram, for the sake of clarity, but exist to deal with non
atomic bus transactions [23]. Once this condition is satisfied,
depending on the state of the line the following actions may
take place:

o The line is Modified. Invalidation in the upper level is
needed. So next state is 7D. Once invalidation has been
performed, the line can be switched off. This transition
also causes a write-back to the memory.

o The line is Shared or exclusive. The line can be turned
off.

The mechanism to physically turn off a line is imple-
mented by using the valid bit, as explained in [6]. Once a
line is invalidated, its valid bit goes to a low voltage level
and triggers the circuitry to isolate the selected line from
the power supply path. In the diagram of Figure 2, a line is
effectively switched off when it goes to the Invalid state.

This technique may be easily extended to any coherence
protocol, of course taking care of the different semantic of
the states. For example, considering the Owned state of the
MOESI, other copies must be invalidated before a line is
turned off.

Note that, depending on the semantic of the state, switch-
ing off a line may be more or less costly, possibly im-
plying further invalidations. For what concerns MESI (see
Figure 2), turning off a Modified line generates a write-
back and invalidation in the upper level. On the other hand,
Shared/Exclusive lines don’t incur in any penalty.

IV. EXPLORED TECHNIQUES

We propose and explore three techniques based on the
turning off mechanism illustrated in Section III, for a private-
L2 CMP.

In details:

o Turn off on Protocol Invalidation. The base protocol
is used (Figure 2 without extensions). A cache line is
switched off when a line is invalidated. This technique
does not incur in any performance loss, since the natural
behavior of the cache is maintained.

e Decay. We implemented a fixed decay technique [6]
on the top of our turn off mechanism. The diagram of
Figure 2, with extensions, describes this technique. A
line is turned off either because a line is invalidated or
a turn-off signal is generated by the decay logic.

o Selective Decay (SD). This is also a decay technique,
but a line is let to decay on the transitions leading
to a Shared or Exclusive state. The idea is to avoid
costly decay in terms of performance. As we discussed
in Section IIlI, Modified lines, if turned off, need to
invalidate the upper level. This may cause a non trivial
performance loss, since it affects directly L1 perfor-
mance. By activating the decay only on the selected
transitions, we minimize the possibility that one of the
decaying lines will goes to Modified.

V. EXPERIMENTAL SETUP

To accurately evaluate performance and power of CMPs
architecture, we integrated a microarchitecture simulator
modeling a CMP, power models, and a temperature modeling
tool. In particular, we set up an accurate leakage estimation
framework, accounting for temperature and physical charac-
teristics of the chip.

The CMP simulator is SESC [24]. Each core is an out-
of-order superscalar processor, with private L1 caches and
private L2. The processor microarchitecture models the
Alpha 21264 [25].

Inter-processor communication develops on a high-
bandwidth shared bus (57 GB/s), pipelined and clocked at
half of the core clock. The coherence protocol acts directly
among the L2 caches, and it is MESI snoopy-based. At the
same time, the protocol requires additional invalidates/writes
between L1 and L2 caches, to ensure the data coherence.
Memory ordering is ruled by a weak consistency model.

The power model integrated in the simulator is based on
Wattch [26] for processor structures, CACTI [27] for caches,
and Orion [28] for buses. The thermal model is based on
Hotspot-3.0.2 [29], while the leakage model is based on the
work by Liao et al. [30].

Line decay techniques have been implemented assum-
ing a hierarchical counter architecture [6]. We accounted
for extra dynamic and leakage energy due to additional
structures. Since Gated-Vyy needs 5% increased area, we
consider this overhead when calculating the leakage energy.
Furthermore, we considered one cycle penalty for caches
employing decay [5]. Nevertheless, this comes up to be
a not appreciable contribution to the total execution time.
Following the methodology in [10], we have not taken into
account the energy consumption due to the extra off-chip
accesses. Nevertheless, we evaluate the extra bandwidth
needed for each technique.

We selected 3 scientific applications from Splash-2 suite
[31] (WATER-NS, FMM, and VOLREND), and 3 bench-
marks from ALPbench [32] (mpeg2enc, mpeg2dec, facerec)
as benchmarks. All benchmarks have been run up to comple-
tion and statistics have been collected on the whole program
run, after skipping initialization. For thermal simulations,
we used the power trace related to the whole benchmark
simulation (dumped every 10000 cycles). We used standard
data set for Splash-2, while we limited to 10 frames for
the MPEG2. For facerec, we use the collection of images
included in the distribution.

VI. EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed tech-
niques for L2-private 4-core CMPs, and 1, 2, 4, 8 MB total
L2 cache'.

We first analyze results related to average values across
the benchmarks, and different total cache sizes. Figure 3(a)
shows the occupation rate of the L2 caches for the different

IThat is, the size of every single L2 cache is 256KB, 512KB, IMB, 2MB

100%

90% -
80% -

70%

L2 occupation rate

0%

60% -
50% -
40% -
30% o
20%
10% -

y64K |

y:

y128K [
y64K [

y512K [
y128K [
y64K [

y64K [

L2 miss rate

2.5%

2.0% 1

1.5% A

1.0% A

0.5% -

0.0%

y64K

y64K

y64K

y64K

Y512K |

protocol
decay512K |[mmm
protocol
decay512K =
decay128K i
decay64K
protocol
decay512K p
decay128K
protocol
decay512K
decay128K
y128K [

sel_decay512K [

decay64K

sel_deca
sel_deca!
sel_deca
sel_deca
sel_deca!
decay64K
sel_deca

sel_deca

sel_deca
sel_deca

2MB
(a) Occupation rate

4mB

®
=
=)

Figure 3.

protocol [

decay512K

protocol |

decay512K
protocol [
decay512K

y512K
decay128K

protocol
decay512K
decay64K
y128K
y512K
y128K
y512K

y 128K
y512K

y 128K

sel_deca
decay64K

sel_deca
decay64K

sel_deca
decay64K

decay128K

decay128K

decay128K
sel_deca

sel_deca

sel_deca
sel_deca
sel_deca
sel_deca
sel_deca
sel_deca
sel_deca

=
@

2MB
(b) L2 miss rate

4mMB

®
=
@

L2 occupation and miss rate. protocol is the architecture which uses the protocol to turn off lines; decayN is a fixed decay technique, and

sel_decayN 1is the selective decay technique, where N is the decay time in K-cycles

techniques. This is an aggregate figure, calculated over all
the L2 caches of the system. It indicates the average fraction
of time that a cache line is turned-on during the execution
of a program. For example, if the occupation rate is 60%,
this means that the lines of the L2 caches have been turned
on for the 60% of the time, on average.

A mathematical definition is as follows (given a leakage
saving technique):

ZjGLQS Zjelines On—CyCleSij
#L2s x #lines X total_cycles

where on_cycles;; are the on-cycles (turned on line) of the
i-th line of the j-th cache. # L2s is the number of L2 cache
in the system, #lines is the number of lines per cache, and
total_cycles is the number of cycles to execute, that is, how
long a cache line is active when no optimization technique
is applied.

The architecture without any leakage optimization tech-
nique (occupation rate is 100% — always on) is assumed to
be the baseline.

As Figure 3(a) shows, the Protocol technique behaves
fairly well, especially, for larger caches. The L2 occupation
ranges from 87% to 50%. Of course, since the the workload
is fixed for various cache sizes, the occupation rate decreases
as the size increases. The Decay technique features low
cache occupation, ranging from 10% to less than 1%. For
this technique a quite large decay time (512K cycles) may be
enough to achieve significant savings. The Selective Decay
technique is in the middle, occupancy rates are on the range
of 50% to 18%. In this case, because only some lines are
allowed to decay (those going to Shared or Exclusive states),
potential savings are reduced.

Figure 3(b) shows the aggregate miss rate for the L2
caches. You can see that the miss rate is quite low for all the
configurations. This is because the private-L2 architecture
features Write-Through L1s, making that the operations on
the L2 are mostly writes. In addition, the miss rate is
not sensitive to cache size, because the misses induced by
the decay techniques (which are the largest component) do

not depend on the cache size, but mostly on the specific
technique. On the other hand, for what concerns the Protocol
technique, the miss rate slightly improves, since there are no
extra-misses. Furthermore, when comparing the the three
techniques for a given cache, it is easy to see that more
aggressive the decay is, the higher the miss rate becomes:
0.5%, 1.5%, and nearly 2% for Protocol (and the baseline),
Selective Decay, and Decay, respectively.

The increase of the memory bandwidth needed for each
configuration is shown in Figure 4(a). This can be as large
as 200% for the Decay technique and 8MB cache size.
Bandwidth requirements may be non trivial when consid-
ering decay-based techniques, since these generate costly
L2 misses. This trend is twice less for the Selective Decay
technique, which may represent a cost-effective solution. On
the opposite, if only relying on the protocol to turn off lines,
no additional memory accesses are required.

In Figure 4(b), we consider the performance of the whole
memory system, showing the variation of the Average Mem-
ory Access Time (AMAT). Decay-based techniques may
worsen it by 10% on average. In this case, by using the
Selective Decay a 10% better AMAT is achieved, even if
this benefit seems to diminish as the cache size increases.

Finally, we evaluate the impact of the proposed techniques
on system’ energy and performance. In Figure 5(a), the
energy reduction achieved by every technique is shown.
Results are relative to unoptimized case (L2 caches always
on). The amount of saved energy heavily depends on the
size of the cache. This is because the optimized fraction
(the L2 leakage) depends on the cache size too. For the
Decay technique the energy savings are 9%, 17%, 30%, and
43% for each cache size from 1MB to 8 MB. The Selective
Decay technique typically saves the 50-90% of the energy
saved by Decay.

It is interesting to note that as the cache size increases, the
two techniques perform similarly. Notice that the magnitude
of the decay time is only slightly influential. The addi-

2The system is composed of cores L1, L2 and system bus

250%

12%
[} 10% +
@ 200% :
o o
g o 8% |
= 150% - g
g £ 6%
=
el
100% - g
§ % E 4%
al
g 50% A 2%
2 L TR
0% anlll I 0% 1— — — -
BS sl s s iz s g s n s s s ks 5 e e g 5 e g s RN ERE RN ERE N EE
OFNg_NlD8FN%“N€DOFN$FN®8FN$“N@ Em‘—>.mx—>-2m\—>»m‘—>-9|n\—>»mv ’vELOF>~ID‘— > |
5121 &2 7182l 712l 7812 712 7 82S 712S & HEEHEEEEEREEREREEEEEEREEREEEERR
&18812/818)8 5813/ 5(5| 8|5/ 8188 5|5 8|2 818|815 818 REEE R R e R
olo| (ool [olo| |(vleol [TlT| |77 BT |?|T| -l =l i |
Il 2l _IZlg _I2le T DB T DB T DB DD
[TANTANT] Q| 0| N [FINIR"] [CANINZ] wnlon wnlon nlon wln
o o o o 1MB 2MB 4MB 8MB
B 2B AMB 8viB (b) AMAT increase
(a) Memory Bandwidth increase
Figure 4. Variation of the Memory Bandwidth and AMAT, w.r.t. the unoptimized case
50% 14%
12% A
40% -
10% +
§ 30% 8 8% A
5 o
=3
2 2 6%
 20% A -
3 4% A
()
S 10% A o
) II III " I I
I 0% i
woqar LAy ‘ ‘ SRR R EREE R
= = = = 3 3
RN EENERNE RN RN R NEENEE SIIRIEIGIRIEISIGIRIEISIRIES IR I2R8 2 a8 2R 82
Sl |alg|=|a|e Sls|a|@(s (NS gls|N|@|s (NS Sl= (NG| | S R E S R R N RN R EE S R E R R SRS
= A S B B Rl e R A N R T AN B AR R A AN R RS R S|8IEI8IS 8888888828818 8/8/18/28/3/8/8|8|8
-10% 15T SISI R8I 5888388 S BT gE8 8 oI g E3e 3|3|5|8|8|5| (o|o|G|0|0|T| |o|o|c|2|3|c| |3|3|5|3|8|c
0|0|T|O|o|< IR ARSI RYR] o|0|c|o|o|T 0 0|T|D|®|T °|° |7 |°|T B9 |P|T 9| [PT B|°|=!
s|o| |olo|o |o|v| |vlo|ol o] |T|vlo [TlT||Tv| o | 7 _=le Il _I_l®
20w -l 20w __s T|T| 0 T|T| 0 DT ® | B | »
Q| O(»n OO | D V|l o|n o|lo|n wnln wl v wln wnln
318 318 318 318
VB B B - 1MB 2MB 4MB 8MB
. (b) IPC loss
(a) Energy Reduction
Figure 5. Variation of Energy and IPC
@ protocol Wdecay512K Odecay128K Odecay64K @ protocol B decay512K Odecay128K Odecay64K
W sel_decay512K Hsel_decay128K M sel_decay64K M sel_decay512K Esel_decay128K M sel_decay64K
40% 30%
35% 4 M
25%
30% -
c
o/ |
%25%7 20%
=1 (7]
B 8
x 20% 4 615%,
5 T
& 15% -
S 10% 4
10% A
5% 5%
b -
0% - 0%
mpeg2enc mpeg2dec facerec WATER-NS FMM VOLREND

(a) Energy Reduction

mpeg2enc mpeg2dec facerec WATER-NS FMM VOLREND
(b) IPC loss

Figure 6. Energy and IPC for different benchmarks, given 4MB total cache size

tional saving is compensated by increased dynamic energy.
Moreover, for Selective Decay 4K-decay time/1MB-cache
size, the optimized architecture consumes more than the
baseline. This happens because of the steady increase of

dynamic energy for some benchmarks, when the decay time
is reduced to 64K-cycles.

The Protocol technique features lower energy savings: ap-
proximately half with respect to Decay, but still significant,
especially for larger caches. For example for 4MB, it is 13%.

Figure 5(b) shows the IPC loss for each technique. You
can observe that, unlike energy, the decay time has a
remarkable impact on the IPC (40-50%). So, larger decay

time might be a better choice from the Energy-Delay point
of view. The Selective Decay technique features improved
IPC with respect to Decay. If comparing Decay 512K-decay
time (less aggressive), and Selective Decay 64K-decay time
(most aggressive), Selective Decay achieves 75% lower IPC
penalty than decay, while featuring 25% less energy saving
(see 4MB-L2, in Figure 5(b)).

In Figure 6(a) and Figure 6(b), energy reduction and IPC
loss, for each simulated benchmark, are reported. For the
sake of conciseness, we focus on 4MB total cache systems.
Following considerations are qualitatively similar for other
cache configurations.

Since the characteristics of the benchmarks are different
for what concerns the L2 usage, results are pretty hetero-
geneous. You may observe that the Protocol technique is
sometimes as good as the decay-based ones. This happens
for mpeg2dec (only slightly worse than Decay), while it per-
forms better for WATER-NS. The Selective Decay achieves
typically the same saving as Decay, except for mpeg2enc and
FMM. For the latter it is clearly outperformed by Decay.

IPC (Figure 6(b)) seems worsen much more for scientific
benchmarks (WATER-NS, FMM, and VOLREND) than from
multimedia ones. The selected scientific benchmarks may
feature more complex cache access patterns, difficult to
capture with simple decay techniques.

The effects of varying the decay time are also different.
For example, larger decay improves significantly IPC for
VOLREND and mpeg2dec, while it has a smaller effect
for the others. Moreover the effects on the energy may
result in an increase (e.g. mpeg2dec) or a decrease (facerec),
depending on the dynamic energy overhead.

In conclusion, the Protocol technique may be a cost effec-
tive choice for a subset of the considered applications (25-
35% energy reduction, and no performance loss). When tar-
geting multimedia applications, the Selective Decay provides
nearly the same energy saving as the more aggressive Decay
— less than 5% worse — at the cost of a minimal IPC loss
(less than 2% on average). On the other hand, for scientific
applications, decay techniques may lead to appreciable IPC
penalty (up to more than 25%). Nevertheless, a careful
choice of a leakage saving technique may lead to 15-35%
energy savings.

VII. CONCLUSIONS

This paper explored several techniques to reduce the leakage
energy in CMPs. We adapted the coherence protocol to cope
with power decisions such as turning off a line. Furthermore,
we adapted existing decay techniques to work properly on
a CMP. In this paper, we presented three leakage saving
techniques: 1) Turn off on Protocol Invalidation (Protocol):
this is based on the coherence protocol to turn off the
lines invalidated by the protocol itself; ii) Decay; this is
an implementation of a cache decay technique, compatible
with the CMP cache hierarchys; iii) Selective Decay: another
decay-based technique, but performance-optimized, since it
aims at avoiding costly decays in terms of performance.

The evaluation showed that for a total of 4MB L2
cache CMP, these techniques feature 13%, 30%, and 21%
energy reduction, respectively, at the cost of 0%, 8%, and
2% performance loss. While the performance penalty is
approximately the same for different cache sizes, the energy
reduction is higher for larger caches — up to 25%, 44%, and
38%, respectively, for SMB. When analyzing the behavior
of each scheme for a mix of scientific and multimedia
benchmarks, we found that Protocol and Selective Decay
feature 25%/35% energy reduction at the cost of minimal
performance loss (0% or 2%, respectively), for most of the
applications. Especially when targeting multimedia applica-
tions, Selective Decay seems the best solution for Energy-
Delay.

ACKNOWLEDGMENT

This work has been supported by the Generalitat de
Catalunya under grant 2005SGR00950 and the Spanish
Ministry of Science and Innovation under grant TIN2007-
61763.

REFERENCES
[1] A. Grove, “Changing vectors of Moore’s law
— Keynote speech,” in IEDM’02: Int. Elec-
tron Devices Meeting, 2002. [Online]. Available:

http://www.intel.com/pressroom/archive/speeches/
grove_20021210.htm

[2] Y. Meng, T. Sherwood, and R. Kastner, “Exploring the limits
of leakage power reduction in caches,” ACM Trans. Archit.
Code Optim., vol. 2, no. 3, pp. 221-246, 2005.

[3] M. Monchiero, R. Canal, and A. Gonzalez, “Design space ex-
ploration for multicore architectures: A power/performance/-
thermal view,” in ICS06: Proceedings of the 20th annual

international conference on Supercomputing. New York,
NY, USA: ACM Press, 2006.

[4] ITRS, “The international technology roadmap
for semiconductor: 2005.” [Online]. Available:

http://www.itrs.net/Common/2007ITRS/Home2007.htm

[S] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar, “Gated-vdd: a circuit technique to reduce leakage
in deep-submicron cache memories,” in ISLPED ’00: Pro-
ceedings of the 2000 international symposium on Low power
electronics and design. New York, NY, USA: ACM Press,
2000, pp. 90-95.

[6] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploit-
ing generational behavior to reduce cache leakage power,”
in ISCA ’01: Proceedings of the 28th annual international
symposium on Computer architecture. New York, NY, USA:
ACM Press, 2001, pp. 240-251.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: simple techniques for reducing leakage
power,” in ISCA ’02: Proceedings of the 29th annual inter-
national symposium on Computer architecture. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 148-157.

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte,
“Adaptive mode control: A static-power-efficient cache de-
sign,” Trans. on Embedded Computing Sys., vol. 2, no. 3, pp.
347-372, 2003.

L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. T. Kan-
demir, M. J. Irwin, and A. Sivasubramaniam, “Leakage
energy management in cache hierarchies,” in PACT ’'02:
Proceedings of the 2002 International Conference on Parallel
Architectures and Compilation Techniques. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 131-140.

J. Abella, A. Gonzalez, X. Vera, and M. F. P. O’Boyle, “Iatac:
A smart predictor to turn-off 12 cache lines,” ACM Trans.
Archit. Code Optim., vol. 2, no. 1, pp. 55-77, 2005.

A. Chandrakasan and R. W. Brodersen, Low-Power CMOS
Design. Wiley-IEEE Press, 1998.

N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Single-
vdd and single-vt super-drowsy techniques for low-leakage
high-performance instruction caches,” in Proceedings of the
ACM/IEEE International Symposium on Low Power Electron-
ics and Design (ISLPED’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 54-57.

Z. Hu, S. Kaxiras, and M. Martonosi, “Let caches decay: re-
ducing leakage energy via exploitation of cache generational
behavior,” ACM Trans. Comput. Syst., vol. 20, no. 2, pp. 161—
190, 2002.

W. Zhang and J. Hu, “Compiler-directed instruction cache
leakage optimization,” in Proc. of the 35th annual ACM/IEEE
International Symposium on Microarchitecture. Washington,
DC, USA: IEEE Computer Society, 2002.

T. S. Y. Meng and R. Kastner, “On the limits of leakage power
reduction in caches,” in HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Computer Ar-
chitecture. Washington, DC, USA: IEEE Computer Society,
2005.

M. Ghosh and H. Lee, “Virtual exclusion: An architectural
approach to reducing leakage energy in caches for multipro-
cessor systems,” 2007 International Conference on Parallel
and Distributed Systems, vol. 2, pp. 1-8, Dec. 2007.

A.-C. Lai and B. Falsafi, “Selective, accurate, and timely
self-invalidation using last-touch prediction,” in ISCA ’00:
Proceedings of the 27th annual international symposium on
Computer architecture. New York, NY, USA: ACM Press,
2000, pp. 139-148.

A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation:
reducing coherence overhead in shared-memory multiproces-
sors,” in ISCA °95: Proceedings of the 22nd annual interna-
tional symposium on Computer architecture. New York, NY,
USA: ACM Press, 1995, pp. 48-59.

M. Ekman and P. Stenstrom, “Performance and power impact
of issue-width in chip-multiprocessor cores,” in ICPP’03:
Proceedings of the 2003 International Conference on Parallel
Processing. Washington, DC, USA: IEEE Computer Society,
2003, pp. 359-369.

J. Li and J. Martinez, “Power-performance implications of
thread-level parallelism on chip multiprocessors,” in IS-
PASS’05: Proceedings of the 2005 International Symposium
on Performance Analysis of Systems and Software. Washing-
ton, DC, USA: IEEE Computer Society, 2005, pp. 124-134.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP
design space exploration subject to physical constraints,” in
HPCA °06: Proceedings of the 12th International Symposium
on High Performance Computer Architecture. Washington,
DC, USA: IEEE Computer Society, 2006.

A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabuk-
swar, K. Krishnan, and A. Kumar, ‘“Power and thermal
management in the intel core duo processor,” Intel Technology
Journal, vol. 10, no. 2, pp. 109-122, 2006.

D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Ar-
chitecture: A Hardware/Software Approach. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC
simulator,” January 2005, http://sesc.sourceforge.net.

R. E. Kessler, “The Alpha 21264 microprocessor,” [EEE
Micro, vol. 19, no. 2, pp. 24 —36, March/April 1999.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions,” in Proc. of the 27th International Symposium on
Computer Architecture. ACM Press, 2000, pp. 83-94.

P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An integrated
cache timing, power, and area model,” Western Research
Laboratory, Compaq, Tech. Rep. 2001/2, 2001.

H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a
power-performance simulator for interconnection networks,”
in Proc. of the 35th annual ACM/IEEE International Sympo-
sium on Microarchitecture. Washington, DC, USA: IEEE
Computer Society Press, 2002, pp. 294-305.

K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-aware microarchi-
tecture: Modeling and implementation,” ACM Trans. Archit.
Code Optim., vol. 1, no. 1, pp. 94-125, 2004.

W. Liao, L. He, and K. Lepak, “Temperature and supply
Voltage aware performance and power modeling at microar-
chitecture level,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 7, pp. 1042 —
1053, July 2005.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: characterization and methodolog-
ical considerations,” in ISCA ’95: Proceedings of the 22nd
annual International Symposium on Computer Architecture.
New York, NY, USA: ACM Press, 1995, pp. 24-36.

M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes,
“The alpbench benchmark suite for complex multimedia
applications,” in Proceedings of the IEEE International Sym-
posium on Workload Characterization (IISWC-2005). Wash-
ington, DC, USA: IEEE Computer Society, 2005.

