
Towards Limiting the Impact of Timing Anomalies
in Complex Real-Time Processors

Pedro Benedicte
Universitat Politecnica de Catalunya
Barcelona Supercomputing Center

pbenedic@bsc.es

Jaume Abella
Barcelona Supercomputing Center

(BSC)
jaume.abella@bsc.es

Carles Hernandez
BSC

carles.hernandez@bsc.es

Enrico Mezzetti
BSC

enrico.mezzetti@bsc.es

Francisco J. Cazorla
BSC and IIIA-CSIC

francisco.cazorla@bsc.es

ABSTRACT
Timing verification of embedded critical real-time systems is hin-
dered by complex designs. Timing anomalies, deeply analyzed in
static timing analysis, require specific solutions to bound their im-
pact. For the first time, we study the concept and impact of timing
anomalies in measurement-based timing analysis, the most used
in industry, showing that they require to be considered and han-
dled differently. In addition, we analyze anomalies in the context
of Measurement-Based Probabilistic Timing Analysis, which sim-
plifies quantifying their impact.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Real-
time system specification; Real-time system architecture;

KEYWORDS
Timing Ananomalies, WCET, embedded critical systems
ACM Reference Format:
Pedro Benedicte, JaumeAbella, Carles Hernandez, EnricoMezzetti, and Fran-
cisco J. Cazorla. 2019. Towards Limiting the Impact of Timing Anomalies in
Complex Real-Time Processors. In Proceedings of ACM Asia South Pacific
Design Automation Conference (ASP-DAC 2019), Jennifer B. Sartor, Theo
D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York, NY, USA, Arti-
cle 4, 6 pages. https://doi.org/10.1145/3287624.3287655

1 INTRODUCTION
Driven by the current trend towards autonomous systems (e.g. in
cars, satellites, drones, etc.), the demand for new software-based,
performance-hungry, complex functionalities is steadily increas-
ing. For example, autonomous driving cars are expected to provide
the same performance as 25 high-end multicore desktops [4]. As a
result, embedded critical real-time systems have rapidly evolved
from simple micro-controllers to high-performance complex pro-
cessors such as those found, for instance, in NVIDIA DrivePX [12].
The other side of the coin is that providing evidence on software’s
correct timing behavior, as demanded by safety standards, on those
complex processors is a much more onerous and challenging task,

ASP-DAC 2019, Jan. 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
ACM Asia South Pacific Design Automation Conference (ASP-DAC 2019), https://doi.org/
10.1145/3287624.3287655.

especially when considering the derivation of bounds to applica-
tions’ Worst-case Execution Time (WCET). As a major source of
complexity in timing verification, modern processors are generally
prone to timing anomalies [11, 16, 19], a well-known phenomenon
causing that local worst-cases (e.g. an access A incurring a cache
miss) are not guaranteed to lead to the global worst-case (i.e. a
cache hit on A results in a longer execution time).

Despite the obstacles to their analysis are still far from being
solved, complex processors have been embraced by the embedded
real-time market as their de facto baseline hardware computing
solution. In the automotive domain, where car manufacturers have
started facing the performance requirements brought by software
implementing high-end autonomous functions, complex proces-
sors are not going to be relegated to the execution of low-integrity
functionalities. On the contrary, they will be executing software
affecting safety goals with ASIL C/D (ASIL D is the highest integrity
level in ISO-26262 in the automotive domain). An analogous trend
is observed in other embedded real-time critical domains, such
as avionics and space. Hence, dealing with timing anomalies is
mandatory to enable and support the analysis of complex comput-
ing platforms. This applies to both Static Timing Analysis (STA),
for which timing anomalies have been deeply analyzed [16][19],
and Measurement-Based Timing Analysis (MBTA) [18], for which
instead timing anomalies have been totally neglected so far.

In this work we promote a change of perspective, analyzing tim-
ing anomalies in the context of MBTA. This is particularly relevant
for the automotive domain, where MBTA is the most widely used
timing analysis technique. In particular, our contributions are:

(1) We analyze timing anomalies in MBTA, concluding that
anomalies cannot be handled as they are for STA. In particu-
lar, we observe that the challenges they bring to MBTA are
not related to analysis (i.e. model) assumptions, but rather
to the generic difficulty for the user to exercise sufficient
control of all factors with bearing on timing during program
runs in the analysis phase. Based on this observation, we
tackle, for the first time, the challenge posed by timing anom-
alies on MBTA of high-performance processor designs, by
analyzing their impact on WCET estimates.

(2) With emphasis on the probabilistic variant of MBTA, called
MBPTA [1], we show how the use of those hardware fea-
tures that can potentially cause timing anomalies can still
be safely enabled in critical real-time systems. To that end,
we leverage the use of time-randomized hardware designs

https://doi.org/10.1145/3287624.3287655
https://doi.org/10.1145/3287624.3287655
https://doi.org/10.1145/3287624.3287655

ASP-DAC 2019, Jan. 2019, Tokyo, Japan P. Benedicte et al.

Figure 1: Example of a pWCET curve

(e.g. random placement and replacement caches, random
arbitration in shared resources) that make the occurrence of
timing anomalies probabilistic.

(3) We instantiate the aforementioned key principles on a partic-
ular example of a type of timing anomaly as it may happen on
a commercially available time-randomized processor design.

2 BACKGROUND ON TIMING ANALYSIS
2.1 Measurement-Based Timing Analysis
Across several real-time domains, industry mostly resorts to measu-
rement-based (deterministic) timing analysis (MBDTA or MBTA)
as the main strategy for timing analysis. The confidence on the
derived WCET estimates strongly relates to the knowledge of the
software and hardware had by the end user, as well as his/her
ability to exercise sufficient control on the experiments, to generate
suitable input vectors to trigger the WCET during the analysis
phase. However, such degree of control can only be reasonably
exercised on simple processor designs. On more complex hardware
designs, attaching a degree of confidence to the WCET is much
more difficult: the WCET estimate is often calculated as the high
watermark plus some safety margin to account for the unknown,
whose confidence is hard – if at all possible – to assess.

As the complexity of hardware and software increases, the degree
of control that end users need to exercise in the estimation of
the WCET becomes less obvious to attain, and uncertainty to size
safety margins grows. MBPTA has been specifically designed to
addresses these challenges. The use of MBPTA is also fueled by the
increased execution time variability that programs suffer when run
on complex hardware. In fact, this variability results in execution
time distributions with arbitrary variance and shape, motivating
the use of statistical techniques to derive time bounds.

MBPTA [1] relies on hardware/software platforms with some
specific timing properties that allow reducing the degree of con-
trol that end users need to exercise to collect execution times at
analysis. To that end, MBPTA postulates that the hardware sources
of execution time variation are conveniently randomized and/or
upper-bounded, often with some hardware support, so that their be-
havior naturally emerges in the measurements collected during the
test campaign (i.e. system analysis/design phase). Randomization
must be preserved during system operation phase for representa-
tiveness reasons.

MBPTA, which has already been successfully applied to indus-
trial case studies [3], uses extreme value theory (EVT) [9] to produce

Figure 2: Example of timing anomaly

an execution time distribution that upper-bounds the execution
time of the task under analysis during operation based on a sample
of execution timemeasurements. In the so-calledMBPTA-compliant
processor designs, each execution time occurs with a probability,
and the underlying (analyzed) distribution upper-bounds that ex-
hibited during operation. For each particular execution time value,
MBPTA delivers the probability above which this same value can-
not be exceeded by the execution time of a single program run. This
distribution is referred to as probabilistic WCET (pWCET for short),
see Figure 1. For instance, an exceedance probability of 10−15 per
run indicates that the particular pWCET estimate cannot be ex-
ceeded with a probability above 10−15. Whether the pWCET can be
exceeded with a probability below 10−15 or it cannot be exceeded
at all remains unknown. Such remaining (exceedance) probabil-
ity relates to the residual risk in software verification, which is
intrinsic to the software verification process, as no method allows
proving with absolute confidence that software will not fail during
operation [6].

2.2 Timing Anomalies from STA Standpoint
A high-level definition of timing anomalies, from the perspective
of timing analysis, is given in [16] as those cases where a local
worst-case does not lead to the global worst-case. An illustrative
timing anomaly is shown in Figure 2 where instructions in each row
execute serially due to data dependencies (i.e. E consumes some
data produced by A), and C and E use the same resource. We see
that by experiencing a longer latency for A (local effect) the overall
execution time decreases (global effect).

For STA, timing anomalies jeopardize the formal reliability of
the approach. STA is in fact forced to resort to some form of ab-
straction to be able to model all possible inputs and hardware
states, see top part of Figure 3. Abstractions in turn introduce non-
determinism in the model, where an abstract state can have multiple
successor states. Since modeling all possible transitions between
abstract states rapidly becomes computationally intractable, STA
approaches typically discard those states that are unlikely to lead
to the global worst-case behavior. In particular, the underlying as-
sumption in STA approaches is that timing can be safely analyzed
at the level of single execution blocks as a function of an initial
state and a given input, so that local worst-cases transitions are
always assumed to lead to the global worst-case timing. Timing
anomalies clearly spoil this assumption, forcing STA to take the
appropriate countermeasures.

Towards Limiting the Impact of Timing Anomalies
in Complex Real-Time Processors ASP-DAC 2019, Jan. 2019, Tokyo, Japan

A relevant STA timing anomaly classification looks into the
effects on timing on the analysis scope, distinguishing between
bounded and unboundable timing anomalies [19]. Anomalies are
classified as k-bounded if their effect can be factored in by adding
a conservative (possibly overly-pessimistic) constant to the com-
puted WCET bound. Instead, to account for unboundable timing
anomalies, leading to the so-called domino effect, STA is forced to
consider all possible states and transitions, which is evidently un-
tenable. As shown in Figure 3, STA focus is on determining whether
anomalies can happen on a given platform, and also, on how they
can be efficiently bounded.

3 TIMING ANOMALIES IN MBTA
MBTA approaches have not considered timing anomalies as a con-
cern so far, since the usual standpoint from which practitioners
are used to consider timing anomalies is specifically that of STA.
In our opinion, instead, some form of timing anomalies are to be
considered relevant even in the scope of MBTA.

It is worth noting that, in the context of end-to-end program
analysis, timing anomalies can happen due to hardware resources
having variable latencies. Considering a sequence of instructions
with fixed input data, accessing a fixed set of hardware resources,
the sequence can lead to different execution times only in response
to different initial processor states, inducing a variable response
time (jitter) of a subset of the involved hardware components.While
it is true that anomalies do not explicitly break any MBTA assump-
tion, their potentially erratic impact on timing may jeopardize the
fundamental conditions for measurement-based methods. For this
reason, anomalies in MBTA need to be understood from the per-
spective of the representativeness of analysis-time observations.

Representativeness covers whether themeasurements performed
in the test campaigns during the analysis phase capture the worst-
case relevant effects that can arise during system operation. Timing
anomalies have the potential to distort the correspondence between
analysis and operation conditions.

Observation 1.WithMBTA, dealingwith timing anomalies builds
on the ability to argue whether they have been triggered or not when
running a program; whether they can actually occur during system
operation; and whether their observed impact during analysis tests
upperbounds the impact they may incur during operation.

Figure 3, compares different ways in which timing anomalies –
referred to as TA in the figure – can be attacked under the STA and
MBTA paradigms. Similarly to STA, analyzing a system that can
be proved to be timing-anomaly free would be the most favorable
scenario. Unfortunately, assessing the lack of timing anomalies is
not realistically affordable in the general case, and can only be
possibly achieved with highly-specialized hardware designs [10].

Interestingly, modeling timing anomalies is not a challenge for
MBTA. The challenge instead is to trigger anomalies during analysis
tests and to size their impact, as they can manifest during operation.
Theoretically, users are required to design experiments that capture
the potential increase in execution time they entail.

Dealing with anomalies poses a challenge analogous to the one
faced by end users to trigger specific low-level hardware interac-
tions, since the user lacks explicit control knobs over them. To
conclude the parallelism with STA, from the MBTA perspective,

Analysis Phase

Platform
Modelling

Representative
Measurements

STA

MBTA

Operation Phase

Platform Actual
Behavior

Operation-time
Measurements

- Assess the lack of TA
- If TA exist, do not discard locally-

good scenarios

- Assess the lack of TA
- Assess if TA can arise at operation
- If TA can arise, ensure analysis

measurements capture them

Figure 3: STA andMBTAmanagement of Timing Anomalies

a relevant classification of timing anomalies does not focus on
whether an anomaly has k-bounded versus domino effects but
rather on controllability, which refers to whether or not an MBTA
user is able to trigger them in a controlled way. Next, we look into
timing anomalies from the perspective of MBTA, in the specific
context of MBPTA-compliant hardware.

4 TIMING ANOMALIES IN MBPTA
Timing anomalies in time-deterministic processors may potentially
occur systematically. This is not an issue for the way STA deals with
anomalies as the relevant aspect is whether an anomaly can either
happen (and it is always assumed to) or not. Under MBTA, instead,
the frequency at which an anomaly occur has a variable impact on
the execution time, which in turn could challenge the reliability of
the WCET estimate. This concern is partially cured under MBPTA.
In fact, for MBPTA, and in particular time-randomized hardware,
certain timing events exhibit a random behavior, which can poten-
tially break systematic patterns and allow building probabilistic
arguments on the appearance of timing anomalies.

Observation 2. Time-randomized processors (e.g., implementing
caches [8] and buses [7] with time randomization properties), used in
combination with MBPTA, trigger a number of random timing events
that potentially break systematic timing behavior.

As a result, the occurrence of some timing anomalies becomes in-
herently probabilistic. Moreover, the accumulation of timing anom-
alies occurs with decreasing probabilities. In fact, a given event
potentially triggering an anomaly, necessarily repeats (chain of
occurrence) with decreasing probabilities so that execution time
variations end up being of lower magnitude than those produced
by randomized hardware resources themselves. We will consolidate
this argument while reasoning on a practical example in Section 5.

However, MBPTA and randomization do not prevent that some
other timing anomalies may be systematically triggered, because
they depend on non-time-randomized sources of execution time
variation. Under some conditions, however, also these anomalies
can be conveniently controlled.

4.1 Taxonomy of Timing Anomalies in MBPTA
In MBPTA-compliant processors, some individual sources of jit-
ter (i.e. resources with variable latency) are controlled in a way
that they are upper-bounded, whereas others – those with high-
est impact in WCET estimates – are time-randomized (e.g., cache
memories, bus arbitration, etc.). These different sources of jitter
have been analyzed in a LEON-like processor, currently assessed
for future space missions, as part of the PROXIMA Project [15].

Observation 3. Constant execution time events cannot trigger
any timing anomaly (but can propagate them).

ASP-DAC 2019, Jan. 2019, Tokyo, Japan P. Benedicte et al.

Shared bus

M
em

o
ry

C

o
n

tr
o

lle
r

Sh
ar

ed

D
R

A
M

Sh
ar

ed
 L

2

Core 1

IL1

DL1

Core 2

IL1

DL1

Core 3

IL1

DL1

Core 4

IL1

DL1

Figure 4: Processor architecture considered in this analysis.
IL1, DL1 and L2 stands for first-level instruction and data
caches; and L2 cache.

Those resources exhibiting a constant timing behavior exhibit
the same behavior at analysis and operation, regardless of any ex-
ecution condition. They cannot trigger any timing anomaly but
cannot compensate nor prevent the effects of other anomalies po-
tentially triggered.

Observation 4. Random events whose execution time distribu-
tion does not change between analysis and operation, will exhibit
probabilistically boundable timing anomalies.

If the response time distribution of the resource remains un-
altered between analysis and operation, then the occurrence and
impact of timing anomalies can be related to the probability distri-
bution observed at analysis. MBPTA is still responsible for guaran-
teeing representativeness of the observations.

From the observations above, we introduce a taxonomy of timing-
anomaly scenarios for randomized architectures. Each hardware
resource can be characterized as potentially triggering:

(1) No timing anomalies. Fixed-latency timing events exhibit
the same behavior at analysis and during operation. Hence,
they trigger no timing anomaly. This classification applies
to deterministic resources if the deterministic upper bound
is enforced (by hardware means) even during operation.

(2) Probabilistically-controlled timing anomalies. Some tim-
ing anomalies may be triggered by random events. Thus, they
will be observed with a given probability in analysis runs.
A rigorous MBPTA application [1] will guarantee that their
timing impact is properly captured in the execution time
measurements used to derive the pWCET estimate, as long
as their probabilistic behavior is preserved from analysis time
to operation.

(3) Potentially uncontrolled timing anomalies. Some tim-
ing anomalies may be triggered due to latent systematic
effects, or due to probabilistic events whose probability dis-
tribution differs between analysis time and operation. Thus,
their timing impact may not be properly captured in the exe-
cution time measurements used to feed MBPTA. As a result,
the end user needs to account for their effect without explicit
support from the hardware or the timing analysis tool, which
is a cumbersome task. In general, end users lack the degree of
control needed to determine the impact of those anomalies
and whether their impact has been properly accounted for,
thus decreasing the quality of WCET estimates.

5 DEALINGWITH TIMING ANOMALIES
To illustrate how to deal with timing anomalies on an MBPTA-
compliant hardware design, we use as example the enhanced LEON3

DL1

IL1 L2 miss

IL1 L2 miss

L2 miss C
as

e
1

C

as
e

2

0 12 1 2 3 4 5 6 7 8 9 10 11 13 14

fetch

memory

L2 hit

fetch

memory

Bus

Bus

DL1 Bus

Bus

Figure 5: Priority inversion causing a timing anomaly.

multicore processor design implemented in an FPGA [2] and com-
mercially available through Cobham Gaisler. The main timing char-
acteristics of such processor are illustrated in Figure 4 and further
discussed in Section 6. We identify a number of sources of jitter –
and so potential sources to trigger timing anomalies – in the proces-
sor design: FDIV/FSQRT operations, cache memories and randomly
arbitrated resources. In the next sections we review the potential
timing anomalies that could be triggered in such design, and discuss
how jittery resources need to be controlled to avoid harmful (i.e.,
potentially uncontrolled) timing anomalies.

5.1 Upperbounding Variable-Latency Units
In our reference processor, FDIV and FSQRT incur jitter depending
on the values operated. Following existing solutions for STA, we
force these operations to take their worst latency [13], removing
the jitter with minimum impact on average performance.

5.2 Priority Inversion in Cache Access
The requests sent to each cache (IL1, DL1 and L2) are served in
arrival order. All requests to IL1 (DL1) are sent from the same
pipeline stage, fetch (execution), and hence, the request arrival
order matches the program order.

Let us assume instructions ix and iy are executed in program
order, i.e., x < y, then all the requests these instructions can gener-
ate to IL1 (ix ,I L1, iy,I L1) and DL1 (dx ,DL1, dy,DL1) will be served
in program order. However, this does not apply to L2, since the
requests sent to L2 can be generated by instructions in two different
stages (fetch and execute), which can generate inversion i.e. the
instruction request of the second instruction iy,L2 is served by the
L2 before the data request of the first instruction dx ,L2. In case both
requests to L2 are generated in the same cycle, dx ,L2 is prioritized.

When a memory request misses in a private L1, it needs to get
access to the bus shared across the 4 cores to reach the L2 cache.
Several MBPTA-compliant time-composable arbitration policies
have been proposed [7], including round-robin policy. With this
policy, we guarantee that, in a 4-core processor, each core will be
able to access the shared L2 cache 1 out of every 4 time slots. Hence,
the worst latency to reach the L2 cache is 4 time slots minus 1 cycle
(if requests can only be sent the first cycle of the slot).

Given this bus behavior, we can see in Figure 5 an example of
a timing anomaly that occurs due to priority inversion. MBPTA-
compliant time-composable arbitration policies impose accounting
for worst-case contention during analysis, regardless of whether the
arbitration policy is deterministic (e.g. round robin) or randomized
(e.g. random permutations [7]). Either case, this makes that the
delay experienced to access the bus may be typically high during
analysis (case 2). Then, during operation, for efficiency reasons (e.g.
average performance, power, etc.), worst-case contention is not

Towards Limiting the Impact of Timing Anomalies
in Complex Real-Time Processors ASP-DAC 2019, Jan. 2019, Tokyo, Japan

enforced and requests experience actual contention, which will be
typically lower, thus increasing the chances of experiencing timing
anomalies (case 1).

In general, depending on the observed behaviours at analysis
time (AT) and operation time (OT), we have two possible scenarios:
(a) Priority inversion happens systematically at AT, or with the
same (or higher) probability at AT than during OT. And (b) Priority
inversion does not happen at AT, or occurs with lower probability
than during OT. Scenario (a) is covered by MBPTA since execution
time measurements during analysis account for worse conditions
than those during operation [1]. In scenario (b), however, timing
anomalies have not been accounted for properly, typically because
their occurrence has been prevented (or heavily put down) as a
side-effect of the analysis configurations and setups.

In scenario (b), the potential impact on timing that events not
captured at AT can have later during OT needs to be understood
and gauged. We do so by leveraging on the probabilistic nature of
the enhanced LEON3 MBPTA-compliant platform, where random
placement and replacement caches are used. In the particular case
of the cache-access-inversion timing anomaly, we can reason on the
probability of occurrence of its root causes: besides the bus delay, a
cache miss in L2 – which has a fixed latency – is causing the evic-
tion of a cache line that is accessed by an instruction sufficiently
close in the pipeline. With random caches [8] the probability of an
L2 miss to evict the useful cache line referenced by the DL1 miss
is bounded by the number of cache sets (SL2) and ways (WL2) in
L2, as shown in Equation 1 (Pevict). To upperbound the overall
timing effect, we use the number of L2 misses potentially trigger-
ing the anomaly, which can be in general obtained by exploiting
accurate hardware counters (e.g., L2_MISS_COUNT) as provided by
the standard debug support unit (DSU). The total L2 miss count is
a conservative overapproximation as it includes L2 misses that can
never cause an anomaly by construction, or that were already trig-
gering timing anomalies at AT. Equation 1 derives an upperbound
to overall effects of cache-access-inversion anomaly (∆) on a given
program by collecting the cost of each potential anomaly, which is
in turn bounded by the cost of the additional L2 cache miss.

∆ ≤
1

SL2 ·WL2︸ ︷︷ ︸
Pev ict

× L2_MISS_COUNT × L2_MISS_LATENCY (1)

In the particular case of our target processor, the L2 cache is a
512KB 4-way 32B/line cache [2]. Moreover, since the L2 cache is
partitioned across the 4 cores, each one receives exactly 1 cache
way, which means that Pevict ≤ 1

4096·1 ≈ 0.000244. The cost of an
additional L2 cache miss is 28 cycles in the target platform.

The probability of occurrence of the anomaly (per-se objectively
low), rapidly decreases when we consider for example the repeated
execution of the same set of instructionswithin a loop since accesses
in the following iterations will likely hit in IL1 and DL1. Looking
at the specific anomaly, we also observe that both L2 accesses,
instruction and data ones jointly contributing to the anomaly, must
be initiated by instructions that can actually suffer from some form
of inversion in the pipeline, which is only 7-stages in the LEON. As
a result, the effect of an anomaly cannot propagate outside of its

pipeline window. Borrowing the terminology used in the scope of
static analysis, this anomaly can be classified as boundable.

5.3 Priority Inversion due to Initial Cache State
A similar priority inversion could occur due to the initial cache
state. While worst-case initial state is enforced during analysis (e.g.
empty write-through caches and useless dirty contents in write-
back ones), some useful contents may be stored in cache during
operation so that some accesses become hits. If those hits lead to
timing anomalies, they do it with the same (very low) probability
described before. Moreover, by turning misses into hits, execution
time is lower and hence, less likely to be close to the WCET.

Equation 1 provides a parametric bound that depends on the
number of misses generated by a program. In practice, however, the
fact that the probability of occurrence of such anomalies is low and
rapidly decreasing (when considering sequences of instructions)
makes it arguable whether and to what extent they do actually pose
a threat to the trustworthiness of pWCET bounds.

5.4 Managing Arbitration Effects on Requests
As shown in the previous section, the bus and memory controller
arbitration policies can also impact timing anomalies. In particu-
lar, they determine the latency to serve L2 and memory requests
and, indirectly, the order in which requests are served, which can
generate a timing anomaly. However, these components process
requests in order in the LEON processor, so they cannot produce
further anomalies by themselves.

6 QUANTITATIVE ASSESSMENT
We build upon the FPGA implementation of the time-randomized
in-order, pipelined LEON3 processor [2]. In particular, the processor
features 16KB 4-way 16B/line DL1 and 32B/line IL1 caches. The
DL1 is write-through and IL1 read-only. The unified L2 cache is
512KB, 4-way with 32B lines. Latencies are 1 cycle for DL1/IL1 hits,
7 cycles for L2 hits and 28 cycles for memory accesses. DL1 and
IL1 implement random modulo [5] and random replacement [8]. L2
cache implements random placement and replacement [8]. For our
evaluation we use the EEMBC automotive benchmark suite, which
models some real-time automotive functionalities [14]. We obtain
pWCET estimates with MBPTA using 1,000 runs per benchmark,
which prove to be enough for MBPTA to converge [1].

We have studied the impact that execution time distributions
have on pWCET estimates. For that purpose we compute pWCET es-
timates at an exceedance threshold of 10−12 per runwithMBPTA [1],
although the same observations hold for other values. First, we have
computed those pWCET estimates and computed confidence inter-
vals for a significance level of α = 0.05, thus meaning that the true
pWCET value should fall in that interval with 95% confidence.

Since it is virtually impossible determiningwhether timing anom-
alies occurred as well as preventing or enforcing them in a real pro-
cessor, we perform a statistical assessment of the potential impact
of timing anomalies on execution time distributions. In particular,
we perform the following experiment: from each execution time
trace we produce an additional execution time trace by decreasing
each execution time by the expected upper-bound number of timing
anomalies (IL1 misses divided byWL2 · SL2 = 4, 096) multiplied by

ASP-DAC 2019, Jan. 2019, Tokyo, Japan P. Benedicte et al.

a2time basefp bitmnp cacheb canrdr matrix pntrch puwmod rspeed tblook ttsprk
0%

20%

40%

60%

80%

100%

normal 10x increase

Figure 6: Normalized confidence interval overlap w/wo TA.

the upper bound timing impact of a timing anomaly (28 cycles).
The number of timing anomalies is obtained as the quotient of
dividing the number of misses by 4, 096, and it is increased by 1
with a probability matching the remainder divided by 4, 096. Then
we compare those execution distributions against the original ones
with the Kolmogorov-Smirnov two-sample identical distribution
test with a significance level of α = 0.05. This test, which returns a
P-value in the range [0, 1], indicates that the identical distribution
hypothesis cannot be rejected when P-value > 0.05.

In order to compare pWCET estimates with and without tim-
ing anomalies, we do so in relative terms, by computing the ratio
between the difference of both pWCET estimates and the actual
pWCET estimate obtained without timing anomalies. Differences
are completely negligible. The highest differences correspond to
a2time and tblook (0.007% and 0.004% respectively), with most of
them below 0.001%. We have further compared the confidence inter-
vals to assess how much they overlap. This comparison is depicted
in Figure 6 (left bar in each pair), where we can see that the overlap
is huge, being always above 88% (95.5% on average) despite having
very narrow confidence intervals in some cases. Therefore, pWCET
estimates and execution time distributions cannot be proven differ-
ent. Hence, the effect of timing anomalies on the overall timing is
much lower than that already incurred by the variability of finite
random samples.

We have repeated the very same analysis in the case where the
upper-bounded impact of timing anomalies is further increased by
a 10X factor. The difference between pWCET estimates with and
without timing anomalies (with an impact increased by 10X) is very
small. In particular, the difference is always below 0.1% and below
0.01% in most of the cases. In terms of confidence intervals, Figure 6
(right bar in each pair) shows that they overlap in all cases, so we
cannot reject the hypothesis that both execution time distributions
lead to the same pWCET estimate. However, we see that the relative
overlap in the cases of pntrch and rspeed is comparatively low
(25% and 34% respectively). This effect is produced by the extremely
narrow confidence intervals (186 and 79 cycles respectively), so, in
practice, pWCET estimates just differ by few tens of cycles.

7 RELATEDWORK
Different timing analysis strands deal with timing anomalies in
the context of safety-related real-time systems [11, 16, 19]. Among
those works, an interesting classification is provided in [19], where
processors are broken down into several categories depending on
whether they are free of timing anomalies (ideal case), whether they
have timing anomalies whose impact can be upper bounded with
limited pessimism (good case), or whether they can trigger domino
effects that might lead to high execution time impact (challenging
case). Existing MBPTA-compliant processors are deemed as free of

timing anomalies or have left their consideration for future work.
This includes single [8] and multi-core [7, 17].

8 CONCLUSIONS
Timing anomalies can affect the quality of WCET estimates in the
increasingly complex hardware used in critical real-time systems.
In this paper we provide, for the first time, a definition of timing
anomaly for MBTA that differs from that used in STA. We have
also made an analysis of how to design hardware and collect mea-
surements to limit – or even remove – the impact of certain timing
anomalies for MB(P)TA. With an MBPTA-compliant RTL processor
implemented in a FPGA, we assess the influence of timing anom-
alies on WCET estimates and show that their impact falls within
the range of noise w.r.t. the own execution time variability.

ACKNOWLEDGMENT
This work has been partially funded by the Spanish Ministry of
Economy (TIN2015-65316-P) and the European Research Council
with Horizon 2020 (grant agreement No. 772773). Jaume Abella
has been partially supported by Ramon y Cajal grant RYC-2013-
14717. Enrico Mezzetti is partially funded by Juan de la Cierva-
Incorporación grant IJCI-2016-27396. Pedro Benedicte is funded by
the Spanish Ministry of Education under grant FPU15/01394.

REFERENCES
[1] J. Abella et al. 2017. Measurement-Based Worst-Case Execution Time Estimation

Using the Coefficient of Variation. ACM TODAES (2017).
[2] C. Hernandez et al. 2017. Design and Implementation of a Time Predictable

Processor: Evaluation With a Space Case Study. In ECRTS.
[3] M. Fernandez et al. 2017. Probabilistic timing analysis on time-randomized

platforms for the space domain. In DATE.
[4] V. Giorgetta. 2016. Invited talk: Challenges for the Automotive platform of the

future. In Workshop PLATFORMS.
[5] C. Hernandez et al. 2016. Random Modulo: a New Processor Cache Design for

Real-Time Critical Systems. In DAC.
[6] International Organization for Standardization. 2009. ISO/DIS 26262. Road Vehicles

– Functional Safety.
[7] J. Jalle et al. 2014. Bus Designs for Time-Probabilistic Multicore Processors. In

DATE.
[8] L. Kosmidis et al. 2013. A Cache Design for Probabilistically Analysable Real-time

Systems. In DATE.
[9] S. Kotz and S. Nadarajah. 2000. Extreme value distributions: theory and applications.

World Scientific.
[10] S. Law and I. Bate. 2016. Achieving Appropriate Test Coverage for Reliable

Measurement-Based Timing Analysis. In ECRTS.
[11] T. Lundqvist and P. Stenstrom. 1999. Timing anomalies in dynamically scheduled

microprocessors. In RTSS.
[12] NVIDIA. 2018. NVIDIA DRIVE PX. Scalable supercomputer for autonomous

driving. www.nvidia.com/object/drive-px.html.
[13] M. Paolieri et al. 2009. Hardware Support for WCET Analysis of Hard Real-Time

Multicore Systems. In ISCA.
[14] J. Poovey. 2007. Characterization of the EEMBC Benchmark Suite. North Carolina

State University.
[15] PROXIMA. 2014. Probabilistic real-time control of mixed-criticality multicore

and manycore systems. http://www.proxima-project.eu/
[16] J. Reineke et al. 2006. A Definition and Classification of Timing Anomalies. In

WCET Workshop.
[17] F. Wartel et al. 2015. Timing Analysis of an Avionics Case Study on Complex

Hardware/Software Platforms. In DATE.
[18] I. Wenzel et al. 2005. Measurement-Based Worst-Case Execution Time Analysis.

In SEUS Workshop.
[19] R. Wilhelm et al. 2009. Memory Hierarchies, Pipelines, and Buses for Future

Architectures in Time-Critical Embedded Systems. IEEE TCAD (2009).

www.nvidia.com/object/drive-px.html
http://www.proxima-project.eu/

	Abstract
	1 Introduction
	2 Background on Timing Analysis
	2.1 Measurement-Based Timing Analysis
	2.2 Timing Anomalies from STA Standpoint

	3 Timing Anomalies in MBTA
	4 Timing Anomalies in MBPTA
	4.1 Taxonomy of Timing Anomalies in MBPTA

	5 Dealing with Timing Anomalies
	5.1 Upperbounding Variable-Latency Units
	5.2 Priority Inversion in Cache Access
	5.3 Priority Inversion due to Initial Cache State
	5.4 Managing Arbitration Effects on Requests

	6 Quantitative Assessment
	7 Related Work
	8 Conclusions
	References

