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Abstract: In this paper we present the design and implementation of an hyper-
heuristic for efficiently scheduling independent jobs in Computational Grids. An
efficient scheduling of jobs to Grid resources depends on many parameters, among
others, the characteristics of the resources and jobs (such as computing capacity,
consistency of computing, workload, etc.). Moreover, these characteristics change
over time due to the dynamic nature of Grid environment, therefore the planning
of jobs to resources should be adaptively done. Existing ad hoc scheduling methods
(batch and immediate mode) have shown their efficacy for certain types of resource
and job characteristics. However, as stand alone methods, they are not able to
produce the best planning of jobs to resources for different types of Grid resources
and job characteristics.

In this work we have designed and implemented a hyper-heuristic that uses
a set of ad hoc (immediate and batch mode) scheduling methods to provide the
scheduling of jobs to Grid resources according to the Grid and job characteristics.
The hyper-heuristic is a high level algorithm, which examines the state and char-
acteristics of the Grid system (jobs and resources), and selects and applies the ad
hoc method that yields the best planning of jobs. The resulting hyper-heuristic
based scheduler can be thus used to develop network-aware applications that need
efficient planning of jobs to resources.

The Hyper-heuristic has been tested and evaluated in a dynamic setting through
a prototype of a Grid simulator. The experimental evaluation showed the usefulness
of the hyper-heuristic for planning of jobs to resources as compared to planning
without knowledge of the resource and job characteristics.
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1. Introduction

During the last years, Grid computing has motivated the development of large scale
applications that need the large computing capacity offered by the Computational
Grids (CGs). Among the most interesting features of CGs is their parallel na-
ture. A CG is a “type of parallel and distributed system that enables the sharing,
selection, and aggregation of geographically distributed autonomous resources dy-
namically depending on their availability, capability, performance, cost, and users’
QoS requirements” [6, 7]. It is precisely the parallel and distributed nature of CGs
that was first exploited for solving computationally hard combinatorial optimiza-
tion problems [4, 17, 13].

In order to achieve the Grid as a single computational unit many complex is-
sues are nowadays being investigated. One key issue is to efficiently benefit from
the parallel nature of Grid systems. The large computing capacity offered by Grids
not necessarily yields to high performance applications. Indeed, efficient techniques
that allocate jobs/applications to Grid resources are necessary. The resource al-
location problem is known to be computationally hard [9]. Although scheduling
problems are among most studied problems in combinatorial optimization, the het-
erogenous and dynamic characteristics of Grids makes the problem very complex
for Grid environments. For instance, a Grid can connect PCs, LANs and Super-
computers and jobs of very different workload can arrive in the Grid. Moreover, job
scheduling in Grids is a large scale optimization problem due to the large number
of jobs that could arrive in the Grid and of the large number of Grid nodes that
could potentially participate in the planning of jobs. Therefore, although useful,
the techniques used in traditional scheduling may fail to produce efficient plan-
ning in Grids since they are not grid-aware, that is, do not have knowledge of the
characteristics of the underlaying Grid infrastructure.

Given the dynamic nature of the Grid systems, any scheduler should provide
allocations of jobs to resources as fast as possible. Moreover, Grid schedulers should
be adaptive due to the changeability of the Grid characteristics [5, 11, 8]. Therefore,
schedulers based on very efficient methods are very important especially in presence
of time restrictions on job executions on the Grid. Immediate and batch methods
fall into this type of methods since they distinguish for their efficiency in contrast
to more sophisticated schedulers that could need larger execution times.

In the immediate mode, a job is scheduled as soon as the job enters in the sched-
uler while in batch mode jobs are grouped in a batch of jobs, which is scheduled
according to a time interval specified by a mapping event. Thus, in immediate mode
we are interested to schedule jobs without waiting for the next time interval the
scheduler will get activated or when the job arrival rate is small having thus avail-
able resources to execute jobs immediately. On the contrary, when the job arrival
rate is high, resources are most likely occupied with executing previously allocated
jobs, thus the batch mode could be activated. Among the immediate mode schedul-
ing methods we considered in this work the Opportunistic Load Balancing (OLB),
Minimum Completion Time (MCT), Minimum Execution Time (MET), Switch-
ing Algorithm (SA) and k-Percent Best (kPB) and from batch mode methods we
considered the Min-Min, Max-Min, Sufferage and Relative Cost.

Ad hoc methods for heterogenous computing environments have been explored
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in several works in the literature [14, 2, 3, 18]. Depending on the characteristics
of the Grid resources and jobs, these methods could present very different perfor-
mance. For instance, the MCT method performs well for consistent computing en-
vironments, however, it performs poorly for inconsistent computing environments.
Moreover, an ad hoc method could perform well if the optimization criterion is the
makespan but could perform poorly if the optimization criterion were the flowtime.
Thus, as stand alone methods, these ad hoc methods are not able to produce the
best planning of jobs to resources for different types of Grid resources and job
characteristics.

In this work we have designed and implemented an hyper-heuristic that uses
the above mentioned ad hoc methods to achieve the best scheduling of jobs to Grid
nodes according to the Grid and job characteristics. The hyper-heuristic is a high
level algorithm, which examines the state and characteristics of the Grid system
(jobs and resources), and applies the ad hoc method that yields the best planning
of jobs to Grid resources.

Our starting point was the empirical evaluation of the nine ad hoc methods
using the static benchmark of static instances [3]. This benchmark is intended for
heterogenous environments and consists of families of instances sharing common
characteristics regarding the consistency of computing, the heterogeneity of jobs
and heterogeneity of resources. We run each of the nine ad hoc methods on 100 dif-
ferent instances of the benchmark to study the behavior of these ad hoc methods in
order to train the hyper-heuristic. The performance of the hyper-heuristic is then
evaluated in a dynamic environment through a prototype of a Grid simulator [21].
The experimental study showed the usefulness of using the hyper-heuristic, which
uses knowledge of the underlying Grid (such as the degree of consistency of com-
puting, heterogeneity of jobs and heterogeneity of resources) in its decision-taking
as opposed to using ad hoc heuristics as stand alone methods or a pure random
choice method. The performance of the hyper-heuristic is done with regard to
three parameters of the Grid system: makespan, flowtime and resource utilization.
Thus, the hyper-scheduler informs about the three most important parameters.
Although makespan is considered the most important parameter in scheduling,
flowtime and resource utilization are relevant parameters for Grid users and Grid
resource owners.

The rest of the paper is organized as follows. We give in Section 2. an overview of
some relevant related work. The description of the job scheduling in Computational
Grids considered in this work is given in Section 3.. The ad hoc methods used in
the hyper-heuristic as well as their evaluation is given in Section 4.. The design
of the hyper-heuristic is given in Section 5. and some computational results and
evaluation is given in Section 6.. We end in Section 7. with some conclusions and
future work.

2. Related work

Allocating jobs adaptively in large-scale distributed systems has deserved the
attention and effort of many researchers. There are proposed many approaches in
the literature that range from basic and simple approaches to more sophisticated
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ones such as Genetic Algorithms, Neural Networks, Reinforced Learning, Fuzzy
Logic and QoS-based approaches. We briefly present them next.

Casanova et al. [5] considered a class of Grid applications with large numbers of
independent tasks (Monte Carlo simulations, parameter-space searches, etc.), also
known as task farming applications. For these applications with loosely coupled
tasks, the authors developed a general adaptive scheduling algorithm. The authors
used NetSolve[4] as a testbed for evaluating the proposed algorithm.

Othman et al. [15] stress the need for the Grid system’s ability to recognize the
state of the resources. The authors presented an approach for system adaptation,
in which Grid jobs are maintained, using an adaptable Resource Broker. Huedo
et a. [11] reported a scheduling algorithm built on top of the GridWay framework,
which uses internally adaptive scheduling to reflect the dynamic Grid characteris-
tics.

Gao et al. [8] used GAs for developing two prediction models for the completion
time of jobs in a service Grid. Specifically, the authors use, at application-level
scheduling, GAs to minimize the average completion time of jobs.

Lee et al. [12] are concerned with the efficiency of resource utilization of avail-
able Grid resources. An adaptive Grid scheduling system for high-throughput
applications is proposed, which is able to adapt to the Grid environment.

Some authors have used reinforced learning techniques for scheduling in Grid
systems. Perez et al. [19], proposed to implement a Reinforcement Learning based
scheduling approach for large Grid computing systems. Vengerov [20] presented
a utility-based framework for making repeated scheduling decisions dynamically;
the observed information about unscheduled jobs and system’s resources is used
for this purpose.

Yu et al. [22] used Fuzzy Neural Networks to develop a high performance
scheduling algorithm. The algorithms uses Fuzzy Logic techniques to evaluate the
Grid system load information, and adopt the Neural Networks to automatically
tune the membership functions.

Hao et al. [10] presented a Grid resource selection based on Neural Networks
aiming at offering QoS on distributed, heterogeneous resources. To this end, the
authors propose to select Grid resources constrained by QoS criteria. The resource
selection problem is solved using a novel neural networks.

Zhou et al. [23] used Fuzzy Logic techniques to design an adaptive Fuzzy Logic
scheduler, which utilizes the Fuzzy Logic control technology to select the most
suitable computing node in the Grid environment.

3. Independent job scheduling in Grids

The job scheduling problem in Grids has many characteristics in common with
the traditional scheduling problems. The objective is to efficiently map jobs to
resources; however, in a global, heterogenous and dynamic environment, such as
Grid environment, we re interested to find a practically good planning of jobs very
fast. Moreover, unlike traditional scheduling in which the makespan is the most
important parameter, we are also interested to optimize flowtime and resource
utilization.
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In this work we deal with the scheduling independent jobs to resources. We
describe this version next and then give a formal definition of an instance of the
problem. Jobs have the following characteristics: are originated from different
users/applications, have to be completed in unique resource (non-preemptive), are
independent and could also have their requirements over resources. This last char-
acteristic is important if we would like to classify jobs originated from data intensive
or computing intensive applications.

On the other hand, resources could dynamically be added/dropped from the
Grid, can process one job at a time and have their computing characteristics.

3.1 Expected Time to Compute simulation model

In order to formalize the instance definition of the problem, we use the ETC (Ex-
pected Time To Compute) matrix model, see e.g. [3]. This model is used for
capturing most important characteristics of job and resources in distributed het-
erogeneous environments. In a certain sense, a good planning jobs to resources will
have to take into account the characteristics of jobs and resources. More precisely,
the Expected Time to Compute matrix, ETC, has size nb jobs×nb machines and
its components are defined as ETC[i][j] = the expected execution time of job i
in machine j. ETC matrices are then classified into consistent, inconsistent and
semi-consistent according to the consistency of computing of resources: (a) consis-
tency means that if a machine mi executes a job faster than machine mj , then mi

executes all the jobs faster than mj . If this holds for all machines participating in
the planning, the ETC matrix is considered consistent ; (b) inconsistency means
that a machine is faster for some jobs and slower for some others; and, (c) semi-
consistency is used to express the fact that an ETC matrix can have a consistent
sub-matrix. In this case the ETC matrix is considered semi-consistent. Notice that
the variability in characteristics of jobs and resources yields to different ETC con-
figurations allowing thus to simulate different scenarios from real life distributed
applications.

3.2 Problem definition

Under the ETC simulation model, an instance of the problem consists of:

– A number of independent (user/application) jobs to be scheduled.

– A number of heterogeneous machines candidates to participate in the planning.

– The workload of each job (expressed in millions of instructions).

– The computing capacity of each machine (expressed in mips –millions of instruc-
tions per second).

– Ready time ready[m] –when machine m will have finished the previously as-
signed jobs.

– The Expected Time to Compute matrix, ETC.

This version of the problem does not include time for data transmission and
possible job dependencies. Yet, this version arises in many Grid-based applica-
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tions, such as in simulations, massive data processing, which can be divided into
independent parts, which are mapped to different Grid resources.

Optimization criteria. Several parameters could be measured for a given sched-
ule. Among these, there are (S denotes a possible schedule):

(a) makespan (finishing time of latest job) defined as:

min
S

max{Fj : j ∈ Jobs}.

(b) flowtime (sum of finishing times of jobs), that is:

min
S

∑

j∈Jobs

Fj ,

c) resource utilization, in fact, we consider the average resource utilization. This
last parameter is defined using the completion time of a machine, which
indicates the time in which machine m will finalize the processing of the
previous assigned jobs as well as of those already planned for the machine.
Formally, it is defined as follows:

completion[m] = ready[m] +
∑

j∈S−1(m)

ETC[j][m].

Having the values of the completion time for the machines, we can define the
makespan, which is in fact the local makespan by considering only the machines
involved in the current schedule:

makespan = max{completion[i] | i ∈ Machines′}.

Then, we define:

avg utilization =

∑
{i∈Machines} completion[i]

makespan · nb machines
.

It should be noted that these parameters are very important for Grid systems.
Makespan measures the productivity of the Grid system, the flowtime measures the
QoS of the Grid system and resource utilization indicates the quality of a schedule
with respect to the utilization of resources involved in the schedule aiming to reduce
idle time of resources.

4. Ad hoc methods used in the hyper-heuristic

Several specific scheduling methods were considered in the implementation of the
hyper-heuristic. These specific methods belongs to two families: immediate and
batch mode. In the former we have methods that schedule jobs to Grid resources
as soon as they enter in the Grid system, while in the later batches of jobs are
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scheduled. Notice that disposing of these two types of processing (immediate and
batch) allows us to better match the computational needs and requirements of
scheduling; thus, based on job characteristics we could classify jobs as immediate-
like or batch-like.

4.1 Immediate mode methods

In the immediate mode we considered the following five methods to be used in
the hyper-heuristic: Opportunistic Load Balancing (OLB), Minimum Completion
Time (MCT), Minimum Execution Time (MET), Switching Algorithm (SA) and
k-Percent Best (kPB).

OLB: This method assigns a job to the earliest idle machine without taking into
account the execution time of the job in the machine. If two or more machines
are available at the same time, one of them is arbitrarily chosen. Usually this
method is used in scavenging grids. One advantage of this method is that it tries
to keep the machines as loaded as possible; however, the method is not aware of
the execution times of jobs into machines, which is, certainly, a disadvantage as
regards the makespan and flowtime parameters.

MCT: This method assigns a job to the machine yielding the earliest completion
time (the ready times of the machines are used). Note that a job could be assigned
to a machine that does not have the smallest execution time for that job. This
method is also known as Fast Greedy, originally proposed for SmartNet system.

MET: This method assigns a job to the machine having the smallest execution
time for that job. Note that unlike MCT, this method does not take into account
the ready times of machines. Clearly, in Grid systems of different computing capac-
ity resources, this method could produce an unbalance by assigning jobs to fastest
resources. However, the advantage is that jobs are allocated to resources that best
fit them as regards the execution time.

SA: This method tries to overcome some limitations of MET and MCT methods
by combining their best features. More precisely, MET is not good for load balanc-
ing while MCT does not take into account execution times of jobs into machines.
Essentially, the idea is to use MET till a threshold is reached and then use MCT
to achieve a good load balancing. SA method combines MET and MCT cyclically
based on the workload of resources.

In order to implement the method, let rmax be the maximum ready time and
rmin the minimum ready time; the load balancing factor is then rmin/rmax, which
takes values in [0, 1]. Note that for r = 1.0 we have a perfect load balancing and
if r = 0.0 then there exists at least one idle machine. Further, we use to threshold
values rl (low) and rh (high) for r, 0 ≤ rl < rh ≤ 1. Initially, r = 0.0 so that
SA starts allocating jobs according to MCT until r becomes greater than rh; after
that, MET is activated so that r becomes smaller than rl and a new cycle starts
again until all jobs are allocated.
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kPB: For a given job, this method considers a subset of candidate resources from
which the resource to allocate the job is chosen. The candidate set consists of
m · k/100 best resources (with respect to execution times) for the given job, for
k, m/100 ≤ k ≤ 100. The machine to allocate the job is taken the one from the
candidate set yielding the earliest completion time. Note that for k = 100, kPB
behaves as MCT and for k = 100/m it behaves as MET. It should be noted that
this method could perform poorly if the subset of resources is not within k% best
resources for any of jobs implying thus a large idle time.

4.2 Batch mode methods

We considered the following batch methods: Min-Min, Max-Min, Sufferage and
Relative Cost.

Min-Min: This method starts by computing a matrix of values completion[i][j]
for any job i and machine j based on ETC[i][j] and readyj values; the comple-
tion values are computed by summing up the ETC value and ready time value
(completion[i][j] = ETC[i][j] + ready[j]). For any job i, the machine mi yielding
the earliest completion time is computed by traversing the ith row of the comple-
tion matrix. Then, job ik with the earliest completion time is chosen and mapped
to the corresponding machine mk (previously computed). Next, job ik is removed
from Jobs and completion[i][j] values ∀i in Jobs and machine mk are updated. The
process is repeated until there are jobs to be assigned.

Max-Min: This method is similar to Min-Min. The difference is that once it
is computed, for any job i, the machine mi yielding the earliest completion time,
the ik with the latest completion time is chosen and mapped to the corresponding
machine. Note that this method is appropriate when most of the jobs entering the
Grid system are short. Thus, Max-Min would try to schedule at the same time all
the short jobs and longest ones while Min-Min would schedule first the shortest
jobs and then the longest ones implying thus a larger makespan.

Sufferage: The idea behind this method is that better scheduling could be ob-
tained if we assign to a machine a job, which would “suffer” more if it were assigned
to any other machine. To implement this method, the sufferage parameter of a job
is defined as the difference between the second earliest completion time of the job
in machine ml and the first earliest completion time of the job in machine mk. The
method starts by labelling all machines as available. Then, in each iteration (of
a while loop) a pending job j is chosen to be scheduled. To this end, for job j,
the machines mi and ml and the sufferage value are computed. If machine mi is
available, then job j is assigned to mi. In case, mi is already executing another
job j′, then jobs j and j′ will compete for machine mi; the winner is the job of
largest sufferage value. The job loosing the competition will be considered once all
pending jobs have been analyzed.

Relative Cost: In allocating jobs to machines, this method takes into account
both the load balancing of machines and the execution times of jobs in machines,

8



Fatos Xhafa: A Hyper-heuristic for adaptive scheduling in Grids

that is, for a given job, find the machine that best matches job’s execution time.
This last criterion is known as matching proximity and is used, apart from makespan,
flowtime and resource utilization for measuring the performance of the allocation
method. Note that load balancing and matching proximity are contradicting crite-
ria. In order to find a good tradeoff between them the method uses two parameters,
namely, static relative cost and dynamic relative cost. Given a job i and machine
j, the static relative cost γs

ij is defined as γs
ij = ETC[i][j]/etc avgi, where:

etc avgi =
∑

j∈Machines

ETC[i][j]/nb machines.

This static parameter is computed once at the beginning of the execution of the
method. The dynamic relative cost is computed at the beginning of each iteration
k, as

γd
ij = completion(k)[i][j]/completion avg

(k)
i ,

where:

completion avg
(k)
i =

∑
j∈Machines completion(k)[i][j]

nb machines
.

At each iteration k, the best job ibest is the one that minimizes the expression

(γs
i,m∗

i

)α · γd
i,m∗

i

, ∀i ∈ Jobs,

where:

m∗
i = argmin{completion(k)[i][m] | m ∈ Machines}.

The value of α is fixed to 0.5.

4.3 Evaluation of the ad hoc methods on a static benchmark

We empirically evaluated the performance of the nine ad hoc methods presented
above, using a benchmark of static instances [3]. The objective is to use the evalu-
ation results for taking better decisions in running an immediate or batch method.
The benchmark is intended for distributed heterogenous systems and is generated
based on ETC matrix model (see Subsection 3.1).

Braun et al. used the ETC matrix model to generate a benchmark of instances,
which are classified into 12 different types of ETC matrices (each of them con-
sisting of 100 instances) according to three criteria: job heterogeneity, machine
heterogeneity and consistency of computing. All instances consist of 512 jobs and
16 machines and are labelled as u x yyzz.k where:

- u means uniform distribution (used in generating the matrix).

- x means the type of consistency (c–consistent, i–inconsistent and s means
semi-consistent).

- yy indicates the heterogeneity of the jobs (hi means high, and lo means
low).
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- zz indicates the heterogeneity of the resources (hi means high, and lo means
low).

- k is the instance index (k = 0..99).

In order to evaluate the nine ad hoc methods, we run each ad hoc methods on
instances of the benchmark and observed which method did most frequently yield
the best result out of 100 runs. These instances are of different characteristics
regarding consistency of computing, job heterogeneity and resource heterogeneity.
In the following we use the instance notation x yyzz, to indicate the group of
instances having ETC consistency x, heterogeneity of jobs yy and heterogeneity of
resources zz. For example, c hilo means the group of consistent instances having
high heterogeneity of jobs and low heterogeneity of resources. We give in Figs. 1
to 3 the computational results of running each method on 100 instances.

OLB MCT MET SA KPB Min-

Min 

Max-

Min 

Suff RC 

c_hihi X X 

c_hilo X X 

c_lohi X X 

c_lolo X X 

i_hihi X X 

i_hilo X X 

i_lohi X X 

i_lolo X X 

s_hihi X X 

s_hilo X X 

s_lohi X X 

s_lolo X X 

Fig. 1 Performance of nine ad hoc methods for Braun et al.’s instances - Makespan
values. The X mark means that the method was chosen most of the times out of
100 runs on different instances. The first five columns correspond to immediate
methods and the last four columns to batch methods.

OLB MCT MET SA KPB Min-

Min 

Max-

Min 

Suff RC 

c_hihi X X 

c_hilo X X 

c_lohi X X 

c_lolo X X 

c_hihi X X 

i_hilo X X 

i_lohi X X 

i_lolo X X 

s_hihi X X 

s_hilo X X 

s_lohi X X 

s_lolo X X 

Fig. 2 Performance of nine ad hoc methods for Braun et al.’s instances - Flowtime
values. The X mark means that the method was chosen most of the times out of
100 runs on different instances. The first five columns correspond to immediate
methods and the last four columns to batch methods.
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OLB MCTMETSA KPB Min-

Min

Max-

Min

Suff RC 

c_hihi X X 

c_hilo X X 

c_lohi X X 

c_lolo X X 

i_hihi X X 

i_hilo X X 

i_lohi X X 

i_lolo X X 

s_hihi X X 

s_hilo X X 

s_lohi X X 

s_lolo X X 

Fig. 3 Performance of nine ad hoc methods for Braun et al.’s instances - Resource
Utilization values. The X mark means that the method was chosen most of the
times out of 100 runs on different instances. The first five columns correspond to
immediate methods and the last four columns to batch methods.

From the results of static setting we can observe that the ad hoc methods
perform quite differently on the set of considered static instances. On the other
hand, it can also be observed that, their performance depends on the objective to
optimize. Thus, for instance, MCT performs well for optimizing makespan but very
bad for optimizing flowtime. As a matter of fact, these results were the starting
point to study the performance of the hyper-heuristic using a Grid simulator.

5. Design of the hyper-heuristic

The hyper-heuristic is conceived as high-level algorithm capable of deciding which
of ad hoc heuristics to use according to the resource and job characteristics. To
this end, the hyper-heuristic uses a set of parameters for decision-taking. More
precisely, the following parameters are used:

• A threshold parameter for job heterogeneity.

• A threshold parameter for resource heterogeneity.

• A parameter to indicate the objective to optimize (makespan, flowtime or
resource utilization).

Based on this parameters, the hyper-heuristic takes the decision which of the
immediate or batch methods to use. The values of the first two parameters are
fixed similarly as in [3].

Hyper-heuristic Algorithm

Input: Parameters, ready-times, ETC matrix

1. Evaluate job heterogeneity. The variance of the job workloads is computed
and if it is larger than the threshold parameter the instance of jobs is consid-
ered of high heterogeneity, otherwise it is considered of low heterogeneity.
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2. Evaluate resource heterogeneity. The variance of the computing capacity
of resources is computed and if it is larger than the threshold parameter
the instance of resources is considered of high heterogeneity, otherwise it is
considered of low heterogeneity.

3. Examine ETC matrix to deduce its consistency. The ETC matrix is ex-
plored by columns –columns correspond to resources– and deduces which of
three cases (consistent, inconsistent or semi-consistent) holds.

4. Choose the ad-hoc method to execute based on parameters and results of
steps 1.-3.

5. Execute the chosen ad-hoc method.

Output: The schedule.

Heterogeneity of tasks. The calculation of this value is quite simple, since it
consists in computing the variance of the data that forms the vector of workload
of the tasks. The value of the variance is compared with a threshold value that
indicates whether the instance has to be classified as HI (high) if the variance is
larger than the threshold or LO (low) otherwise. Notice that in our case we use the
threshold value of 100000, which is quite similar to the one used by Braun et al. in
their calculations. The cost to carry out this computation is O(t), where t is the
number of tasks.

Heterogeneity of machines. As in the case of task heterogeneity, this calcula-
tion is also simple since it is based on the variance of the data of computing capacity
of resources. Again, we compare the obtained value with a prefixed threshold value
that, in our case (being based on the reference values used by Braun et al.), is 1000.
The computation cost of this calculation is O(m), where m is the number of ma-
chines.

Consistency of the ETC matrix. Deducing the type of the consistency of the
ETC matrix is not as simple as before since now we have to apply an exhaustive
exploration of the matrix and check the conditions that describe the three types of
consistency: inconsistent, semi-consistent and consistent. For this, a function that
explores the ETC matrix has been implemented in such a way that for a machine
mi we scan the sequence of machines mj such that i < j and comparing ETC
values for machines i and j in order to identify some characteristic which allows us
to deduce the consistency type of the matrix. It should be pointed out that this
function is computationally more expensive as compared to heterogeneity of tasks
and machines, namely it is O(m2 · t). We validated in practice the consistency
function by running it on a group of 100 instances randomly chosen from the group
of 1200 instances and the function always asserted the consistency of the examined
matrix.
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6. Computational results

We used a Grid Simulator1 [21] implemented with the HyperSim discrete event
simulation library [16] to test the performance of the hyper-heuristic. The simulator
is highly parameterizable through:

• Distributions of arriving and leaving of Grid resources and their Mips;

• Distributions of job arrival to the Grid and their workloads;

• The initial resources and jobs in the system and maximum number of re-
sources and jobs to generate;

• Job and resource types.

• Percentage ratio of immediate vs. batch jobs.

For a schedule event, the simulator calls the hyper-heuristic and passes to it the
ETC matrix, ready times, resources and jobs to be scheduled as input and receives
the schedule from the hyper-heuristic in turn (see Fig. 4).

Simulator Hyper 

Scheduler
Parameter

Statistic 

Results 

Fig. 4 The use of the hyper-heuristic with the Grid Simulator.

In order to use the hyper-heuristic together with the simulator, we had to make
some extensions of the simulator in order to “couple” it with the hyper-heuristic
based scheduler. Essentially a new class, called HyperScheduler, is implemented
via inheritance from the interface of SchedulingPolicy class in the simulator.

We used the Grid simulator to experimentally study the performance of the
hyper-heuristic based scheduler in both static and dynamic settings.

6.1 Static setting

We used the simulator to generate our own static instances and evaluated the per-
formance of the scheduler on such instances. More precisely, instances representing
three Grid types, namely, small, medium and large size were generated. The values
of the parameters used in generating the static instances are shown in the table of
Fig. 5.

1A Web interface for the Grid simulator can be found at
http://weboptserv.lsi.upc.edu/WEBGRID/ under free registration and use.
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Small médium Large 

Init./Total hosts 32 64  128 

Mips n(1000, 175) 

Init./Total tasks 512 1024 2048 

Workload n(250000000, 43750000) 

Host selection All 

Task selection All 

Local policy Sptf 

Number of runs 30 

Fig. 5 Parameters of the simulator used in static setting.

We compare the computational results of the hyper-heuristic versus a pure
random method (that is, the ad hoc method to run is chosen at random among all
considered immediate/batch methods). Moreover, we varied the percentage ratio
of immediate/batch jobs: 0%, 25%, 75% and 100%. We show in Figs. 6, 7 and
8 the graphical representation of makespan and flowtime and resource utilization
values, respectively, for the static case.
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Fig. 6 Comparison of makespan values for the static environment obtained with
the hyper-heuristic and a random choice method (denoted RND).

6.2 Dynamic setting

In the dynamic setting we used the following values for the parameters of the
simulator shown in the table of Figure 9.

Again, the results of makespan and flowtime values for small, medium and large
size Grids obtained with the hyper-heuristic are compared with those of a random
choice method (see Figs. 10, 11 and 12) the graphical representation ).

In the dynamic setting we clearly see that the hyper-heuristic produces high
quality planning of jobs as compared to pure random choices of ad hoc methods.
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Fig. 7 Comparison of flowtime values for the static environment obtained with the
hyper-heuristic and a random choice method (denoted RND).
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Fig. 8 Comparison of resource utilization values for the static environment obtained
with the hyper-heuristic and a random choice method (denoted RND).

Small Médium Large 

Init. hosts 32 64 128 

Max. Hosts 37 70 135 

Min. Hosts 27 58 121 

Mips n(1000, 175) 

Add host n(625000,93750) n(562500,84375) n(500000,75000) 

Delete host n(625000,93750) 

Total tasks 512 1024 2048 

Init. tasks 384 768 1536 

Workload n(250000000, 43750000) 

Interrarival e(7812.5) e(3906.25) e(1953.125) 

Activation resource_and_time_interval(250000) 

Reschedule true 

Host select all 

Task select all 

Local policy sptf 

Number of runs 15 

Fig. 9 Parameters of the simulator used in dynamic setting.
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Fig. 10 Comparison of makespan values for the dynamic environment obtained
with the hyper-heuristic and a random choice method (denoted RND).
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Fig. 11 Comparison of flowtime values for the dynamic environment obtained with
the hyper-heuristic and a random choice method (denoted RND).
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Fig. 12 Comparison of resource utilization values for the dynamic environment
obtained with the hyper-heuristic and a random choice method (denoted RND).

7. Conclusion and future work

In this work we have presented an hyper-heuristic that uses a set of parameters
and ad hoc methods for scheduling independent jobs to Grid resources. The hyper-
heuristic tries to deduce the Grid resources and jobs characteristics and applies the
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ad hoc method that yield the best planning of jobs for the Grid configuration.
From the experimental evaluation, we observed that the planning of jobs to

Grid resources obtained by the hyper-heuristic using guided decisions are much
better and coherent than pure random decisions (without any knowledge of the
underlaying Grid characteristics). For makespan, we have seen that the results
worsen when the ratio of immediate/batch jobs is close to 0.5, which is an indicator
that immediate and batch methods “trip-over” each other. On the other hand, for
flowtime, when the ratio of immediate/batch is favorable to batch, better results
are obtained.

We plan to evaluate the hyper-heuristic in a real Grid, on the one hand by
developing an interface for real Grids, and on the other, by incorporating a module
that will be in charge of extracting the state of the network (Grid characteristics,
job characteristics etc.) and will pass it to the hyper-heuristic. Also, it would be
interesting to use more advanced classification techniques for deducing the type of
the scheduling method based on the Grid instance.
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