
1

On the use of i* for Architecting Hybrid Systems: A
Method and an Evaluation Report†

Juan Pablo Carvallo1, Xavier Franch2

1Universidad Del Pacifico

Carlos Arizaga Toral S/N y Luis Moscoso, Cuenca, Ecuador
jpcarvallo@upacifico.edu.ec

2Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona, 1-3, E-08034 Barcelona, Spain
franch@lsi.upc.edu

Abstract. The architectural definition of hybrid software systems is a
challenging problem that demands to reconcile stakeholders’ strategic needs
and components marketplace, whilst defining an appropriate set of services. We
have defined a method called DHARMA based on the i* framework. The goal
of this paper is to present an experience report about the use of i* in large-scale
projects. We provide two different viewpoints: the viewpoint of the stakeholder
and the viewpoint of the modeller. Apart from general lessons learned, we also
provide some insights about the use of i* in the specific context of architecting
hybrid systems using DHARMA.

Keywords: hybrid systems, goal-oriented models, i*, software architecture.

1 Introduction

Most of current software systems are built as the integration of software components
of different nature and origins in which sometimes is referred to as Hybrid
Architecture Systems [1]. The software components used in these systems include
software packages developed by third parties, commonly known as Off-The-Shelf
(OTS) components [2] (e.g., commercial OTS components or COTS; free components
open source or FOSS [4]; and web services [5]), and also bespoke software and
legacy systems.

In this development context, systems are built in an opportunistic manner [6],
considering at the same time the environment and the strategy of the organization, the
components available in the marketplace (e.g., OTS marketplace, FOSS community),
their capacity for being integrated into a single system and interoperate in a
transparent manner, and the resources required by their adoption and integration.

The specification of requirements, the selection of the required components, and
their adaptation and integration into a single architecture, are some of the problems
that have been extensively studied and documented in the literature [7, 8]. However,

† This work has been partially supported by the Spanish project TIN2007-64753.

2

there are some other problems that remain as challenges and demand more study from
the scientific community. Among them, we mention: the identification of the strategic
needs for which the system is required; the identification of the specific services
(bound to these needs) that the system shall offer; and the grouping of the services
into atomic domains, which structure the generic architecture of the system and
describe the minimum functionality that must be covered for each of the components
that will be part of the system.

This paper proposes the DHARMA method to identify the architecture of a
component-based system. The generic components that form this architecture may be
later substituted in an opportunistic manner (in the sense of [6]) by components of
different nature and origins forming a hybrid system. Specifically, DHARMA is
based on the use of the i* framework [9], exploiting its ability to represent actors,
dependencies and intentions. And in fact this use yields to the main goal of the paper,
namely to provide an empirical assessment on the use of the i* framework in large-
scale projects, both from the point of view of stakeholders and modellers.

The rest of the paper is organized as follows. Section 2 briefly describes the two
case studies that have provided most of the feedback for this evaluation report.
Section 3 provides a summary of the DHARMA method. Sections 4 and 5 give the
details about the use of i* in the experiences described in Section 2. Finally, Section 6
presents conclusions and future work.

2 The Experience

The work described in this paper in based on two projects developed in Ecuador: the
renovation of the IS inside the company ETAPATELECOM, and the elaboration of
an IT strategic plan for the Cuenca Airport. We briefly describe both projects in this
section.

2.1 The ETAPATELECOM case

ETAPATELECOM is a new entrant telecom company, based in Cuenca, Ecuador.
Established in 2002, it currently provides nationwide internet access, data carrying
and public and residential fixed telephone services.

To fulfil its deployment strategy, ETAPATELECOM had to face the selection and
adoption of several technologies, including several COTS components required by the
information system that supports its operation. During this process, the company has
used quality models [10] under different forms, and modelling techniques based on i*
to support several activities linked with the adoption and development of information
technologies, with more than satisfactory results. Finally, both techniques (quality
models and the i* framework) were combined by means of the COSTUME method
aimed at construction quality models for composite systems [11].

3

2.2 The Cuenca Airport case

Due to the decentralization process conducted in Ecuador in the last few years, the
administration of Cuenca’s airport was handed from the national Civil Aviation
Direction (DAC) to its local municipality. Although the airport was at that moment
the 3rd largest in the country, it was severally underused, managing only few domestic
flights during the day. The new administration decided to change this situation and
developed a strategic plan, designed to increase the airport usage with additional
national and international frequencies, as well as other services including the imple-
mentation of cargo transportation fleet, a convention center and shopping facilities.

An important part of the strategic plan was oriented to the implementation of the IT
services required to support its operation. The i* framework was used to define basic
hardware (network and domotic services required) and the software system
architecture. Once the architecture was outlined, several projects were defined to
support is implementation. Projects were categorized regarding the hardware-software
and generic-strategic dimensions, and prioritized base on the current criticality and
time available before they become essential e.g., in relation to the approximate dates
in which new services were to be implemented according to the strategic plan.

The defined projects were part of the IT strategic plan which also included the
Function and Organization Manual (MOF, acronym for the Spanish term) and the
outline of the process manual to be used by the IT staff in software and hardware
acquisition, software development and systems operation.

3 The DHARMA method

The DHARMA method (Discovering Hybrid ARchitectures by Modelling Actors)
aims at the definition of software architectures using the i* framework. It has been
defined as a result of the experiences reported in Section 2. The process resulting
from the method is initiated by modelling the organizational context and ends with the
identification of the generic architecture of the software system. By “generic
architecture” we mean the identification of the actors that form part of the system, the
services that must be covered by each of them and the relationships among them.

The concept of actor is therefore central to the DHARMA method and this is
reason that makes the i* framework highly convenient. System actors represent
atomic domains for which OTS components may be identified. By “atomic domain”
we mean a group of functions or services that bring some value to the user, such that
not other proper subset of this group represents a different significant domain.

The objective of the DHARMA method is not the identification of the final
architecture of the system, in which every actor represents a subsystem that may be
directly mapped into an individual OTS component (although this may be a particular
case). Instead, other cases are possible: an OTS component may cover the services of
more than one actor; the services of an actor may be covered by more than one OTS
component that altogether provide the required functionality; an actor may be covered
by several OTS components that overlap for dependability purposes; or some services
of an actor may not be covered by existing OTS components, requiring some bespoke
development.

4

The method has been structured into four basic activities that may iterate or
intertwine as needed (see Fig. 1):
• Activity 1: Modelling the organizational context. The organization and its

business model are analysed in detail, in order to identify the role that it plays
inside its environment. This analysis surfaces the different types of actors that exist
in its contexts, and the strategic needs among them and the organization. The i*
SD diagrams are used to elicit and represent the actors and relationships.

• Activity 2 : Modelling the environment of the system. In this activity, a new
system is inserted into the organization and the impact that this system has over the
context is analysed. The system may be a typical information system, or it may be
a hybrid system including hardware components, maybe with some embedded
software. The strategic dependencies identified in the former activity are analysed
with the aim of determining which of them may be directly satisfied by the system,
and which others are needed by the system providing its operational level. As a
result, the dependencies are redirected inside the i* SD diagram, and also new
dependencies arise. The model includes also the organization itself as an actor in
the system environment, in which its needs are modelled as strategic dependencies
over the system.

• Activity 3 : Decomposition of system goals. In this activity, the system is analysed
and decomposed into a hierarchy of goals that are needed to satisfy the strategic
dependencies stated by the environment actors. The goals represent the services
that the system must provide, to interact with the actors in the environment. An SR
diagram for the system is built, using decompositions means-end of type goal-goal
(representing then a decomposition of objectives into subobjectives).

D

D

D

D

D

D

D
D

D

D

D

D

D

D

D

D

D

D D

Figure 1. Activities of the DHARMA method.

5

• Activity 4: Identification of the system actors. The goals included in the SR
model are analysed and systematically grouped into subactors that represent
atomic domains. The objectives are grouped into services, according to an analysis
of the strategic dependencies with the environment and an exploration of the
existing OTS marketplace. The relationships between the different actors that form
the basic structure of the system are described according to the direction of the
means-end links that exist among the objectives included inside them.

4 The i* Framework from the Stakeholder Point of View

In this section we outline the issues that we found when using i* models in
conjunction with the system stakeholders.

4.1 Initial Modeling

The DHARMA method requires at its first step the construction of an SD diagram
modeling the organization environment. Instead of the classical elicitation approach in
which the RE expert elicits requirements from stakeholders and represents them using
i*, we opted for a different approach: stakeholders received some training in i* and
were committed to develop their own partial vision of the organization in a SD model.

A first consideration was needed: were the stakeholders going to learn the whole i*
language? Some authors have reported about the difficulty of using the full expressive
power of i* with stakeholders that are not skilled in advanced requirements engineer
techniques [12, 13]. After a careful consideration and some feedback, we took several
decisions that are reported below and described in the metamodel of Fig. 2, which
shows some simplifications with respect to the one defined by Ayala et al. [14]:

– Actors. We treat all actors in a generic manner, without distinguishing roles,
positions and agents. The barrier between these concepts is sometime fuzzy,
especially when considering the combination of these types and links like is-
a, and may provoke some confusion to the i* novice. Instead, we considered
useful to distinguish among four types of actors: human, software, hardware
and organizations. Although we didn’t bring the distinction into the model
itself graphically, we kept traceability of the type through comments.

– Actor links. We kept the two types of main actor links, i.e. is-a and is-part-
of. Especially the is-a specialization link became very useful when declaring
hierarchies of human roles represented by actors of human type. Note that
the actors’ type may be used here for correctness conditions, e.g. the
specialization of a human actor must also be human.

– Dependencies: contrary to what was expected beforehand, stakeholders very
intuitively grasped the difference between goal and soft goal. The concept of
subjectiveness was crucial to understanding this difference. Therefore, we
kept both types of dependencies. Also resource dependencies had a very
clear meaning, namely informational need. On the contrary, task
dependencies were considered too much low level, stakeholders found easier

6

to focus on the level of goals (what the task is going to provide) than on the
task itself. We avoid this fourth type of dependency (that may appear later
when the expert takes the lead).

– Intentional elements. The most significant difference between the standard i*
and the way we used it was the type of intentional elements inside actors’
boundaries. We just supported goals and then, as intentional elements’ links,
goal decomposition. This decision reduced complexity a lot (sometimes the
distinction among goal, task and resource depends on the point of view or
the emphasis) and aligned with most stakeholders’ way of thinking, where
goals play a central role.

Figure 2. The i* metamodel as defined in the DHARMA method.

The three tasks that were undertaken during the first activity of DHARMA were then:

– Initial training of stakeholders. Initial Stakeholders’ training was conducted
more in a workshop-brainstorm formatted session than in formal teacher-
students session. After a quick explanation of the basic i* concepts,
conducted by the moderator (a expert in i*), the concepts were used to create
the initial models of the organizational environment. With the guidance of
the moderator a first set of environmental actors was brainstormed and then
some basic dependencies were proposed and analyzed by participants. The
session was about three hours long, and included stakeholders of several
areas of the organizations (e.g., financial, administrative, legal, and tech-
nical). Blackboards and projectors were used as tools to support the process.

7

– Individual models built by stakeholders. With the first models constructed,
stakeholders were given a week to carefully study them and to propose
changes or new versions of the models. Once the resulting models were
handled, they were reviewed by an expert in i* which helped stakeholders to
validate the correct usage of the different types of dependencies. It was
interesting to find that some of the reviewed models included dependencies
among environmental actors and third party actors, even if they didn’t have a
direct relation with the organization. In some cases they were seen by
stakeholders as relevant to complement their understanding of the
environment (e.g. the dependency among telephony service regulators and
radio and TV services regulators, which were perceived as potential
environmental actors, in the case of future joint ventures with that kind of
service providers). This confirmed us that even if they were not technical
staff, they got a good understanding of the basic i* modeling skills.

– Consolidation of the different models into one. Once the individual models
were validated, the team of i* experts created a consolidated version
including all the identified actors and the proposed dependencies.
Redundancies were eliminated and similarities were marked in order to
validate if different stakeholders were referring to the same concepts. After
the consolidated models were completed, final workshops ware conducted in
order for stakeholders to validate the resulting models and to align their
views on the problem. At this point it was obvious that stakeholders were
already very familiar with more abstract concepts such as soft-goals. This
made easy the communication among technical and non technical staff and
helped to conduct the workshops in a very proactive way.

Another point worth to mention is tool support. There are several i* modelling tools
available in the community (see [15] for a survey) and even recently an XML model
interchange format named iStarML [16] based on the i* metamodel proposed in [14]
has been defined and is being adopted by several tools. But of course, using these
tools implies learning a new technology. And it must be remarked that the use of i* in
these projects was limited to modeling, no further treatments were required. As a
consequence, the functionalities needed from these tools were quite limited. To sum
up, we decided to use a generic drawing tool like MS Visio instead of using a new
technology. This decision reduced the stakeholders’ learning curve and allowed to
take use of some facilities of MS Visio that became useful:

– The use of connection links to easily and permanently link actors and
intentional elements.

– The use of the grouping by layers to control the visibility of the model. We
assigned each stakeholder partial model to one layer, therefore during the
analysis if a part of the model (developed by a stakeholder) was not relevant,
it was easily hidden. Of course this was possible because of the particular
characteristics of our SD models, which are radial (dependencies always
stem/go from/to the system to/from a context actor).

– We took the chance to change the graphical representation of dependencies
from the standard definition (use of oriented “D”) by a standard directed
arrow (this change is also recommended by [17] in a recent work).

8

– Some diagrammatic advices were issued. For instance, use of straight lines
instead of curved lines for representing dependencies, making easier manual
reallocation and the preliminary drawing of quadrants, as a mean to delimit
the areas of the diagram to be filled by each actor and their particular
dependencies, proved useful to support this activity.

4.2 The Model as a Communication Mean

In projects involving people with different background and skills, it is quite normal to
find that many of them have their own view of the problem and goals on the project.
i* has proven to be a good way to align the different views and make people work
together towards the achievement of the project, with the same concepts in mind.

During the workshops, the organization and its goals were discussed among
participants. The produced environmental draft models were used as framework to
drive the discussion. In the process several mismatches were identified; among them
we can mention the following cases (illustrated with some examples from the
ETAPATELECOM case):

– Addition of actors: Some actors were not originally included in the model,
but after some discussion they became obviously required. This was the case
of the Prepaid Services Vendor actor, proposed by the commercial staff. It
was required by the organization to satisfy the goal Prepaid Services Sold,
whilst it required from the organization the Services Activation Cards as a
resource and the Prepaid Services Consumption Controlled as a goal.

– Elimination of actors: Some of the participants proposed the incorporation of
new actors at some stage of the process, but after a more detailed review it
became clear that they were not relevant. This is the case of the Technology
Provider actor; it was originally introduced because of the concern of the
financial staff, in relation to the criticality of the provision of several
components required by the organization to construct its operations platform.
After some discussion it was removed because it was perceived as an
incidental actor, for which no permanent dependencies existed.

– Refinement of dependencies: During the workshops, it was quite normal to
identify new dependencies or to remove some of them in order to refine the
model. In addition, some dependencies were redefined as other kinds of
dependencies, e.g. the Provide Quality of Service soft-goal originally
proposed by the technical staff was later changed to a goal; in order to
maintain the operation license it is required as a non negotiable goal by the
Regulation Authority actor.

5 The i* Framework from the Modeler Point of View

In this section we report our experience as requirements engineering experts about the
use of i* in industrial projects.

9

5.1 Drawing of the Diagram

Although it may seem strange that we start this section by the issue of drawing, in fact
i* is a visual notation that heavily relies on the graphical representation of its models.
As explained in the former section, stakeholders build their partial vision of the
system using MS Visio and producing an i* SD model. These models have to be
merged into one after some consolidation conducted by the requirements engineer
expert. As a result, we get a big single i* model. This model is:

– Difficult to build. The different partial SD models have to be integrated into
one. This integration must be done by hand (copy&paste plus manual
reallocation of elements). Diagrammatic tools in the i* community do not
support this functionality neither. Therefore, this task becomes cumbersome.

– Difficult to modify. After the SD model is consolidated, it is modified in the
next steps. These modifications are addition and removal of actors and inten-
tional elements, and reallocation of links. Also these tasks are cumbersome.

We may say that there is a lot of work to do with i* diagrammatic tools until they can
be considered satisfactory for large-scale projects. As an alternative, we have started
to represent i* SD models as tables with the same rows and columns, and cells
represent links between them. This representation solves the problems above,
although the model is more difficult to be comprehended as a whole. Probably, a
model-view-controller architecture supporting these two views altogether (and even
some other, like the directory-like structure promoted by the J-PRiM tool [18]), and
the addition of features like the layered control mentioned in Section 4, are the key to
overcome the inherent difficulty of representing i* models.

5.2 Reusability

We may consider three types of reusability:

– Intra-process reusability. SD Environmental Models describe the
dependencies among the organization (or the system) and the actors on their
environment. Thus, when describing the dependencies with respect to a
particular environmental actor, we are implicitly describing the dependencies
in the environment of the given actor with respect to the organization (or the
system). This intra-process reusability became evident from the beginning
when performing our first industrial experiences (prior to the ones described
in Section 2). Whilst studying the e-Mail Systems domain, Mail Clients
where included as actors in their environment (see Fig. 3, Top, for an excerpt
of the e-Mail Systems environmental mode). When studding the Mail Clients
domain in a latter process, the e-Mail Systems actor was included as
environmental actor together with all the dependencies already identified.

– Inter-process reusability. Different organizations may share sets of ele-
ments in their environment. This is a well-known fact not only for organiza-
tions sharing the same vertical segment, but also for those in different market
segments. Thus, regarding this issue two kinds of reusability exist:

10

Figure 3: Top: Excerpt of the Mail Client (MC) and Mail Server (MS) SD model; Bottom:
Excerpt of environmental model showing the dependencies among the Ecuadorian Tax

Agency and the Organization (ETAPATELECOM / Cuenca’s Airport).

• Vertical reusability. When performing different DHARMA processes in
organizations sharing the same vertical market segment. In these cases,
most of the elements in the environmental model of one organization
(or system) can be reused in the environmental models of others, e.g.,
telecommunications companies sharing the same regulators, users,
interconnection providers, dealers, etc.

• Horizontal reusability: When performing different DHARMA processes
in organizations with different vertical market segments. In these cases
some commonalities can be found and model elements reused. For
instance, both ETAPATELECOM and the Cuenca Airport shall
periodically report about their income and expenses to the Ecuadorian
Taxes Agency (SRI). Thus, the area of the model describing this envi-
ronmental actor that was first constructed for the ETAPATELECOM
case (see Fig. 3, Bottom), was latter reused in the airport experience.

In general, inter-process reusability increases as the explored domains are
more similar. Regarding this issue, four levels of abstraction regarding simil-
arity of their business strategy (e.g., service-oriented CRM, manufacture-
oriented ERP, logistics- and transportation-oriented SCM, etc.) can be
established. From the most similar to the most dissimilar: organizations in

11

the same vertical market sharing the same business strategy; organizations in
the same vertical market with different business strategies; organizations in
different vertical markets but sharing business strategies; organizations in
different vertical markets with different business strategies.

– Knowledge reusability. As stated in the previous paragraphs, organizations
share commonalities at different levels. Therefore it is not an unusual fact to
find parts of models that can be reused as detailed patterns in other
experiences. For instance, let’s consider again the e-Mail Systems case,
which used the activities of the COSTUME method [11] to identify the
system architecture and to build the artifacts required for the selection of its
components. Some of the actors (with their respective SR models as goal-
subgoals decompositions) identified in this case were reused both in the
ETAPATELECOM and the Cuenca’s airport cases, namely the ones corres-
ponding to the Mail Servers and Directory Servers system actors (see Fig. 4).

Figure 4: Mail Server (MS) and Directory Services (DS) system actors with their SR decomposition

5.3 DHARMA-related lessons learned

There are some additional lessons that emerged from the application of DHARMA:

– Environmental models refinement. Although the refinement of dependencies
in environmental models was mainly driven by stakeholders’ participation and
understanding on the problem, there are some tips that help the modeler:

12

• Base the identification of environmental actors on several sources of
information: use case diagrams; goal-oriented modeling techniques;
identification of organizational roles supported by: the review of ontologies
(e.g. OpenCyc), standards of professional bodies (e.g. SWEBOK), or
organizational theory literature [19]; or the adoption of social patterns [20].

• To define environmental dependencies: first, identify which goals of the
environmental actors depend on the organization (or the system) and vice
versa, and represent them by goal dependencies. To simplify the process,
omit the dependencies that do not involve the organization (or the system) as
an actor. Environmental models shall be kept as simple as possible focusing
only on the services required from the organization (or the system).

• Next, identify the resources needed to satisfy these goal dependencies and
model them with resource dependencies. Note that resources may be physical
or informational.

• Finally, analyze each goal dependency over the organization (or the system)
with respect to catalogues of non-functional requirements e.g. the ISO/IEC
9126-1 standard, and include in the model a soft-goal for every
subcharacteristic considered crucial to satisfy this goal.

• Tend to avoid task dependencies in the model, since they are rather pres-
criptive. A task dependency represents one particular way of attaining a goal;
it can be considered as a detailed description of how to accomplish a goal.

– System models refinement. We found the following guidelines useful to
conduct this activity:

• To construct the SR model of the system, first identify the main goal of the
system and draw it as the root goal of the diagram.

• Reduce this goal into sub-goals by means of goal-goal links, representing the
main identifiable functional areas that the system is expected to provide and
link external dependencies to them whenever appropriated. This first
decomposition is achieved by exploring the dependencies that environmental
actors have on the system.

• Repeat the previous process for each of the sub-goals identified until the
obtained sub-goals represent services atomic enough, such that it does not
makes sense to further reduce them. A rule of the thumb to validate the
decomposition is that all of the leaf goals of the hierarchy must be linked to
at least one environmental dependency. If one leaf goal is not linked to any
external dependency it can be removed, unless it is considered critical for the
fulfillment of its predecessor.

• The process is complete when all the environmental dependencies have been
considered and linked to the appropriated sub-goals required for their
fulfillment, in case of incoming dependencies, or to the ones which depend
on them, in the case of outgoing dependencies.

– System actors’ identification. We identify two kinds of system actors that can
be present in system models:

13

• Core system actors. This kind of actors provides the core functionality of the
system. Because of this, in many cases the system as a whole adopts their
name. Most of the committed and critical dependencies of environmental
actors are usually linked to them. Some examples of core system actors are
the Mail Server in e-Mail Systems, the telecom billing system and the ERP
system in the ETAPATELECOM case, or the airplane guidance and
monitoring system in the Cuenca’s airport case.

• Supporting system actors. Supporting actors do not provide the core func-
tionality of the system. Instead they offer services required by the core actors
in order to fulfill some of their external dependencies with environmental
actors (e.g., the telecom billing services system relies on the platform media-
tion interfaces for services to be automatically activated / deactivated). All
supporting actors have dependency links with core actors, but not necessarily
among them. They may also have dependency links with environmental
actors, but usually not in relation to the core functionality of the system.

• Systems may include more than one core actor. Regarding supporting system
actors, they are not mandatory and some systems may not include them
(although this is not the usual case). With these considerations in mind, in the
extreme case, a system will include one core system actor and at least one
additional actor.

• The identification of system actors is guided by the goals identified in the SR
model of the system. These goals reveal services that are expected to be
covered by system actors. Their assignment to system actors can be
supported by reviewing several sources of information, such as online COTS
components markets or COTS components taxonomies. Experience, Internet
browsing and Google search for key words included in the defined goals,
proved to be the most effective ways to conduct this activity

– Components interoperability: Decisions on system architecture rely in several
aspects but mainly in the ability of components to interoperate and work
together as whole system. To support the decision making process, we found
very useful to create an enriched SD model of the system after system actors
were identified. To obtain the model we follow the process below:

• The set of goals and sub-goals assigned to a system actor (see Fig. 5, a) have
to be abstracted to a circle representing the actor (see Fig. 5, b).

• The circles representing the actors inherit all the environmental depen-
dencies assigned to the goals that define their services (see Fig. 5, b).

• The end links among the actors are replaced by goal dependency links. In
these links the actor of the end goal is the depender, the actor of the means
goal the dependee and the goal the dependum (see Fig. 5, c).

• Internal goal dependencies among system actors can be refined with a
process similar to the one proposed for environmental process refinement,
for obtaining a detailed interoperability model (see Fig. 5, d).

14

A1

A2A2

A5

A3

D
D

D

D

D

D

D

D

D

D

D

b)

A4

A1

A2

A4

A5

A3

D
D

D

D

D

D

D

D

D

D

D

c)

A1

A4

A5

D
D

D

D

D

D

D

D

D D

D

D

D
D

D

D

D

D

D

D

A2

A3

D

D

D

a)

A2

A3

A4

d)

A5

A1

Figure 5: Process to obtain an interoperability model

6 Conclusions and Future Work

In this paper we have presented an experience report about the use of i* in the
particular case of architecting hybrid systems using the DHARMA method. In a few
words, the framework has demonstrated to be useful both for stakeholders and
modellers provided that some simplifications of the model are done, remarkably the
conversion of the rich SR models into goal-subgoal decomposition graphs.

We summarise in a sentence our view of each of the issues evaluated in [12]:
– Refinement. (1) SD: the three modeling steps, i.e. first joint workshop, then

each stakeholder, last the modeler, seem to support stepwise refinement of the
SD model; (2) SR: much easier than usual since decomposition is just goal-goal.

– Modularity . Somehow supported by the use of the MS Visio layer concept.
– Repeatability. Considering the sense given by [12], the use of a reduced i*

framework makes easier to use the framework in a uniform way.
– Complexity management. Again the use of a reduced framework supports this.
– Expressiveness. On the contrary, our proposal clearly damages the high

expressiveness of i*, although throughout the paper it has been argued that the
concepts kept are the fundamental ones for stakeholders.

– Traceability . Not explicitly supported, although it has been said that comments
are used to trace which stakeholder provided which part of the model.

– Reusability. Both intra- and inter-process reuse are supported.
– Scalability. The use of a reduced set of concepts and some diagrammatic

conventions make the i* models a bit more scalable than usual (trade-off with
expressiveness). But it is not clear yet how much significant are the differences.

– Domain Applicability . It applies well to the hybrid systems architecting domain.

15

As future work, we are planning to extend a preliminary work in relation to hybrid
systems evolution. In this work the modules of several legacy systems have been
modeled as system actors and the dependencies among them have been stated, to
make explicit the interoperability among them. In a second stage of the process, an
ordering sequence has been established in relation to the priority in which some of the
modules need to evolve to new versions. In this way the impact of the replacement of
the modules in relation to other system components is made evident using a visual
notation; as a consequence system evolution can be planned with more evidence of
the effort required.

References

[1] Proceedings of the 7th International Intl. Conference on Composition-Based Software
Systems (ICCBSS), IEEE, 2008.

[2] J. Li et al. “A State-of-the-Practice Survey of Risk Management in Development with
Off-the-Shelf Software Components”. IEEE TSE, 34(2), 2008.

[3] A. Mohamed, G. Ruhe, A. Eberlein. “COTS Selection: Past, Present, and Future”. CBSE
2007.

[4] J. Feller, B. Fitzgerald. Understanding Open Source Software Development. Addison-
Wesley, 2002.

[5] M.P. Papazoglou. Web Services: Principles and Technology. Prentice-Hall, 2008.
[6] G. Kotonya, S. Lock, J. Mariani. “Opportunistic Reuse: Lessons from Scrapheap

Software Development”. CBSE 2007.
[7] C. Alves, F.M.R. Alencar, J. Castro. “Requirements Engineering for COTS Selection”.

WER 2000.
[8] X. Burgués et al. “Combined Selection of COTS Components”. ICCBSS 2002, Springer.
[9] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,

University of Toronto, 1995.
[10] X. Franch, J.P. Carvallo. “Using Quality Models in Software Package Selection”. IEEE

Software, 20(1), 2003.
[11] J.P. Carvallo et al. “COSTUME: A Method for Building Quality Models for Composite

COTS-Based Software Systems”. QSIC 2004, IEEE.
[12] H. Estrada et al. “An Empirical Evaluation of the i* Framework in a Model-Based

Software Generation Environment”. CAiSE 2006, Springer.
[13] M.C. Annosi et al. “Analyzing Knowledge Transfer in Software Maintenance

Organizations using an Agent- and Goal-oriented Analysis Technique – an Experience
Report”. iStar 2008, CEUR Workshop Proceedings.

[14] C. Ayala et al. “A Comparative Analysis of i*-based Agent-Oriented Modeling
Languages”. SEKE 2005.

[15] URL: http://istar.rwth-aachen.de/tiki-index.php?page_ref_id=21.
[16] C. Cares et al. “iStarML: an XML-based Model Interchange Format for i*”. iStar 2008,

CEUR Workshop Proceedings.
[17] D.L. Moody, P. Heymans, R. Matulevicius. “Improving the Effectiveness of Visual

Representations in Requirements Engineering: An Evaluation of i* Visual Syntax”. RE
2009, IEEE.

[18] G. Grau, X. Franch, S. Ávila. “J-PRiM: A Java Tool for a Process Reengineering i*
Methodology”. RE 2006, IEEE.

[19] R.L. Daft. Organization Theory and Design. Thomson, 1992.
[20] A. Fuxman et al. “Information Systems as Social Structures”. FOIS 2001.

