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Uniform clutters and dominating sets of graphs1

Jaume Mart́ı-Farré, Mercè Mora, José Luis Ruiz

Departament de Matemàtiques, Universitat Politècnica de Catalunya

Abstract

A (simple) clutter is a family H of pairwise incomparable subsets of a finite
set Ω. We say that a clutter H is a domination clutter if there is at least a
graph G such that the collection of the inclusion-minimal dominating sets of
vertices of G is equal to H. Given a clutter H, we are interested in determin-
ing if it is a domination clutter and, if this is not the case, we want to find
domination clutters in some sense close to it: the domination completions of
H. Here we will focus on the family of clutters containing all the subsets with
the same cardinality; the uniform clutters of maximum size. Specifically, we
characterize those clutters H in this family that are domination clutters and,
in any other case, we prove that the domination completions exist. Moreover,
we then demonstrate that the clutter H is uniquely determined by some of its
domination completions, in the sense that H can be recovered from some of
these domination completions by using a suitable operation between clutters.

Keywords: clutters, uniform clutters, dominating sets of graphs

1. Introduction

A vertex dominating set of a graph G is a set of vertices D such that every
vertex of G is either in D or adjacent to some vertex of D (see [6]). Domination
in graphs is a widely researched branch of graph theory, both from a theoretical
and algorithmic point of view. In part, it is due to its applications to several
fields where graphs are used to model the relationships between a finite number
of objects. In this way, for instance, some concepts from domination in graphs
appear in problems involving finding sets of representatives, as well as in facility
location problems or in problems in monitoring communication, in electrical
networks or in network routing.

The starting point of this work is a question concerning the design of net-
works on a finite set of nodes Ω whose dominating sets satisfy specific properties.
Concretely, in this paper we focus our attention on the collection D(G) of all
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project has received funding from the European Unions Horizon 2020 research and innovation
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the inclusionwise minimal vertex dominating sets of a graph G. Specifically,
we are looking for graphs G whose collection of vertex dominating sets D(G) is
equal or close to a given collection {A1, . . . , Ar} of subsets of nodes Ai ⊆ Ω.

Clutters become the natural framework of this problem. A (simple) clutter
H on a finite set Ω is a collection of subsets of Ω none of which is a proper subset
of another (see [1]). The domination clutter of a graph G is the collection D(G)
of all the inclusion-minimal vertex dominating sets of the graph G. A clutter
H is said to be a domination clutter if H is the domination clutter of a graph;
that is, if H = D(G) for some graph G.

Since in general a clutter H is not the domination clutter of a graph, a
natural question that arises at this point is to determine domination clutters
close to H, the domination completions of H. This paper deals with this issue.
Specifically, we focus our attention on this problem for the uniform clutters
H = Ur,Ω containing all the subsets with cardinality r of a finite set Ω. The
goal is to prove that the domination completions of the uniform clutters Ur,Ω

exist. Moreover, by taking into account a suitable partial order ⩽, we will
prove that the set of domination completions of Ur,Ω is a partially ordered
set, and that the uniform clutter Ur,Ω is univocally determined by the minimal
elements of this poset, the minimal domination completions. Namely we will
prove that there is a clutter operation ⊓ that allows us to express the uniform
clutter Ur,Ω as a combination of its optimal completions D(G1), . . . ,D(Gs); that
is, Ur,Ω = D(G1) ⊓ · · · ⊓ D(Gs). We thus speak of a decomposition of the
clutter Ur,Ω into domination clutters. In addition, we study the number of
completions appearing in the decomposition of Ur,Ω. Summarizing, in this paper
we present results concerning the completions and decompositions of clutters
into domination clutters (a previous version of this work was presented at the
European Conference on Combinatorics, Graph Theory and Applications —
EUROCOMB 2015 [11]).

Closest in spirit to our work are the papers [9] and [10], in which the authors
present some results on the completion and decompositions of clutters into ma-
troidal clutters. It is worth mentioning that even though our results are formally
analogous to those in [9, 10], they can not be proved using the same techniques.
The difference between our results on domination clutters and those presented
in [9, 10] concerning matroidal clutters are pointed out in this paper.

The present paper is structured as follows. First, in Section 2 we recall
the properties of vertex dominating sets of graphs that we will use through-
out the paper (Subsection 2.1); we present the basic definitions on clutters and
domination clutters (Subsection 2.2); and we characterize the uniform clutters of
maximum size that are domination clutters (Subsection 2.3). The main theoret-
ical results of this paper are gathered in Section 3. In this section we introduce
the poset of domination completions (Subsection 3.1), and we present our re-
sults on domination completion and decomposition of the uniform clutters Ur,Ω

(Theorem 9, Theorem 10 and Proposition 11). Finally, in Section 4, we describe
the set of the minimal domination completions of some uniform clutters Ur,Ω;
we present their graph realization; and, we discuss some issues on the corre-
sponding domination decomposition. Concretely, we analyze these questions
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for the uniform clutters Ur,Ω when r = 2 (Subsection 4.1), when r = |Ω| − 1
(Subsection 4.2), and when r arbitrary and |Ω| ≤ 5 (Subsection 4.3).

2. Dominating sets of graphs. Domination clutters

As mentioned in the introduction, the aim of this section is to present those
general results on dominating sets that we will use throughout the paper.

2.1. Vertex dominating sets of graphs

A graph G is an ordered pair (V (G), E(G)) comprising a finite set V (G)
of vertices together with a (possibly empty) set E(G) of edges which are two-
element subsets of V (G) (for general references on graph theory see [4, 12]). If
e = {x, y} ∈ E(G) is an edge of G, then x and y are said to be adjacent vertices.
An isolated vertex is a vertex of the graph that is not adjacent to any other
vertices; that is, a vertex that does not belong to any edge of the graph. Let us
denote by V0(G) the set of all the isolated vertices of G.

A dominating set for a graph G = (V (G), E(G)) is a subset D of V (G) such
that every vertex not in D is adjacent to at least one member of D. Since any
superset of a dominating set of G is also a dominating set of G, the collection
D(G) of the dominating sets of a graph G is a monotone increasing family
of subsets of V (G). Therefore, D(G) is uniquely determined by the family
min

(
D(G)

)
of its inclusion-minimal elements. Let us denote by D(G) the family

of the inclusion-minimal dominating sets of the graph G.
Dominating sets of a graph are closely related to independent sets. An

independent set of a graph G is a set of vertices such that no two of them
are adjacent. It is clear that an independent set is also a dominating set if
and only if it is an inclusion-maximal independent set (see [4]). Therefore, any
inclusion-maximal independent set of a graph is necessarily also an inclusion-
minimal dominating set. The next lemma follows from this fact and from the
definitions.

Lemma 1. If G is a graph, then V (G) =
∪

D∈D(G) D and V0(G) =
∩

D∈D(G) D.

Next, in Lemma 2, we recall the well-known relation between dominating
sets and star systems (see [2, 3, 8]).

The star system of a graph G = (V (G), E(G)) is the multiset N [G] of closed
neighborhoods of all the vertices of the graph; that is, the multiset N [G] =
{N [x] : x ∈ V (G)} where N [x] = {x} ∪ {y ∈ V (G) : {x, y} ∈ E(G)}. Let
us denote by N [G] the inclusion-minimal elements of the star system; that is,
N [G] = min

(
N [G]

)
is the family of the inclusion-minimal closed neighborhoods

of the graph G. The relation between D(G) and N [G] involves the transversal
or blocker of a family of subsets. Let A be a collection of subsets none of which
is a proper subset of another. The transversal tr(A) of the family A consists
of those inclusion-minimal subsets that have non-empty intersection with every
member of A; that is, tr(A) = min{X : X ∩A ̸= ∅ for all A ∈ A}.

Lemma 2. Let G be a graph. Then D(G) = tr
(
N [G]

)
and N [G] = tr

(
D(G)

)
.
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Proof. From the definitions it is clear that a subset D of vertices is a dominating
set of the graph G if and only if D∩N [x] ̸= ∅ for every vertex x ∈ V (G). Hence
it follows that D(G) = tr

(
N [G]

)
. The transversal map is involutive, that is,

tr(tr(A)) = A (see [1]). Therefore we get that N [G] is, at once, the transversal
of the family D(G).

To conclude this subsection we recall two graph operations that we will use:
the disjoint union and the join of graphs.

Let G1, . . . , Gr be r ≥ 2 graphs with pairwise disjoint vertex sets V (G1), . . . ,
V (Gr). The disjoint union G1 + · · · + Gr of G1, . . . , Gr is the graph with
V (G1) ∪ · · · ∪ V (Gr) as set of vertices and E(G1) ∪ · · · ∪E(Gr) as set of edges;
while the join G1 ∨ · · · ∨ Gr of G1, . . . , Gr is the graph with set of vertices
V (G1) ∪ · · · ∪ V (Gr) and set of edges E(G1) ∪ · · · ∪ E(Gr) ∪ {{x1, x2} : x1 ∈
V (Gi1), x2 ∈ V (Gi2) and i1 ̸= i2}. The following lemma deals with the minimal
dominating sets of these graphs. Its proof is a straightforward consequence of
the definitions.

Lemma 3. Let G1, . . . , Gr be r ≥ 2 graphs with pairwise disjoint set of vertices.
Then:

1. D(G1 + · · ·+Gr) = {D1 ∪ · · · ∪Dr : Di ∈ D(Gi)}.

2. D(G1 ∨ · · · ∨Gr) = D(G1) ∪ · · · ∪ D(Gr)
∪ {{x1, x2} : xk ∈ V (Gik), N [xk] ̸= V (Gik), i1 ̸= i2}.

2.2. Clutters. Domination clutters

Let Ω be a non-empty finite set. A (simple) clutter on Ω is a non-empty
collectionH of non-empty different subsets of Ω, none of which is a proper subset
of another; that is, if A,A′ ∈ H and A ⊆ A′ then A = A′. Clutters are also
known as antichains, Sperner systems or hypergraphs (for general references on
clutter theory see [1, 5]). In general, if H is a clutter on Ω then

∪
A∈H A ⊆ Ω.

We say that H is a clutter with ground set Ω whenever the equality Ω =
∪

A∈H A
holds.

There are several clutters that can be associated to a graph. In this paper
we are interested in those clutters defined by the dominating sets of the graph.
Namely, if G is a graph with vertex set V (G), we consider the collection D(G)
of the inclusion-minimal dominating sets of the graph. It is clear that D(G) is
a clutter on the finite set V (G). Moreover, by Lemma 1, D(G) is a clutter with
ground set V (G).

The domination clutters are those clutters that can be realized by the domi-
nating sets of a graph; that is, we will say that a clutter H on Ω is a domination
clutter if there exists a graph G such that H = D(G) (notice that then the set
of vertices of G is V (G) =

∪
A∈H A ⊆ Ω). If H = D(G), we say that the graph

G is a realization of the domination clutter H.

Remark 1. Observe that there exist domination cluttersH with more than one
graph realization. For example, let us consider the clutter H = {{1, 3}, {1, 4},
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{2, 3}, {2, 4}} on the finite set Ω = {1, 2, 3, 4}. Then H = D(G) = D(G′) =
D(G′′) where G, G′ and G′′ are the graphs with vertex sets V (G) = V (G′) =
V (G′′) = Ω and edge sets E(G) = {{1, 2}, {3, 4}}, E(G′) = {{1, 2}, {2, 3}, {3, 4}}
and E(G′′) = {{1, 2}, {1, 4}, {3, 4}}.

The following lemma provides a necessary condition for a clutter to be a
domination clutter.

Lemma 4. Let H be a clutter with ground set Ω. Assume that H is a domination
clutter. Then | tr

(
H
)
| ≤ |Ω|.

Proof. Let G be a graph with vertex set V (G) = Ω and such that H = D(G).
Then, by applying Lemma 2 we get that tr

(
H
)
= tr

(
D(G)

)
= N [G]. So,

| tr
(
H
)
| = |N [G]| ≤ |V (G)| = |Ω|.

From the above, we get that not all clutters are domination clutters. Indeed,
let A = {A1, . . . , Ar} be a family of r ≥ |Ω| + 1 non-empty different subsets
of Ω with Ai ̸⊆ Aj if i ̸= j (for instance, the family A = {A ⊆ Ω : |A| = 2}
where |Ω| ≥ 4). Since tr(tr(A)) = A, from Lemma 4 it follows that the clutter
H = tr(A) is not a domination clutter.

Therefore, a natural question that arises at this point is to characterize
whenever a clutter H is a domination clutter. The following subsection deals
with this issue for a special family of clutters.

2.3. Uniform clutters. Domination clutters of the form Ur,Ω

Let Ω be a finite set of size |Ω| = n and let 1 ≤ r ≤ n. We say that a
clutter H on Ω is r-uniform if |A| = r for all A ∈ H. Let us denote by Ur,Ω the
r-uniform clutter on Ω whose elements are all the subsets of Ω of size r; that is,
Ur,Ω = {A ⊆ Ω : |A| = r}.

The following proposition provides a characterization of the domination clut-
ters of the form Ur,Ω, as well as the description of their graph realizations. This
proposition was partially stated in [7].

Before stating the proposition, let us introduce some notation. The complete
graph with n vertices is denoted by Kn, whereas the complete graph with vertex
set Ω will be denoted by KΩ, and the empty graph with vertex set Ω will be
denoted by KΩ. Observe that if |Ω| = 2m, then the graph G obtained from the
complete graph KΩ by deleting the edges of a perfect matching is the join graph
of m empty graphs on sets of size two; that is, G = KΩ1

∨ · · · ∨ KΩm
where

Ω = Ω1 ∪ · · · ∪ Ωm and |Ωi| = 2 for 1 ≤ i ≤ m (namely the vertices of the sets
Ωi are the endpoints of each one of the edges of the perfect matching).

Proposition 5. Let Ω be a finite set of size |Ω| = n. Let 1 ≤ r ≤ n. Then the
clutter Ur,Ω is a domination clutter if and only if r = 1, or r = n, or r = 2 and
n is even. Moreover, the following statements hold:

1. The complete graph KΩ is the unique graph G such that U1,Ω = D(G).

2. The empty graph KΩ is the unique graph G such that Un,Ω = D(G).
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3. If n = 2m, then there are (2m)!/(2mm!) graphs G such that U2,Ω = D(G).
Namely, G is any graph of the form G = KΩ1 ∨ · · · ∨ KΩm where Ω =
Ω1 ∪ · · · ∪ Ωm and |Ωi| = 2 for 1 ≤ i ≤ m.

Proof. Statements (1) and (2) are a straightforward consequence of the defini-
tions. Let us prove the third statement.

Assume that n = 2m is even. From the description of the minimal domina-
tion sets of the join graph (Lemma 3) it follows that D(KΩ1 ∨· · ·∨KΩm) = U2,Ω

if Ω = Ω1 ∪ · · · ∪ Ωm and |Ωi| = 2 for 1 ≤ i ≤ m. So the uniform clutter U2,Ω

is a domination clutter and the graphs of the form G = KΩ1 ∨ · · · ∨ KΩm are
domination realizations of U2,Ω. Conversely, let us prove that if G is a graph
such that D(G) = U2,Ω, then G is obtained from the complete graph KΩ by
deleting the edges of a perfect matching. So, assume that D(G) = U2,Ω. Then
from Lemma 2 it follows that N [G] = tr(U2,Ω). Since tr(U2,Ω) = U2m−1,Ω,
hence N [G] = U2m−1,Ω, and therefore all the vertices of G have degree 2m− 2.
Consequently, the graph G is obtained from the complete graph KΩ by deleting
the edges of a perfect matching, as we wanted to prove.

From the above we conclude that if n = 2m is even, then U2,Ω = D(G) if
and only if G is a graph obtained from KΩ by deleting the edges of a perfect
matching. It is well known that the number of perfect matchings in a complete
graph K2m is given by the double factorial (2m − 1)!!, that is, (2m)!/(2mm!).
Hence, if n = 2m is even, then there are (2m)!/(2mm!) graphs G such that
D(G) = U2,Ω. This completes the proof of the third statement.

To finish the proof of the proposition we must demonstrate that if 3 ≤
r ≤ n − 1, or if r = 2 and n is odd, then Ur,Ω is not a domination clutter.
Otherwise, assume that there exists a graph G with vertex set V (G) = Ω and
such that D(G) = Ur,Ω. Since tr(Ur,Ω) = Un−r+1,Ω, from Lemma 2 we get
that N [G] = Un−r+1,Ω. On one hand, the size of N [G] is at most n because
V (G) = Ω. On the other hand, Un−r+1,Ω has size

(
n

n−r+1

)
. Therefore

(
n

n−r+1

)
≤

n, and thus r = 2. At this point we have that G is a graph of order n with
N [G] = Un−r+1,Ω = Un−1,Ω. So, G is a (n− 2)-regular graph of order n, which
is not possible if n is odd. This completes the proof of the proposition.

3. Domination completions and decompositions of the unifom clutters
Ur,Ω

Not all clutters are domination clutters. Therefore, given a clutter H a
natural question is to study domination clutters “close” to H. Here, we consider
this problem whenever H is the uniform clutter Ur,Ω. Our goal is to introduce
the poset of domination completions of Ur,Ω (Subsection 3.1), and to prove
that the minimal elements of this poset provide a decomposition of Ur,Ω into
domination clutters (Subsection 3.2).

3.1. Poset of domination completions of Ur,Ω

Let Ω be a finite set and let us consider the r-uniform clutter Ur,Ω. Observe
that if H is a clutter on Ω, the elements of H are pairwise non-comparable sets,
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and hence it follows that Ur,Ω ⊆ H if and only if Ur,Ω = H. Therefore, if Ur,Ω is
not a domination clutter, then there does not exist a graph G with vertex set
V (G) = Ω such that Ur,Ω ⊆ D(G). Thus, a question that arises at this point is
to determine domination clutters D(G) close to the clutter Ur,Ω, the domination
completions of Ur,Ω.

A crucial point when looking for the domination completions D(G) of Ur,Ω is
to take into account all the dominating sets of the graph G instead of considering
only the inclusion-minimal dominating sets of G; that is, taking into account
the family D(G) instead of the family D(G). In order words, now we are looking
for graphs G such that the elements of Ur,Ω are dominating sets of vertices of
G (not necessarily minimal dominating sets); that is, we look for graphs G such
that Ur,Ω ⊆ D(G).

In order to seek the domination clutters close to Ur,Ω we introduce a suitable
partial order ⩽ on the set of clutters that involves the monotone increasing
family of subsets H+ associated to a clutter H.

Let Ω be a finite set. Let H be a clutter on Ω. Then we define H+ as the
family whose elements are the subsets A ⊆ Ω such that there exists A0 ∈ H
with A0 ⊆ A. Observe that H+ is a monotone increasing family of subsets of Ω
whose inclusion-minimal elements are the subsets of H; that is, H = min

(
H+

)
.

Therefore, the clutter H is uniquely determined by the monotone increasing
family H+. For instance, if G is a graph then D(G) is a clutter on V (G) whose
associated monotone increasing family of subsets is D(G)+ = D(G), and so
D(G) is uniquely determined by D(G).

To compare two clutters H1,H2 on Ω, we use their associated monotone
increasing families of subsets H+

1 ,H
+
2 . It is clear that if H1 ⊆ H2, then H+

1 ⊆
H+

2 . However, the converse is not true; that is, there exist clutters with H1 ̸⊆
H2 and H+

1 ⊆ H+
2 (for instance the clutters H1 = {{1, 2}, {1, 3}, {2, 3}} and

H2 = {{1, 2}, {3}}). This fact leads us to consider the binary relation ⩽, also
used in [9, 10], which is defined as follows: if H1 and H2 are two clutters on the
finite set Ω, then we say that:

H1 ⩽ H2 if and only if H+
1 ⊆ H+

2 .

Next lemma will be used several times throughout this paper. The proofs
of the three statements of the lemma are a straightforward consequence of the
definition of the family H+ and of the fact that H = min(H+).

Lemma 6. Let Ω be a finite set. The following statements hold:

1. If H1,H2 are two clutters on Ω then, H1 ⩽ H2 if and only if H1 ⊆ H+
2 .

2. If H1,H2 are two clutters on Ω then, H1 ⩽ H2 if and only if for all
A1 ∈ H1 there exists A2 ∈ H2 such that A2 ⊆ A1.

3. The binary relation ⩽ is a partial order on the set of clutters on Ω.

Now, by using the partial order ⩽, we define the domination completions
of the clutter Ur,Ω as any domination clutter H with ground set Ω such that
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Ur,Ω ⩽ H. We denote by Dom(r,Ω) the set whose elements are the domination
completions of the clutter Ur,Ω; that is:

Dom(r,Ω) =
{
H : H is a domination clutter with ground set Ω and Ur,Ω ⩽ H

}
.

Proposition 7. Let Ω be a finite set. Then the set Dom(r,Ω) is non-empty.

Proof. The uniform clutter U1,Ω is a domination clutter, and it is clear that
Ur,Ω ⩽ U1,Ω. So U1,Ω ∈ Dom(r,Ω).

The partial order ⩽ induces a poset structure in the set Dom(r,Ω) of the
domination completions of the uniform clutter Ur,Ω. Therefore, the minimal
elements of the poset

(
Dom(r,Ω),⩽

)
are the optimal domination completions

of Ur,Ω. This subsection is completed by showing that if Ur,Ω is not a domination
clutter, then Ur,Ω has at least two different optimal domination completions
(Theorem 9). The following technical lemma is a key point in order to prove
this result.

Lemma 8. Let Ω be a finite set. Let H be a clutter on Ω such that Ur,Ω ⩽ H
and Ur,Ω ̸= H. Then there exists a domination clutter H0 ∈ Dom(r,Ω) such
that H ⩽̸ H0.

Proof. First notice that for r = 1 the hypotheses of the lemma do not hold
because there is no clutter H on Ω different from U1,Ω such that U1,Ω ⩽ H.
Moreover, observe that if r = n, then Ur,Ω is a domination clutter, and so the
clutter H0 = Un,Ω fulfills the required conditions. Therefore, from now on we
may assume that 2 ≤ r ≤ n− 1.

Let 2 ≤ r ≤ n − 1. By assumption, Ur,Ω ⩽ H and Ur,Ω ̸= H. Thus,
since ⩽ is a partial order, it follows that H ̸⩽ Ur,Ω. Therefore, there exists
A0 ∈ H such that A ̸⊆ A0 for all A ⊆ Ω with |A| = r; that is, there exists
A0 ∈ H with |A0| = t < r. Without loss of generality we may assume that
Ω = {w1, . . . , wt, wt+1, . . . , wr, . . . , wn} and that A0 = {w1, . . . , wt}. Set Ω1 =
{w1, . . . , wt, wt+1, . . . , wr} and set Ω2 = Ω \ Ω1.

At this point let us consider the domination clutter H0 = D(G0) where
G0 is the join graph G0 = KΩ1 ∨ KΩ2 . So, from Lemma 3 we get that H0 =
{Ω1}∪{{w} : w ∈ Ω2}. The proof will be completed by showing that Ur,Ω ⩽ H0

and that H ⩽̸ H0.
In order to prove the inequality Ur,Ω ⩽ H0 we must demonstrate that for all

A ∈ Ur,Ω there exists A′ ∈ H0 such that A′ ⊆ A. So let A ⊆ Ω with |A| = r. If
A = Ω1, then set A′ = Ω1 ∈ H0; whereas if A ̸= Ω1, then there exists w ∈ Ω2

such that w ∈ A and, so, we can consider A′ = {w} ∈ H0.
To finish we must demonstrate that H ̸⩽ H0. On the contrary, let us assume

that H ⩽ H0. Then, since A0 ∈ H, there exists A ∈ H0 such that A ⊆ A0.
So either Ω1 ⊆ A0 or there exists w ∈ Ω2 such that {w} ⊆ A0. In any case a
contradiction is obtained because, by construction, A0 ⊊ Ω1 and A0 ∩ Ω2 = ∅.
This completes the proof of the lemma.
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Theorem 9. Let Ω be a finite set. Then the non-empty poset
(
Dom(r,Ω),⩽

)
of the domination completions of the clutter Ur,Ω has a unique minimal element
if and only if the clutter Ur,Ω is a domination clutter.

Proof. It is clear that if Ur,Ω is a domination clutter, then the non-empty poset(
Dom(r,Ω),⩽

)
has a unique minimal element, namely min

(
Dom(r,Ω),⩽

)
=

{Ur,Ω}. Therefore, we must only prove that if the poset
(
Dom(r,Ω),⩽

)
has

a unique minimal element, then Ur,Ω is a domination clutter. So let us as-
sume that min

(
Dom(r,Ω),⩽

)
= {H}. On one hand, Ur,Ω ⩽ H because

H ∈ Dom(r,Ω). On the other hand, since H is the unique minimal element
of the poset

(
Dom(r,Ω),⩽

)
, we get that H ⩽ H0 for all domination clutters

H0 ∈ Dom(r,Ω). Therefore, from Lemma 8 we conclude that Ur,Ω = H. In
particular, Ur,Ω is a domination clutter, as we wanted to prove.

In the following example we present the description of the domination com-
pletions of the 2-uniform clutter U2,Ω where Ω = {1, 2, 3} (in Subsection 4.1 we
study the general case U2,Ω where Ω is a finite set of odd size).

Example 1. Let Ω = {1, 2, 3} and let us consider the 2-uniform clutter U2,Ω;
that is, U2,Ω = {{1, 2}, {1, 3}, {2, 3}}. From Proposition 5 we know that U2,Ω

is not a domination clutter. Therefore, by applying Theorem 9 we conclude
that the non-empty poset

(
Dom(2,Ω),⩽

)
has at least two minimal elements.

Let us compute these minimal elements. Let G be a graph with vertex set
V (G) = {1, 2, 3}. It is clear that if E(G) = ∅, then D(G) =

{
{1, 2, 3}

}
; whereas

if {a, b, c} = {1, 2, 3} and E(G) =
{
{a, b}

}
, then D(G) =

{
{a, c}, {b, c}

}
; while

if E(G) =
{
{a, b}, {a, c}

}
, then D(G) =

{
{a}, {b, c}

}
; but if |E(G)| = 3 then

D(G) =
{
{1}, {2}, {3}

}
. Therefore we conclude that U2,Ω ⩽ D(G) if and only

if either |E(G)| = 2 or |E(G)| = 3. Thus, the clutter U2,Ω has four domination
completions, namely, the three domination clutters defined by the graphs of size
2 and the domination clutter defined by the graph of size 3; that is, Dom(2,Ω) ={
H1,H2,H3,U1,Ω} where Hi = {{i}, {j, k}} being {i, j, k} = {1, 2, 3}. Observe

that Hi ⩽ U1,Ω and that Hi ̸⩽ Hj if i ̸= j. Therefore, the poset
(
Dom(2,Ω),⩽

)
has three minimal elements H1, H2 and H3. So H1, H2, H3 are the optimal
domination completions of U2,Ω.

3.2. Domination decompositions of Ur,Ω

Let Ω be a finite set. We say that a domination clutter H is a minimal
domination completion of the r-uniform clutter Ur,Ω if H is a minimal element of
the poset

(
Dom(r,Ω),⩽

)
. Let us denote by Dom(r,Ω) the set whose elements

are the minimal domination completions H of Ur,Ω; that is:

Dom(r,Ω) = min
(
Dom(r,Ω),⩽

)
.

We have seen in Theorem 9 that Dom(r,Ω) has cardinality one if and only
if Ur,Ω is a domination clutter. The following theorem deals with the case
of cardinality greater than one, and shows that we can recover uniquely the
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clutter from the elements of Dom(r,Ω). Before stating our result we introduce
the clutter operation ⊓, also used in the matroidal framework in [9, 10].

Let Ω be a finite set and let H1, . . . ,Hℓ be ℓ clutters on Ω. Then we define
the clutter H1 ⊓ · · · ⊓ Hℓ as:

H1 ⊓ · · · ⊓ Hℓ = min
(
H+

1 ∩ · · · ∩ H+
ℓ

)
.

Observe that from the definition of H+ it is not hard to prove that:

H1 ⊓ · · · ⊓ Hℓ = min
{
A1 ∪ · · · ∪Aℓ : Ai ∈ Hi for 1 ≤ i ≤ ℓ

}
.

Theorem 10. Let Ω be a finite set. Let Dom(r,Ω) = {H1, . . . ,Hs} be the set
of the minimal domination completions of Ur,Ω. Then:

Ur,Ω = H1 ⊓ · · · ⊓ Hs.

Proof. Let us denote H0 = H1⊓· · ·⊓Hs = min
{
A1∪· · ·∪As : Ai ∈ Hi for 1 ≤

i ≤ s
}
.

First let us show that Ur,Ω ⩽ H0; that is, we must prove that if A ∈ Ur,Ω,
then there exists A0 ∈ H0 such that A0 ⊆ A. So, let A ∈ Ur,Ω. Let 1 ≤ i ≤ s.
Since Ur,Ω ⩽ Hi, for all A ∈ Ur,Ω there exists Ai ∈ Hi with Ai ⊆ A. Therefore
we get that A1 ∪ · · · ∪As ⊆ A. So there exists A0 ∈ H0 such that A0 ⊆ A.

Next we are going to prove that Ur,Ω = H0. Observe that if Ur,Ω ̸= H0,
then, by applying Lemma 8, we get that there exists a domination clutter H′

0 ∈
Dom(r,Ω) such that H0 ̸⩽ H′

0. The proof will be completed by showing that
this leads us to a contradiction. On one hand, since H′

0 ∈ Dom(r,Ω) and
Dom(r,Ω) = {H1, . . . ,Hs}, we conclude that there exists i0 ∈ {1, . . . , s} such
that Hi0 ⩽ H′

0. On the other hand, from the definition of H0 and by applying
Lemma 6 it is easy to check that the inequality H0 ⩽ Hi0 holds. Therefore we
conclude that H0 ⩽ H′

0 because the binary relation ⩽ is a partial order. Hence
a contradiction is achieved, as we wanted to prove.

Remark 2. We observe that Theorem 9 is a corollary of Theorem 10. Indeed, if
the clutter Ur,Ω has a unique minimal element, then Dom(r,Ω) = {H1, . . . ,Hs}
with s = 1 and hence Ur,Ω = H1⊓ · · ·⊓Hs = H1, which is a domination clutter.

Remark 3. Theorems 9 and 10 are related to [10, Theorem 14], but this latter
result cannot be applied in the domination framework. Indeed, if we want to
apply [10, Theorem 14], then, using the notation of this theorem, we have to take
Σ = {H : H is a domination clutter with ground set Ω}. But this family does
not contain the clutters of the form U1,X for X ⊂ Ω, which is just the hypothesis
needed in [10, Theorem 14]. (U1,X is represented as ΛX in [10, Theorem 14].)

The previous theorem leads us to the following definition. Let Ω be a finite
set. We say that a family {H1, . . . ,Ht} of t ≥ 1 distinct domination clutters with
ground set Ω is a t-decomposition of the r-uniform clutter Ur,Ω if Ur,Ω = H1⊓· · ·⊓
Ht. Let us denoteD(r,Ω) = min{t : there exists a t-decomposition of Ur,Ω}. It
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is clear that D(r,Ω) = 1 if and only if the r-uniform clutter Ur,Ω is a domination
clutter.

From Theorem 10 we get that the domination clutters in Dom(r,Ω) provide a
decomposition of Ur,Ω, and therefore if the r-uniform clutter Ur,Ω has s minimal
domination completions, then D(r,Ω) ≤ s. The next proposition states that,
in fact, to compute D(r,Ω) it is enough to consider only those decompositions
consisting of minimal domination completions of Ur,Ω.

Proposition 11. Let Ω be a finite set. Let D(r,Ω) = δ. Then there exist
δ minimal domination completions H1, . . . ,Hδ ∈ Dom(r,Ω) of the r-uniform
clutter Ur,Ω such that {H1, . . . ,Hδ} is a δ-decomposition of Ur,Ω.

Proof. To prove the proposition it is enough to show that any decomposition
of Ur,Ω can be transformed into a decomposition consisting of minimal domi-
nation completions of Ur,Ω; that is, we must demonstrate that if {H′

1, . . . ,H′
t}

is a t-decomposition of Ur,Ω, then there exist ℓ distinct clutters Hi1 , . . . ,Hiℓ ∈
Dom(r,Ω) (with ℓ ≤ t) such that {Hi1 , . . . ,Hiℓ} is an ℓ-decomposition of Ur,Ω.

So, assume that {H′
1, . . . ,H′

t} is a t-decomposition of the clutter Ur,Ω, and
let Dom(r,Ω) = {H1, . . . ,Hs}.

It is clear thatH′
1⊓· · ·⊓H′

t ⩽ H′
k for all k ∈ {1, . . . , t}. Therefore, Ur,Ω ⩽ H′

k,
and so H′

k ∈ Dom(r,Ω). Since H1, . . . ,Hs are the minimal elements of the
poset (Dom(r,Ω),⩽

)
, for all k ∈ {1, . . . , t} there exists αk ∈ {1, . . . , s} such

that Hαk
⩽ H′

k. Let {Hi1 , . . . ,Hiℓ} = {Hα1 , . . . ,Hαt}, where Hi1 , . . . ,Hiℓ are
different (observe that ℓ ≤ t). On one hand we have that Hi,1 ⊓ · · · ⊓ Hiℓ =
Hα1⊓· · ·⊓Hαt ⩽ H′

1⊓· · ·⊓H′
t = Ur,Ω. On the other hand, Ur,Ω ⩽ Hi1⊓· · ·⊓Hiℓ

because Ur,Ω ⩽ Hik for all k. Since ⩽ is a partial order, we conclude that the
equality Ur,Ω = Hi1⊓· · ·⊓Hiℓ holds; that is, {Hi1 , . . . ,Hiℓ} is an ℓ-decomposition
of Ur,Ω.

To conclude this subsection let us show an example of decomposition, namely
we compute the domination related parameter D(2,Ω) where Ω = {1, 2, 3} (in
Subsection 4.1 we study the general case D(2,Ω) where Ω is a finite set of odd
size).

Example 2. Let us consider the 2-uniform clutter U2,Ω with ground set Ω =
{1, 2, 3}. From Example 1 we get that U2,Ω has three minimal domination
completions, namely, Dom(2,Ω) = {H1,H2,H3}, where Hi = {{i}, {j, k}}
being {i, j, k} = {1, 2, 3}. Therefore, by applying Theorem 10 we get that
U2,Ω = H1 ⊓ H2 ⊓ H3. So the minimal domination completions of the non-
domination clutter U2,Ω provides the domination decomposition U2,Ω = D(G1)⊓
D(G2) ⊓ D(G3) where Gi is the graph with vertex set V (Gi) = {1, 2, 3} and
edge set E(Gi) = {{i, j}, {i, k}} being {i, j, k} = {1, 2, 3}. Thus we have that
2 ≤ D(2,Ω) ≤ 3. However observe that in this case, if i1 ̸= i2, then Hi1 ⊓Hi2 ={
{i1}, {i2, i3}

}
⊓
{
{i2}, {i1, i3}

}
= min

{
{i1, i2}, {i1, i3}, {i2, i3}, {i1, i2, i3}

}
={

{i1, i2}, {i1, i3}, {i2, i3}
}
= U2,Ω. Therefore we conclude that D(2,Ω) = 2.
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4. Determining the minimal domination completions of some uniform
clutters Ur,Ω

Let Ω be a finite set of size n. From Proposition 5, the study of the uniform
clutters of maximum size will be completed with the computation of the minimal
domination completions of Ur,Ω either when r = 2 and n is odd, or when 3 ≤
r ≤ n− 1. The description of the set Dom(r,Ω) of all the minimal domination
completions of Ur,Ω is a problem which is far from being solved. However, here
we present the description in three cases. Namely, the case r = 2 and n odd
(Subsection 4.1), the case r = n − 1 (Subsection 4.2), and the case r arbitrary
and n ≤ 5 (Subsection 4.3).

4.1. Minimal domination completions of U2,Ω

From Proposition 5 and Theorem 9 we get that Dom(2,Ω) = {U2,Ω} if and
only if Ω has even size. In this subsection we determine the set Dom(2,Ω) of
the minimal domination completions of the uniform clutter U2,Ω whenever the
finite set Ω has odd size.

Lemma 12. Let Ω′ be a non-empty subset of a finite set Ω. Let H be a clutter
on Ω and let H[Ω′] = {A ∈ H : A ⊆ Ω′}. Let G′ be a graph with vertex set
V (G′) ⊆ Ω′, and suppose that H[Ω′] ̸= ∅. Then H[Ω′] ⩽ D(G′) if and only if
H ⩽ D(G′ ∨KΩ\Ω′).

Proof. First assuming that H[Ω′] ⩽ D(G′) we are going to prove that H ⩽
D(G′ ∨K{ω}). Recall that by Lemma 3 we get that D(G′ ∨KΩ\Ω′) = D(G′) ∪
{{w} : w ∈ Ω \ Ω′}. Therefore, by applying Lemma 6, we must demonstrate
that if A ∈ H, then there exists D ∈ D(G′) ∪ {{w} : w ∈ Ω \ Ω′} such that
D ⊆ A. Let A ∈ H. If A ̸⊆ Ω′, then there is ω ∈ A∩ (Ω \Ω′) and so we can set
D = {ω}. Now assume that A ⊆ Ω′. Then A ∈ H[Ω′] ⩽ D(G′), and hence there
exists D′ ∈ D(G′) such that D′ ⊆ A. Thus, in such a case, we can consider
D = D′.

Now suppose that H ⩽ D(G′ ∨ KΩ\Ω′). We want to prove that H[Ω′] ⩽
D(G′); that is, we must demonstrate that if A′ ∈ H[Ω′], then there exists
D′ ∈ D(G′) such that D′ ⊆ A′. Let A′ ∈ H[Ω′]. Since A′ ∈ H[Ω′] ⊆ H and
H ⩽ D(G′ ∨ KΩ\Ω′), there exists D ∈ D(G′ ∨ KΩ\Ω′) such that D ⊆ A′. But
A′ ⊆ Ω′ and, by Lemma 3, D(G′ ∨ KΩ\Ω′) = D(G′) ∪ {{w} : w ∈ Ω \ Ω′}.
Therefore D ∈ D(G′). Now the proof is completed by setting D′ = D.

Theorem 13. Let Ω be a finite set of size |Ω| = n. Assume that n is odd. Then
the following statements hold:

1. For all w ∈ Ω, the clutter Hω =
{
{ω}

}
∪U2,Ω\{ω} is a domination clutter.

Moreover, if G is a graph with vertex set Ω, then D(G) = Hω if and only
if G = K{ω}∨G′ where G′ is a graph realization of the domination clutter
U2,Ω\{ω}.

2. The uniform clutter U2,Ω has n minimal domination completions. Namely,
Dom(2,Ω) = {Hω : ω ∈ Ω}.
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3. If wi1 , wi2 are distinct elements of Ω, then {Hωi1
,Hωi2

} is a 2-decompo-
sition of U2,Ω. In particular, D(2,Ω) = 2.

Proof. Let w ∈ Ω. Since Ω\{ω} has even size, the clutter U2,Ω\{ω} is a domina-
tion clutter, and so there exists a graph G′

0 with vertex set V (G′
0) = Ω\{ω} such

that U2,Ω\{ω} = D(G′
0). Let G0 be the join graph G0 = K{ω}∨G′

0. Then G0 is a
graph with vertex set Ω and minimal dominating sets D(G0) = D(K{ω}∨G′

0) ={
{ω}

}
∪ D(G′

0) =
{
{ω}

}
∪ U2,Ω\{ω} = Hω. So Hω is a domination clutter.

To conclude the proof of the first statement we must demonstrate that if G
is a graph with D(G) =

{
{ω}

}
∪ U2,Ω\{ω}, then G = K{ω} ∨G′ for some graph

G′ with vertex set Ω \ {w} and minimal dominating sets D(G′) = U2,Ω\{ω}. Let
G′ = G−ω be the graph obtained by deleting the vertex ω from G. Since {ω} ∈
D(G), the vertex ω is universal in G and so G = K{ω} ∨ (G− ω) = K{ω} ∨G′.

Moreover, from Lemma 3 we have D(G) =
{
{ω}

}
∪ D(G′). Thus we conclude

that D(G′) = U2,Ω\{ω} because D(G) =
{
{ω}

}
∪ U2,Ω\{ω}. This completes the

proof of the first statement.
Next we are going to prove the second statement; that is, we must demon-

strate that Hω1 , . . . ,Hωn are the minimal domination completions of U2,Ω.
Let 1 ≤ i ≤ n. It is clear that U2,Ω ⩽

{
{ωi}

}
∪ U2,Ω\{ωi}; that is, U2,Ω ⩽ Hωi

.
Moreover, from statement (1) the clutter Hωi is a domination clutter. So the
domination clutters Hω1 , . . . ,Hωn are domination completions of U2,Ω; that is,
{Hω1 , . . . ,Hωn} ⊆ Dom(2,Ω).

Now let us prove that Dom(2,Ω) ⊆ {Hω1 , . . . ,Hωn}. In order to do this
it is enough to show that if H is a domination completion of U2,Ω, then there
exists i0 such that Hωi0

⩽ H. Let H be a domination completion of U2,Ω; that
is, H is a dominatoin clutter such that U2,Ω ⩽ H. Recall that U2,Ω is not a
domination clutter, so U2,Ω ̸= H. Hence, since the clutter U2,Ω consists of all
subsets A ⊆ Ω of size |A| = 2 and H is a clutter, there exists ωi0 ∈ Ω such
that {ωi0} ∈ H. Therefore we have that U2,Ω ⩽ H and that {ωi0} ∈ H, and so{
{ωi0}

}
∪ U2,Ω\{ωi0} ⩽ H, that is, Hωi0

⩽ H.
From the above we have that Dom(2,Ω) = min{Hω1 , . . . ,Hωn}. Observe

that if i ̸= j, then Hωi ̸⩽ Hωj . So, Dom(2,Ω) = {Hω1 , . . . ,Hωn}. This com-
pletes the proof of the second statement.

To complete the proof of the proposition we must prove that if ω1 ̸= ω2,
then {Hω1 ,Hω2} is a 2-decomposition of U2,Ω; that is, we must demonstrate
that U2,Ω = Hω1 ⊓Hω2 . Since Hωi =

{
{ωi}

}
∪U2,Ω\{ωi}, the union A1 ∪A2 has

at least size two whenever A1 ∈ Hω1 and A2 ∈ Hω2 if w1 ̸= w2. Moreover, it is
clear that every subset {ωk, ωℓ} with ωk ̸= ωℓ can be obtained as A1 ∪ A2, for
some A1 ∈ Hω1 and A2 ∈ Hω2 . Hence we conclude that Hω1 ⊓Hω2 = U2,Ω.

4.2. Minimal domination completions of Un−1,Ω

From Proposition 5 we get that if Ω has size n ≥ 3, then the clutter Un−1,Ω

is not a domination clutter. The goal of this subsection is to provide a complete
description of the set Dom(n− 1,Ω) of the minimal domination completions of
Un−1,Ω (Theorem 19), and to display their graph realizations (Proposition 20).
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In addition, we present an upper bound for the decomposition parameter D(n−
1,Ω) (Proposition 21). Up to now, the computation of the exact value of this
parameter remains as an open problem.

In order to prove our results we will use the following five technical lemmas.
Three of these lemmas are concerned with graphs that are disjoint union of stars;
whereas the other two lemmas involve some properties of the partial order ⩽.

A tree T of order n ≥ 2 is a star if it is isomorphic to the complete bipartite
graph K1,n−1. Observe that a tree T of order n ≥ 2 is a star if and only if T has
at most one vertex of degree at least 2, the center of the star. If a star T has
no vertices of degree at least 2, then T is isomorphic to K2 and both vertices
can be considered as the center of the star. Stars can also be characterized as
non-empty connected graphs such that all its edges are incident to a leaf ; that
is, a vertex of degree 1. It is clear that every graph without isolated vertices
and such that all its edges have at least one endpoint of degree 1 is a disjoint
union of stars. The following result is a consequence of this fact.

Lemma 14. Let G be a graph without isolated vertices. Then G is a disjoint
union of stars if and only if N [G] = E(G).

Proof. Suppose first that G is a disjoint union of stars. If x is a leaf, then
N [x] = {x, y} ∈ E(G); whereas if x is not a leaf, then x a vertex of degree r ≥ 2,
and so N [x] = {x, y1, . . . , yr} where y1, . . . , yr are the leaves hanging from x.
Therefore, we conclude that N [G] = {N [x] : x is a leaf }. So, N [G] ⊆ E(G).
Now if {x, y} ∈ E(G), then either x or y is a leaf; hence {x, y} is either N [x]
or N [y] and so {x, y} ∈ N [G]. Thus E(G) ⊆ N [G]. Therefore, the equality
follows.

Now suppose that N [G] = E(G). Then, every edge has an endpoint of
degree 1, because it is the closed neighborhood of some vertex. Therefore, G is
a disjoint union of stars.

Lemma 15. Every graph G without isolated vertices contains a spanning sub-
graph that is a disjoint union of stars.

Proof. It is sufficient to prove that the statement holds for connected graphs
G of order n ≥ 2. We proceed by induction on n. The result is trivial for
n = 2. Now assume that G is a connected graph of order n ≥ 3. Consider
a spanning tree T of G. If T is a star, then the result follows. So we may
assume that T is not a star. In such a case T has at least two vertices of degree
≥ 2. Consider an edge of the path joining these two vertices. By removing this
edge, we obtain two trees T1 and T2 of order at least 2 and without isolated
vertices. By inductive hypothesis, both trees contain a spanning subgraph that
is a disjoint union of stars. To finish observe that the union of those subgraphs
is a spanning subgraph of G that is a disjoint union of stars.

Lemma 16. Let G be the disjoint union of the stars S1, . . . , Sr. Then G has
exactly 2r minimal dominating sets. Namely, the minimal dominating sets of G
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are the sets of vertices of the form:

{cj : j ∈ J} ∪

 ∪
i∈{1,...,r}\J

Li


where J ⊆ {1, . . . , r}, and where ci and Li are respectively the center and the
set of leaves of the star Si (whenever Si is isomorphic to K2, choose one of the
two vertices as the center and the other as the leaf).

Proof. It is clear that a star S has exactly two minimal dominating sets. Namely,
if the star S is not isomorphic K2, then the minimal dominating sets of S are
the set of leaves and the set containing only the center; whereas if the star S is
isomorphic to K2, then the minimal dominating sets of S are the sets containing
exactly one vertex. Now, the result follows by applying Lemma 3 because if G
is the disjoint union of the stars S1, . . . , Sr, then D(G) = {D1 ∪ · · · ∪Dr : Di ∈
D(Si)}.

Lemma 17. Let G′ be a spanning subgraph of G. Then D(G′) ⩽ D(G).

Proof. From V (G) = V (G′) and E(G′) ⊆ E(G), we have that every dominating
set of G′ is also a dominating set of G. In particular, if D′ ∈ D(G′), then D′

contains a minimal dominating set D of G. Therefore, the inequality D(G′) ⩽
D(G) holds.

Lemma 18. If H and H′ are clutters such that H ⩽ H′, then tr(H′) ⩽ tr(H).

Proof. Let X ′ ∈ tr(H′). We want to prove that there exists X ∈ tr(H) such
that X ⊆ X ′. To do this, it is enough to demonstrate that X ′ ∩A ̸= ∅ for every
A ∈ H. Let A ∈ H. Since H ⩽ H′, there exists A′ ∈ H′ such that A′ ⊆ A. By
assumption X ′ ∈ tr(H′). So X ′ ∩A′ ̸= ∅ and thus X ′ ∩A ̸= ∅, as we wanted to
prove.

Now, by using these lemmas, we are going to prove the following theorem
which provides a complete description of all the minimal domination completions
of the uniform clutter Un−1,Ω.

Theorem 19. Let Ω be a finite set of size n ≥ 3. Then the minimal domination
completions of Un−1,Ω are the domination clutters H of the form H = D(G)
where G is a disjoint union of stars; that is:

Dom(n− 1,Ω) = {D(G) : G is a disjoint union of stars with vertex set Ω}.

Proof. Let Σ = {G : G is a disjoint union of stars with vertex set Ω}. First we
will prove that Un−1,Ω ≤ D(G) for all G ∈ Σ; that is, we must demonstrate that
if G ∈ Σ and if A ∈ Un−1,Ω, then there exists D ∈ D(G) such that D ⊆ A.
So, let G ∈ Σ and let A ∈ Un−1,Ω. Then A = Ω \ {ω0} for some ω0 ∈ Ω.
Since G ∈ Σ, by Lemma 16, there exists a minimal dominating set D0 of G not
containing ω0. Thus, D0 ⊆ Ω \ {ω0}. So we can set D = D0.
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Now, we will prove that if H is a domination completion of Un−1,Ω, then
there exists G ∈ Σ such that D(G) ⩽ H. So, let H be a domination completion
of Un−1,Ω. Then Un−1,Ω ⩽ H and there is a graph GH with vertex set Ω such
that H = D(GH). Notice that if Un−1,Ω ⩽ D(GH), then GH has no isolated
vertices, (because otherwise the isolated vertex ω0 should be at every minimal
dominating set of GH implying that Ω \ {ω0} ∈ Un−1,Ω does not contain any
minimal dominating set of GH, which is a contradiction). Thus, by Lemma 15,
there exists a spanning subgraph G of GH that is a disjoint union of stars. Since
G is a spanning subgraph of GH, by Lemma 17 it follows that D(G) ⩽ D(GH).
Therefore we conclude that G ∈ Σ and D(G) ⩽ H.

Finally, it remains to prove that the dominating clutters of distinct disjoint
union of stars with vertex set Ω are either equal or non-comparable. In other
words, we must demonstrate that if D(G) ⩽ D(G′) withG,G′ ∈ Σ, thenG = G′.
So, let G,G′ ∈ Σ with D(G) ⩽ D(G′). Then, from Lemma 2 and Lemma 18, it
follows that N [G′] = tr(D(G′)) ⩽ tr(D(G)) = N [G]. By applying Lemma 14 we
get that N [G′] = E(G′) and N [G] = E(G). Therefore E(G′) ⩽ E(G). Hence
E(G′) ⊆ E(G) because E(G′) and E(G) are 2-uniform clutters. At this point
observe that the addition of an edge to a graph that is a disjoint union of stars
gives rise to a graph not satisfying this property. Therefore we conclude that
E(G) = E(G′) and, consequently, G = G′.

The following proposition characterizes all graphs that realize a minimal
domination completion of Un−1,Ω. After its proof we present an example of
a minimal domination completion H0 of the uniform clutter Un−1,Ω whenever
n = 8, as well as the description of all the graph realizations of H0 (the example
is illustrated in Figure 1).

Proposition 20. Let G be a graph with vertex set Ω that is a disjoint union of
stars S1, . . . , Sr, and let G′ be a graph with vertex set Ω. Then D(G) = D(G′)
if and only if G′ is any graph that can be obtained from G in the following way:
choosing a set C = {c1, . . . , cr} formed by exactly one center ci of each star Si

and adding to G any set of edges joining vertices of C.

Proof. LetG′ be a graph with vertex set Ω. By applying Lemma 2 and Lemma 14
we get that D(G′) = D(G) if and only if N [G′] = N [G] if and only if N [G′] =
E(G). It is not hard to prove that N [G′] = E(G) if and only if the following
two conditions are satisfied: E(G) ⊆ E(G′), and for every edge {x, y} ∈ E(G)
either x or y has degree 1 in G′. Therefore we conclude that D(G′) = D(G)
if and only if G′ is obtained from G by adding edges joining vertices of a set
containing exactly one center of each star of G.

Example 3. Let Ω = {1, 2, 3, 4, 5, 6, 7, 8}. By Theorem 19, the minimal dom-
ination completions of U7,Ω are the clutters of the form D(G) where G is a
disjoint union of stars with vertex set Ω. It is straightforward to prove that
there are 5041 such graphs G, all of them providing different domination clut-
ters. Therefore, |Dom(7,Ω)| = 5041. One of these graphs G is the graph G0

obtained as the disjoint union of 3 stars, two of them isomorphic to K2 and the
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Figure 1: The clutter H0 = D(G0) is a minimal domination completion of the uniform clutter
U7,Ω where Ω = {1, 2, 3, 4, 5, 6, 7, 8}. The graph G0 together with the 24 graphs obtained by
adding edges joining vertices of Ci (i = 1, 2, 3, 4) gives rise to all the 25 graph realizations of
the domination clutter H0 of Example 3.
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other one, isomorphic to K1,3; namely, the graph G0 with edge set E(G0) =
{{1, 2}, {3, 4}, {5, 6}, {5, 7}, {5, 8}}. From Lemma 16, this graph G0 has the
following 23 = 8 minimal dominating sets D(G0) = {{1, 3, 5}, {1, 3, 6, 7, 8},
{1, 4, 5}, {1, 4, 6, 7, 8}, {2, 3, 5}, {2, 3, 6, 7, 8}, {2, 4, 5}, {2, 4, 6, 7, 8}}. So, the clut-
ter H0 = D(G0) is a minimal domination completion of U7,Ω. In order to obtain
all the graph realizations of H0, we apply Proposition 20. In this case we
have four possibilities for the set C containing exactly one center of each star.
Concretely C is either C1 = {1, 3, 5}, or C2 = {1, 4, 5}, or C3 = {2, 3, 5}, or
C4 = {2, 4, 5}. The graphs G′ such that its collection of minimal dominat-
ing sets is D(G′) = D(G0) are obtained by fixing one of the sets Ci and adding
edges joining vertices of Ci. It is easy to check that there are exactly 24 different
graphs G′ ̸= G0 obtained in this way (see Figure 1).

To conclude this subsection we present an upper bound on the decomposition
parameter D(n − 1,Ω) of the uniform clutter Un−1,Ω where |Ω| = n (Proposi-
tion 21). It is worth noting that an exhaustive analysis of all possible cases
shows that the equality holds whenever 2 ≤ n ≤ 5. However, it remains an
open problem to determine if the equality holds for n ≥ 6.

Proposition 21. Let Ω be a finite set of size n ≥ 3. Then D(n−1,Ω) ≤ n−1;
that is, there are n−1 minimal domination completions H1, . . . ,Hn−1 of Un−1,Ω

such that Un−1,Ω = H1 ⊓ · · · ⊓ Hn−1.

Proof. Let Ω = {ω1, . . . , ωn}. For 1 ≤ i ≤ n − 1, let Hi be the domination
clutter Hi = D(Si) where Si is the star with center ωi and isomorphic to
K1,n−1. By Theorem 19, the clutters H1, . . . ,Hn−1 are minimal domination
completions of Un−1,Ω. Let us show that Un−1,Ω = H1 ⊓ · · · ⊓ Hn−1. It is clear
that Hi = {Di,1, Di,2} where Di,1 = {ωi} and Di,2 = Ω \ {ωi}. On the one
hand, the elements of H1 ⊓ · · · ⊓ Hn−1 have size at least n − 1 and hence the
inequality H1 ⊓ · · · ⊓ Hn−1 ⩽ Un−1,Ω holds. On the other hand, if A ∈ Un−1,Ω,
then A = Ω\{ω} for some w ∈ Ω, and thus we get that: A = D1,1∪· · ·∪Dn−1,1

if w = wn; whereas A = Di0,2∪
(
∪i ̸=i0 Di,1

)
if w = wi0 ̸= wn. So, the inequality

Un−1,Ω ⩽ H1 ⊓ · · · ⊓ Hn−1 also holds. Therefore, since ⩽ is a partial order, we
conclude that Un−1,Ω = H1 ⊓ · · · ⊓ Hn−1.

4.3. Minimal domination completions of Ur,Ω whith |Ω| ≤ 5

The aim of this subsection is to determine the set Dom(r,Ω) of the minimal
domination completions of the r-uniform clutter Ur,Ω where Ω is a finite set of
size |Ω| = n ≤ 5 and 1 ≤ r ≤ n. From Proposition 5 and Theorem 9 we get
that Dom(r,Ω) = {Ur,Ω} if and only if (r, n) ̸= (2, 3), (2, 5), (3, 4), (3, 5), (4, 5).
In addition, the results of the the preceding subsections provide a complete
description of the set Dom(r,Ω) whenever (r, n) = (2, 3), (2, 5), (3, 4), (4, 5).
Therefore, it only remains to determine the set of minimal domination com-
pletions Dom(r,Ω) whenever (r, n) = (3, 5).

This subsection deals with this issue. Namely, the goal of this subsection
is to prove that, for r = 3 and n = 5 the uniform clutter Ur,Ω has 22 minimal
domination completions: 12 of the form D(G) with G isomorphic to a cycle
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Figure 2: For 1 ≤ n = |Ω| ≤ 5, the minimal domination completions of Ur,Ω are the domination
clutters D(G′), where G′ is a graph isomorphic to a graph G in the figure. The number below
each graph G denotes the number of different clutters H ∈ Dom(r,Ω) with H = D(G′) for some
graph with G′ isomorphic to G. In addition, in each case, the total number s = |Dom(r,Ω)|
of minimal domination completions of Ur,Ω, and the decomposition parameter D = D(r,Ω)
are given.

C5, and 10 of the form D(G) with G isomorphic to the complete bipartite
graph K2,3. This result is stated in Theorem 22. This and all the other results
about the minimal domination completions of the uniform clutters Ur,Ω where
1 ≤ r ≤ |Ω| ≤ 5, are summarized in Figure 2 (in each case, the graphs G in
the figure provide the realization of all the minimal domination completions H
of Ur,Ω; that is, H ∈ Dom(r,Ω) if and only if H = D(G′) for some graph G′

isomorphic to a graph G in the figure).

Theorem 22. Let Ω be a finite set of size |Ω| = 5. Let C5 and K2,3 be the
families of graphs with vertex set Ω, where the graphs of C5 are exactly those
isomorphic to the cycle C5, whereas the graphs of K2,3 are all those isomorphic
to the complete bipartite graph K2,3. The following statements hold:

1. The minimal domination completions of the uniform clutter U3,Ω are the
domination clutters H of the form H = D(G) where the graph G is iso-
morphic to either a cycle C5 or to a complete bipartite graph K2,3; that
is, Dom(3,Ω) = {D(G) : G ∈ C5 ∪ K2,3}.

2. The uniform clutter U3,Ω has 22 minimal domination completions; that is,
|Dom(3,Ω)| = 22.

3. The uniform clutter U3,Ω has decomposition parameter D(3,Ω) = 2; that
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is, there exist minimal domination completions H,H′ of U3,Ω such that
U3,Ω = H ⊓H′.

The rest of this subsection is devoted to prove this theorem. From now on
we set Ω = {1, 2, 3, 4, 5}.

First observe that if G ∈ C5, then D(G) contains the five pairs of non-
adjacent vertices; while if G ∈ K2,3, then D(G) contains both stable sets and
the 6 pairs of adjacent vertices (see Figure 3). Using these facts it is easy to
check that if G,G′ ∈ C5 ∪ K2,3, then D(G) = D(G′) if and only if G = G′.
Therefore, |{D(G) : G ∈ C5 ∪ K2,3}| = |C5| + |K2,3| = 12 + 10 = 22. Thus, the
statement (2) of the theorem follows from the first one.

i1

i4

i5 i2

i3

D(G) = E(KΩ) \ E(G)

= {{i1, i3}, {i1, i4}, {i2, i4}, {i2, i5}, {i3, i5}}
D(G) = E(G) ∪ {V1, V2}

= {{i1, i2}, {i1, i4}, {i3, i2}, {i3, i4}, {i5, i2}, {i5, i4},
{i1, i3, i5}, {i2, i4}}

V1

V2

i1 i5i3

i2 i4

Figure 3: Minimal dominating sets of a graph G with vertex set V (G) = {i1, i2, i3, i4, i5},
isomorphic to C5 (left) and isomorphic to K2,3 (right).

Now let us demonstrate the third statement of the theorem. The statement
(1) will be proved after doing this.

Recall that U3,Ω is not a domination clutter (Proposition 5). So, D(3,Ω) ≥ 2.
The inequality D(3,Ω) ≤ 2 follows from Proposition 23. This proposition shows
all the ways to obtain U3,Ω as D(G1) ⊓ D(G2), when G1, G2 ∈ C5 ∪ K2,3.

Proposition 23. Let G1, G2 ∈ C5 ∪ K2,3. Then U3,Ω = D(G1) ⊓ D(G2) if and
only if G1, G2 ∈ C5 and E(G1) ∪ E(G2) = E(KΩ).

Proof. First consider the case G1, G2 ∈ C5 with E(G1) ∪ E(G2) = E(KΩ).
In such a case E(G1) ∩ E(G2) = ∅, and so we get that D(G1) = E(G2) and
D(G2) = E(G1). Thus, every set A1 ∪ A2, with A1 ∈ D(G1) and A2 ∈ D(G2),
has size 3 or 4. It is straightforward to check that every element of U3,Ω can be
obtained as A1 ∪ A2 where A1 ∈ D(G1) and A2 ∈ D(G2). Therefore, U3,Ω =
D(G1) ⊓ D(G2).

The proof of the proposition will be completed by showing that, in any other
case, there exists A0 ∈ D(G1) ∩ D(G2) with |A0| = 2. Indeed, if there exists
A0 ∈ D(G1)∩D(G2), then A0 ∈ D(G1)⊓D(G2), and so D(G1)⊓D(G2) has at
least an element of size |A0|. Hence, if |A0| = 2, then U3,Ω ̸= D(G1) ⊓ D(G2).

Therefore, we must demonstrate that there exists A0 ∈ D(G1)∩D(G2) with
|A0| = 2. We distinguish three cases: whenever G1, G2 ∈ C5 and E(G1) ∪
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E(G2) ̸= E(KΩ); whenever G1, G2 ∈ K2,3; and whenever G1 ∈ C5 and G2 ∈
K2,3. If G1, G2 ∈ C5 and E(G1) ∪ E(G2) ̸= E(KΩ), then there exists {x, y} ∈
E(KΩ) \ (E(G1) ∪ E(G2)). In this case D(Gi) = E(KΩ) \ E(Gi). So, we
can set A0 = {x, y} ∈ D(G1) ∩ D(G2). Now let us assume that G1, G2 ∈
K2,3. Then |E(G1)| = |E(G2)| = 6. So E(G1) ∩ E(G2) ̸= ∅ and thus there
exists {x, y} ∈ E(G1) ∩ E(G2). Since E(Gi) ⊆ D(Gi), in this case the subset
A0 = {x, y} satisfies the required conditions. Finally, suppose that G1 ∈ C5
and G2 ∈ K2,3. Then |E(KΩ) \ E(G1)|=5 and |E(G2)| = 6. So there exists
{x, y} ∈ (E(KΩ) \ E(G1)) ∩ E(G2) ⊆ D(G1) ∩ D(G2), and thus the proof is
completed by setting A0 = {x, y}.

At this point, the proof of Theorem 22 will be completed by proving the
first statement. Observe that the proof of this statement is a consequence of
the following three facts: first, the clutters D(G), where G ∈ C5 ∪ K2,3, are
domination completions of U3,Ω; second, any pair of different such clutters are
non-comparable; and third, Dom(3,Ω) ⊆ {D(G) : G ∈ C5 ∪K2,3}. Indeed, from
these three facts it easily follows that Dom(3,Ω) = {D(G) : G ∈ C5 ∪ K2,3}.

We demostrate the first two facts in Propositions 24 and 25, respectively.
The third fact is a consequence of Proposition 29, whose proof is involved and re-
quires three technical lemmas concerning the size of the elements of the minimal
domination completions of U3,Ω and their transversal (Lemmas 26, 27 and 28).

Proposition 24. If G ∈ C5 ∪ K2,3, then U3,Ω ⩽ D(G).

Proof. From Lemma 6, we must demonstrate that if A is a subset of Ω of size 3,
then there exists D ∈ D(G) such that D ⊆ A. This is clear if G ∈ C5, because in
such a case every set of three vertices of G contains a pair of two non-adjacent
vertices, that are a minimal dominating set of G. Now let assume that G ∈ K2,3.
In this case the result follows by taking into account that the stable set of size
3 is a minimal dominating set of G, and that every other set of three vertices
contains two adjacent vertices. So any subset of size three contains a minimal
dominating set of G.

Proposition 25. Let G1, G2 ∈ C5 ∪ K2,3. If D(G1) ⩽ D(G2), then D(G1) =
D(G2).

Proof. First, suppose that G1, G2 ∈ C5. Then the clutters D(G1) and D(G2)
contain both exactly five elements of size 2. In such a case it is clear that if
D(G1) ⩽ D(G2), then D(G1) = D(G2).

Now assume thatG1, G2 ∈ K2,3. Then the cluttersD(G1) andD(G2) contain
both exactly one element of size 3 and 7 elements of size 2. Therefore, from
D(G1) ⩽ D(G2) we deduce that the 7 elements of size 2 must be the same. In
addition, since there is no inclusion relation between the elements of a clutter,
the element of size 3 must be also the same. Hence we conclude that D(G1) =
D(G2).

The proof will be completed by showing that the inequality D(G1) ⩽ D(G2)
is not possible neither in the case G1 ∈ K2,3 and G2 ∈ C5, nor in the case
G1 ∈ C5 and G2 ∈ K2,3. If G1 ∈ K2,3 and G2 ∈ C5, then D(G1) contains 7
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elements of size 2, while D(G2) contains only 5 elements of size 2. Thus, in such
a case, the inequality D(G1) ⩽ D(G2) is not possible. Finally, assume G1 ∈ C5
and G2 ∈ K2,3. If D(G1) ⩽ D(G2), then the 5 elements of size 2 of D(G1) must
be in D(G2); that is, D(G1) ⊆ D(G2). But the five elements of D(G1) are the
5 pairs of non-adjacent vertices of G1, and they correspond to the five pairs of
edges of another cycle of order 5. Nevertheless, it is not possible to define a
cycle of order 5 with 5 elements of size 2 of D(G2). Therefore, D(G1) ⩽ D(G2)
is not possible in that case. This completes the proof of the proposition.

Lemma 26. Let H be a clutter. If U3,Ω ⩽ H, then |X| ≥ 3 for every X ∈ tr(H).

Proof. On the contrary, assume that there exists X ∈ tr(H) such that |X| ≤ 2.
In such a case, consider a subset A ⊆ Ω of size |A| = 3 satisfying A ∩ X = ∅.
Since |A| = 3, hence A ∈ U3,Ω. Therefore there exists B ∈ H contained in A
because U3,Ω ⩽ H. Hence B ∩X ⊆ A ∩X, and so B ∩X = ∅. This leads us to
a contradiction because B ∈ H and X ∈ tr(H).

Lemma 27. Let H be a minimal domination completion of U3,Ω. If there exists
A ∈ H such that |A| = 3, then H = D(G) for some graph G ∈ K2,3.

Proof. It is enough to prove that D(G) ⩽ H for some G ∈ K2,3, because by
Proposition 24, U3,Ω ⩽ D(G), and so, the minimality of H implies that D(G) =
H.

Without loss of generality we may assume that A = {1, 2, 3} ∈ H. As H is
a clutter, every element of H different from A contains either 4 or 5. Hence,
the intersection of {1, 4, 5}, {2, 4, 5} and {3, 4, 5} with every element of H is
non-empty. Therefore, {1, 4, 5}, {2, 4, 5} and {3, 4, 5} are in tr(H), because
there are no elements of cardinality less or equal than 2 in tr(H) (Lemma 26).
Since H is a domination clutter, there exists a graph G0 such that H = D(G0),
and so tr(H) = N [G0] (Lemma 2). Therefore, {1, 4, 5}, {2, 4, 5} and {3, 4, 5}
are the closed neighborhoods for some x, y, z ∈ Ω; that is, NG0 [x] = {1, 4, 5},
NG0

[y] = {2, 4, 5} and NG0
[z] = {3, 4, 5}. Observe that at least one of the

elements x, y, z ∈ Ω is different from 4 and 5. So, without loss of general-
ity we may assume that x ̸= 4, 5 and so x = 1. Thus {1, 4, 5} = NG0

[1].
Hence {1, 4}, {1, 5} ∈ E(G0), and consequently, NG0 [4] ̸= {2, 4, 5}, {3, 4, 5}
and NG0 [5] ̸= {2, 4, 5}, {3, 4, 5}. So we conclude that NG0 [1] = {1, 4, 5}, that
NG0 [2] = {2, 4, 5}, and that NG0 [3] = {3, 4, 5}. Hence it follows that F =
{{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}} ⊆ E(G0). At this point let us con-
sider the subgraph G induced by the edges of F . Observe that G is isomorphic
to K2,3 with stable sets {1, 2, 3} and {4, 5}. So, G ∈ K2,3. Moreover, the graph
G is a spanning subgraph of G0 and hence, from Lemma 17 it follows that
D(G) ⩽ D(G0) = H. This completes the proof of the lemma.

Lemma 28. Let H be a minimal domination completion of U3,Ω. If |A| = 2 for
all A ∈ H, then H = D(G) for some graph G ∈ C5.

Proof. Let G0 be a graph with H = D(G0). Reasoning as in the proof of the
previous lemma, here it is enough to prove that D(G) ⩽ D(G0) for some G ∈ C5.
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To prove this inequality we will use the following four facts.
First, notice that G0 has no vertex of degree 4, because otherwise there

would be an element in D(G0) of size 1.
Second, we claim that if {a, b} /∈ H, then {a, b} ∈ E(G0). Let us prove our

claim. Suppose to the contrary that a and b are non-adjacent in G0. In such
a case, both vertices a and b belong to a minimal dominating set D of G0 (for
instance, we can consider a inclusion-maximal independent set D containing a
and b). But D(G0) = H and, by assumption, all the elements of H have size 2.
Therefore we conclude that {a, b} = D ∈ D(G0) = H, which is a contradiction.
This completes the proof of our claim.

Next, observe that N [G0] = tr(D(G0)) = tr(H) (Lemma 2). So, by applying
Lemma 26 it follows that all the elements of N [G0] have at least 3 elements.

Finally, let us show that in fact N [G0] has at least one element X of size 3.
Suppose on the contrary that it is not true. If N [G0] = {Ω}, then G0 has at
least one vertex of degree 4, which is not possible. So, without loss of generality
we may assume that Ω /∈ N [G0] and that {1, 2, 3, 4} ∈ N [G0]. In such a case,
all subsets of cardinality 4 must be in N [G0], because otherwise there exists
j ∈

∩
N∈N [G0]

N , so degG0
(j) = 4, which is a contradiction. Therefore N [G0]

contains all the subsets of cardinality 4. But this is not possible, because there
is no graph of order 5 with all the vertices of degree 3.

At this point, using the foregoing four facts, we will prove that there exists
a graph G ∈ C5 such that D(G) ⩽ D(G0).

We distinguish three cases: N [G0] has exactly one element of size 3; N [G0]
has at least two elements X and Y of size 3 with |X ∩ Y | = 2; and N [G0] has
at least two elements X and Y of size 3 with |X ∩ Y | = 1.

First suppose that N [G0] has exactly one element of size 3. Hence, the re-
maining elements of N [G0] have size 4. We may assume that {1, 2, 3} ∈ N [G0]
and NG0 [1] = {1, 2, 3}. In such a case, N [G0] ⊆ {{1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4, 5},
{2, 3, 4, 5}}. Since 4, 5 ̸∈ NG0 [1], we have that 1 ̸∈ NG0 [4] and 1 ̸∈ NG0 [5]. Con-
sequently, NG0

[4] = NG0
[5] = {2, 3, 4, 5}. Therefore {{1, 2}, {1, 3}, {2, 4}, {3, 5},

{4, 5}} ⊆ E(G0). So, G0 contains a spanning subgraph G that is isomorphic to
the cycle C5 and, by Lemma 17, D(G) ⩽ D(G0).

Next suppose that N [G0] has at least two elements X and Y of size |X| =
|Y | = 3 with |X ∩ Y | = 2. Without loss of generality we may assume that
X = {1, 2, 3} and that Y = {1, 2, 5}. Since X,Y ∈ N [G0], and since {4, 5} ∩
X = ∅ and {3, 4} ∩ Y = ∅, we get that {4, 5}, {3, 4} /∈ tr(N [G0]) = D(G0).
Therefore {4, 5}, {3, 4} /∈ H and thus, as we have showed before, we con-
clude that {4, 5}, {3, 4} ∈ E(G0). Hence it follows that {{1, 2, 3}, {1, 2, 5}} =
{NG0 [1], NG0 [2]}. By symmetry, we may assume that NG0 [1] = {1, 2, 3} and
that NG0 [2] = {1, 2, 5}. In such a case, {{1, 2}, {1, 3}, {2, 5}, {4, 5}, {3, 4}} ⊆
E(G0). Hence, G0 contains a spanning subgraph G that is isomorphic to the
cycle C5 and, by Lemma 17, D(G) ⩽ D(G0).

Finally, suppose that N [G0] has at least two elements X and Y of size
|X| = |Y | = 3 with |X ∩ Y | = 1. Without loss of generality we may as-
sume that X = {1, 2, 3} and that Y = {3, 4, 5}. Reasoning as in the pre-
ceding case, {4, 5} and {1, 2} belong to E(G0). If NG0 [3] = {1, 2, 3}, then
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{3, 4, 5} must be either NG0
[4] or NG0

[5], obtaining respectively that either
{3, 4} ∈ E(G0) or that {3, 5} ∈ E(G0). So, if NG0 [3] = {1, 2, 3}, then we
get that either 4 ∈ NG0

[3] or 5 ∈ NG0
[3], a contradiction. Therefore we con-

clude that NG0 [3] ̸= {1, 2, 3} and, by symmetry, we get that NG0 [3] ̸= {3, 4, 5}.
Hence, without loss of generality we may assume that NG0 [1] = {1, 2, 3} and
that NG0 [4] = {3, 4, 5}. At this point recall that the intersection of all the
elements of N [G0] is empty (because otherwise there would be a vertex u of
G0 of degree 4). Set Z ∈ N [G0] such that 3 /∈ Z. If |Z| = 3, then either
|X ∩ Z| = 2 or |Y ∩ Z| = 2, and we proceed as in the preceding case. If
|Z| ̸= 3, then Z = {1, 2, 4, 5}, and so Z is either NG0 [2] or NG0 [5]. In any case,
{2, 5} ∈ E(G0). Therefore, {{1, 2}, {1, 3}, {2, 5}, {3, 4}, {4, 5}} ⊆ E(G0). So,
G0 contains a spanning subgraph G that is isomorphic to the cycle C5 and, by
Lemma 17, D(G) ⩽ D(G0).

Proposition 29. Let H be a domination completion of U3,Ω. Then there exists
a graph G ∈ C5 ∪ K2,3 such that U3,Ω ⩽ D(G) ⩽ H.

Proof. Let H0 = D(G0) be a minimal domination completion of U3,Ω such that
U3,Ω ⩽ H0 ⩽ H. By Lemmas 27 and 28, it is enough to show that H0 has either
an element of size 3 or all its elements have size 2. Let us prove it.

First observe that for all A ∈ H0, we have |A| ≤ 3. Indeed, suppose on the
contrary that there exists A ∈ H0 such that |A| ≥ 4. If {a, b, c, d} ⊆ A, then H0

does not contain any subset of {a, b, c} ∈ U3,Ω, contradicting that U3,Ω ⩽ H0.
From the above, it only remains to prove that if H0 has no elements of size

3, then all its elements have size exactly 2. On the contrary, let us assume that
there exists A ∈ H0 such that |A| = 1. We are going to prove that, in such a
case, a contradiction is achieved.

Without loss of generality we may assume that A = {5}. Hence, degG0
(5) =

4 because A ∈ H0 = D(G0). Let G1 = G0 − 5 be the graph obtained by
deleting the vertex 5 from G0. It is clear that G0 = G1 ∨K{5}. Since U3,Ω ⩽
H0, hence U3,Ω ⩽ D(G1 ∨ K{5}), and thus, by applying Lemma 12 it follows
that U3,Ω\{5} = U3,Ω[Ω \ {5}] ⩽ D(G1). Let D(G′) be a minimal domination
completion of U3,Ω\{5} such that U3,Ω\{5} ⩽ D(G′) ⩽ D(G1). By using Lemma 3,
it is easy to check that U3,Ω ⩽ D(G′ ∨K{5}) and that D(G′ ∨K{5}) ⩽ D(G1 ∨
K{5}). Therefore, U3,Ω ⩽ D(G′ ∨ K{5}) ⩽ D(G1 ∨ K{5}) = D(G0) = H0.
So, H0 = D(G′ ∨ K{5}) because H0 is a minimal domination completion of
U3,Ω. By Theorem 19 we may assume that G′ is isomorphic to K1,3 or to 2K2.
If G′ is isomorphic to K1,3, then H0 = D(G′ ∨ K{5}) = {{5}} ∪ D(G′) has
an element of size 3, which contradicts our assumption. If G′ is isomorphic
to 2K2, then by applying Proposition 20 we get that D(G′) = D(G′′) where
G′′ is a path of order 4 obtained by joining a pair of vertices of the different
connected components in 2K2. Therefore, H0 = D(K{5} ∨ G′) = {{5}} ∪
D(G′) = {{5}} ∪ D(G′′) = D(K{5} ∨ G′′). But the graph K{5} ∨ G′′ contains
a spanning subgraph G′′′ ∈ C5. So, from Lemma 17 and Proposition 24 we get
that U3,Ω ⩽ D(G′′′) ⩽ D(K{5} ∨ G′′) = H0. Therefore, H0 = D(G′′′) because
H0 is a minimal domination completion of U3,Ω. This leads us to a contradiction
since all the dominating sets of G′′′ have size 2.
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