
A Method for the Definition of Metrics over i* Models1

Xavier Franch

Universitat Politècnica de Catalunya (UPC)

c/Jordi Girona, 1-3, E-08034 Barcelona, Spain

franch@lsi.upc.edu

Abstract. The i* framework has been widely adopted by the information

systems community for goal- and agent-oriented modeling and analysis. One of

its potential benefits is the assessment of the properties of the modeled socio-

technical system. In this respect, the definition and evaluation of metrics may

play a fundamental role. We are interested in porting to the i* framework

metrics that have been already defined and validated in other domains. After

some experimentation with i* metrics in this context, the complexity inherent to

their definition has driven us to build a method for defining them. In this paper,

we present the resulting method, iMDFM, which is structured into 4 steps:

domain analysis, domain metrics analysis, metrics formulation and framework

update. We apply our approach to an existing suite of metrics for measuring

business processes performance and drive some observations from this

experiment.

Keywords: goal-oriented models, i*, metrics, business process performance.

1 Introduction

Goal-oriented modelling [1] is widely used in Information Systems (IS) development

as a way to establish high-level goals and decompose them until obtaining measurable

requirements. High-level goals capture the overall organizational objectives and key

constraints; therefore they represent stable needs that are less sensitive to changes.

The i* framework [2] is currently one of the most widespread goal- and agent-

oriented modelling and reasoning frameworks. It has been applied for modelling

organizations, business processes, system requirements, software architectures, etc.

As a modelling framework, one of its required applications is the ability to evaluate

properties of the model that may help to detect some flaws in the modelled system, or

to compare different alternatives with respect to some criteria.

As a result, some authors have explored techniques for driving the analysis of i*

models. Qualitative-predominant techniques were already formulated in [2] and later

other techniques were proposed [3, 4]. Quantitative-predominant proposals aim at

formulating metrics for measuring some criteria (see Section 2.1). Having good suites

of metrics allows not only analysing the quality of an individual model, but also

comparing different alternative models with respect to some properties in order to

select the most appropriate alternative.

1 This work has been partially supported by the Spanish project TIN2007-64753.

2 Xavier Franch

Having this in mind, we proposed iMDF, an i* Metrics Definition Framework [5]

(see Section 2.2). The framework maintains a language of patterns in which metric

templates are defined by means of OCL expressions expressed over an i* metamodel.

We are especially interested in the case in which the metrics are not defined from

scratch, but they already exist in the domain that is being modelled with i* (e.g.,

organizations, business processes, software architectures, etc.) and they have been

properly validated. Therefore, the problem we face is not metric definition and

validation, but mapping metrics from the starting domain to i*.

As a result of experimentation with iMDF in the context described above, we have

observed that the process for defining metrics may be quite complex, because it

requires a full understanding of the domain that is being modelled using i*, as well as

the suite of metrics itself. Therefore, we have formulated a method, iMDFM, for

driving the process of definition of metrics in i*. The presentation of this method is

the main goal of the paper.

To illustrate the method, we define a suite of i* metrics for business process design

and evaluation based on a proposal from Balasubramanian and Gupta [6] that in its

turn consolidates others’ proposals. The definition of this suite becomes a second goal

of the paper, both for the interest of the result itself (i.e., a representative iteration in

the incremental construction of a comprehensive catalogue of metrics in i*), and for

the feedback over the framework (for refining the language of patterns, acquiring

some more lessons learned, etc.).

Basic knowledge of i* is assumed in the paper, see [2] and the i* wiki

(http://istar.rwth-aachen.de) for a thorough presentation.

2 Background and Previous Work

2.1 Quantitative Analysis of i* Models

In spite of the high dissemination of the i* framework, only a few approaches have

been proposed presenting some kind of metrics for measuring i* models. We are

mostly interested in quantitative-dominant proposals because they allow more

objective and repeatable analysis of i* models. Apart from iMDF itself, we mention

Kaiya et al.’s AGORA method [7] that provides techniques for estimating the quality

of requirements specifications with emphasis in the AND/OR decomposition of goals.

Sutcliffe and Minocha [8] propose the analysis of dependency coupling for detecting

excessive interaction among users and systems; they combine quantitative formulae

based in the form of the model with some expert judgment for classifying

dependencies into a qualitative scale. Bryl et al. propose structural metrics for

measuring the Overall Plan Cost of agent-based systems [9].

A Method for the Definition of Metrics over i* Models 3

2.2 iMDF: A Framework for i* Metrics

The iMDF framework is the result of our work on i* metrics over time:

– Phase 1. Preliminary work. Several metrics were defined ad-hoc for comparing

alternative i* models with respect to some properties [10]. This phase revealed the

convenience of having some foundations for defining these metrics and provided

the necessary expertise for formulating a framework with this goal.

– Phase 2. Formulation of the iMDF framework. From this experience and the study

of other work done in the field, the iMDF framework was formulated embracing:

o A metamodel [11] including the most relevant concepts in i*. It is conceived as
extensible, since this is a crucial characteristic of the i* framework.

o General forms of i* metrics [12] and patterns for producing them [5].
o A preliminary (formative) validation based on experimentation over individual

metrics coming from several sources (e.g., [13]). The result formed a first

catalogue of i* metrics in iMDF.

– Phase 3. Validation of the framework. As mentioned in the introduction, we are

currently porting some existing measurement proposals over iMDF. Also, some

work is planned for formulating and validating metrics about the structural quality

of i* models (complexity, cohesion, ...). As a result, we are enlarging the iMDF

catalogue whilst learning some insights about limitations of this approach.

Precisely, one of the identified limitations, the lack of clear guidance to define the

metrics, has motivated the present work.

3 iMDFM: a Method for Defining Metrics over i* Models

In this section we describe the iMDFM method for developing metrics over i*

models in the iMDF framework. It consists of 4 steps (see Fig. 1) described below.

3.1 Step 1: Domain Analysis

The goal of this step is to gain understanding about the domain whilst establishing

the mapping from concepts in that domain onto the i* framework. Therefore, Domain

Analysis comprises two different activities:

– Activity 1.1: Create a Domain Ontology. From the knowledge about the domain

(in the form of domain model semantics, related ontologies, tacit knowledge, etc.),

an ontology is created or eventually, reused.

– Activity 1.2: Map the Domain Ontology onto the i* Metamodel. The

correspondence between domain concepts and i* constructs is established here.

Concepts like e.g. business process, stakeholder, software component, etc., are

therefore mapped onto i* constructs like goal, task, agent, etc.

o Activity 1.2.1: Customize the i* metamodel. The i* metamodel as defined in

[11] is refined into a specialization for the domain. This refinement step may

involve adding some new attributes or even classes, or more usually integrity

constraints that impose restrictions on the way i* constructs are used to

support the domain ontology.

4 Xavier Franch

Fig. 1. The iMDFM method: steps and artifacts

Step 2. Domain

Metric Analysis

Step 2. Domain

Metric Analysis

i * Metamodeli * Metamodel
Customized

i * Metamodel

Customized

i * Metamodel

Step 3. i * Metrics

Formulation

Step 3. i * Metrics

Formulation

Step 4. i MDF

Update

Step 4. i MDF

Update

D
O
M
A
IN
 S
P
A
C
E
M
E
T
H
O
D

i*
 S
P
A
C
E

OCL-based, i*

Domain Metrics

context Goal::f()
pre...
post...

context...

OCL-based, i*

Domain Metrics

context Goal::f()
pre...
post...

context...

OCL-based Language of

Patterns for i* Metrics

• context ...
• problem ...
• solution ...
• OCL formula ...

Artifacts

Statistics

context Goal::f()...
• context + problem
+ solution +
• OCL formula ...

Domain

Metrics Suite
“Ontologied” Domain

Metrics Suite

“Ontologied” Domain

Metrics Suite

Domain

Ontology

Domain Onto-

logy with Metrics

Step 1. Domain

Analysis

Step 1. Domain

Analysis

Domain

Knowledge

Domain

Knowledge

i MDF

3.2 Step 2: Domain Metrics Analysis

This step aims at analysing the departing suite of domain metrics before its

formalization is tackled. The analysis moves along two directions, exogenous

(seeking an accurate correspondence with the domain ontology), and endogenous

(making the metrics uniform and complete). The activities performed are thus:

– Activity 2.1: Extend the Domain Ontology. The domain ontology is extended to

incorporate those concepts that did not appear in the former analysis of the domain

and that become necessary for using the metric suite.

– Activity 2.2: Consolidate the Domain Metrics Suite. The suite of metrics is

analysed in the search of inconsistencies, lack of uniformity, ambiguities, etc. The

domain ontology is extensively used during this activity. As a result, the suite is

reformulated: definitions are clarified and eventually some metric may experiment

some change (e.g., the subject over which the metric is applied may change).

3.3 Step 3: i* Metrics Formulation

This step makes operative the metrics in terms of i* constructs following the

mapping from the domain ontology to the i* metamodel established in Step 2:

– Activity 3.1: Map the Metrics onto the i* Metamodel. The formulation of the

metric is analysed and the definition rephrased in terms of the i* metamodel.

– Activity 3.2: Express the Metrics in OCL. The rephrased definition is made

operative as OCL formulae expressed over the i* metamodel class diagram taking

the integrity constraints into account.

o Activity 3.2.1: Apply Language of Patterns. Patterns from the iMDF

catalogue are identified and applied wherever possible. In fact, it is expected

that patterns cover most of the situations to be faced during the process of

metrics definition, making thus this process easier.

A Method for the Definition of Metrics over i* Models 5

3.4 Step 4: iMDF Update

Last, the result of the process is analysed to learn more about the method and the

whole framework. This step combines three different activities:

– Activity 4.1: Update Statistics. Statistics refer specially to applicability of the

patterns that form our language and are used in the Activity 4.2 below.

– Activity 4.2: Update Language of Patterns. At some moment, as a result of the

accumulated statistics, patterns seldom used may be removed, or may be

reformulated. Also, most used patterns may be further analysed for possible

specializations. Last, some new patterns may be added after the current process.

– Activity 4.3: Update Metric Catalogue. Finally the decision to include or not the

result of the current process has to be taken. Although the usual case should be to

add the obtained metrics to the catalogue, we could eventually discard the suite for

some reason (e.g., concerns on the mapping from the domain ontology to the i*

metamodel). Also, it could be the case that some particular metric is removed

from the catalogue.

4 Applying iMDFM on a Business Process Modeling Metrics Suite

Balasubramanian and Gupta consolidated a metrics framework composed of eights

metrics for business process design and evaluation [6]. These metrics come from

others’ proposals (remarkably Nissen [14, 15], and Kueng and Kawalek [16]) and

address performance aspects such as process cost, cycle time, process throughput and

process reliability. In this section we apply iMDFM over this suite of metrics.

4.1 Step 1: Domain Analysis

 [6] proposes a 3-view model for business processes. The workflow view reveals

the sequence of constituent activities and the business participants that execute them.

In business processes, an activity may be defined as “work that a company performs”

[17]. This is quite similar to the notion of task in the i* framework, so we establish

this fundamental equivalence (see Table 1). A sequence of activities may be thought

as a particular kind of routine in i*, i.e., a sequence of intentional elements that are

inside some actor’s boundary in the Strategic Rational (SR) view of the i* model. To

represent a sequence of activities, the routine must fulfill: 1) its components are just

tasks; 2) constraints expressing precedence relationships are included; 3) there exists

one and only one initial task. In particular, if task T2 goes after task T1, we assume a

constraint Follows(T2, T1); if task T branches into T1, ..., Tk, k > 1, we assume k

constraints Branches(T, T1), ..., Branches(T, Tk). We consider also a Join constraint

which acts the opposite than Branches. Participants are represented as actors.

6 Xavier Franch

Table 1. Mapping among the concepts on [6] and the i* metamodel constructs.

Business Process Ontology according to [6] i* Metamodel

View Concept i* Element

Activity Task

Sequence of activities Routine Workflow view

Business participant Actor

Interaction Resource dependency

Business segment Actor Interaction view

Operation Is-part-of

Process stakeholder Actor

Milestone Goal Stakeholder-state view

Visibility need Goal placement + dependency

The interaction view reveals the interaction among the business participants and

the business segments in which they operate. Interactions take the form of information

transmitted between participants (e.g., transportation order, invoice, shipment status);

therefore they may be modeled as resource dependencies: when the participant A

interacts with B for transmitting the information C, we say that the actor B depends

on A by means of a resource dependum C. For stating that a participant operates in a

business segment, we again may represent segments by actors and represent this

“operating” notion using a “is-part-of” relationship from the participant actor to the

segment actor. We assume that a service provider will always be present in the model.

The stakeholder-state view reveals the important process stakeholders and the

fulfillment of their process visibility needs with respect to identified process states or

milestones. Again stakeholders may be modeled as actors. Milestones (e.g., orders

received) can be represented as goals in i*, placed inside the boundaries of those

process actors that must satisfy the goal. If a stakeholder A has a visibility need with

respect to milestone M, we include M also in A’s boundary; if the need is satisfied,

then we establish a dependency from that goal to the business segment corresponding

to the service provider actor.

Each business process is constituted by these three views. In the usual case, the

model will include several business processes whose views will coexist in the i*

model. Therefore, routines, stakeholders and milestones will appear altogether. Tasks

may be part of different routines, with different constraints in the general case.

Fig. 2 shows an extract of a process model appearing in [6] and its correspondence

in i* according to the explanation above. The workflow view generates 2 actors and 4

tasks, as well as several precedence constraints (represented in the model as dotted

arrows instead of textually) reflecting the activity relationships. The interaction view

shows one interaction involving the same two actors, generating a resource

dependency between them. Also, the operation of business participants in business

segments appears in the view (just one of them has been represented in the i* model

by means of a is-part-of relationship). Last, the stakeholder view shows some

milestones of the different stakeholders and three of them are satisfied in the given

process model (so the fourth one will be unsatisfied or alternative means for

satisfaction should be explored).

The i* metamodel must be customized to this mapping (this customization will be

completed in Step 2):

A Method for the Definition of Metrics over i* Models 7

Update pick-up
and delivery status

Create and send
invoice

……

Update order
system

Send delivery
confirmation

S
el

ec
te

d
C

ar
rie

r
C

le
rk

Clerk Selected
Carrier

Shipment
Status

Manager

Customer

Shipment
delivered

Orders
received

(a) Workflow view

(b) Interaction view (c) Stakeholder view

3PL
Service
Provider

Carriers

Update pick-up
and delivery

status

Create and
send invoice

Selected
Carrier

Update order
system

Send delivery
information

Clerk

Shipment
Status

Customer

Orders received

Manager

Orders received

Shipment
delivered

Shipment
delivered

is-part-of

Orders
received

Orders
received

Shipment
delivered

3PL
Service
Provider

Fig. 2. An extract of process model according to the 3 views proposed by Balasubramanian and

Gupta (up) and its mapping onto the i* framework using the mapping given in Table 1 (down).

1) We add an OCL invariant for restricting routine steps to tasks.

2) A subclass of Constraint named Precedence, with an attribute type that takes

values from {Follows, Branches, Join}, is added (see Fig. 3, where the changes are

framed; the whole metamodel is not included for space reasons, see [11] for details).

It has two roles bound, source and target, to tasks that belong to the same routine than

the constraint. New integrity constraints for avoiding error conditions (e.g., loops,

joining disjoint paths) must also be added, as well as an integrity constraint for

ensuring that there is just one initial state (a task that is not target of any other).

3) Resource dependencies inferred from the interaction view must be aligned with

the precedence relationships stated in the workflow view. If a resource dependency

8 Xavier Franch

stems from actor A to actor B, then some of B’s activities must be executed before

some A’s activity according to those relationships. An integrity constraint ensures it.

It must be mentioned that the i* model generated with this mapping does not

present a lot of fundamental concepts: softgoals, resources inside actors’ boundaries,

links inside actors’ boundaries, etc. We could have chosen to add some integrity

constraints (or directly to prune the metamodel) to reflect this fact, but we think that

better not: the modeler may decide to add this information to exploit fully the

capabilities of the i* framework. This has an important consequence when

formulating the metrics: to be general enough, we have to consider this fact and in

particular, we mention that allowing decomposition of tasks inside SR diagrams will

have an impact on the final form that metrics will take in i*.

4.2 Step 2: Domain Metric Analysis

We summarize next the business process metrics framework proposed in [6]. Since

the departing proposal was quite uniform, consolidation was straightforward, i.e.

definitions are basically quotations from that paper except in one case (APF, see

below); for sake of brevity we do not provide the rationale for the metrics, see [6] for

discussion. Underlined terms stand for concepts added to the domain ontology.

– Branching Automation Factor (BAF). Proportion of decision activities in a

process that do not require human intervention. A decision activity is an activity

that branches into several others in the workflow view.

– Communication Automation Factor (CAF). Proportion of inter-participant

information interchanges in a process where the information source is a system.

Fig. 3. Extract of the i* metamodel as defined in [11] including the extension for

Balasubramanian and Gupta’s suite of metrics (framed). Integrity constraints not included. The

complete class diagram can be downloaded from

www.lsi.upc.edu/~franch/supplementaryMaterial/iStarMetaModelWithBPMconstructs.pdf.

A Method for the Definition of Metrics over i* Models 9

– Activity Automation Factor (AAF). Proportion of total activities in a process that

are either interactive or automated. An interactive activity is an activity performed

by a human actor and assisted through a system. An automated activity is one that

is performed entirely by a system.

– Role Integration Factor (RIF). Ratio of number of activities performed by a

process actor where the process control is not passed to another participant within

the same organization to the total number of activities performed by that actor.

– Process Visibility Factor (PVF). Proportion of number of process states required

to be visible to process stakeholders that are actually reported to or recorded for

the relevant stakeholders. A process state is a point where a milestone is achieved.

– Person Dependency Factor (PDF). Proportion of activities performed by human

participants that are executed using human discretion within the entire process. In

[6], human discretion is an attribute of activities in the workflow view.

– Activity Parallelism Factor (APF). Proportion of activities that are executed in

parallel in a process. We think that this definition is not much accurate, for

instance given a process with 5 activities T1, …, T5 the result would be the same

for one process with branches (T1, T2), …, (T1, T5) and another with (T1, T2),

(T1, T3), (T2, T4), (T2, T5). Therefore, we prefer to adopt the definition by

Nissen [14] as the length of longest path of activities that must be executed

sequentially divided by the total number of activities.

– Transition Delay Risk Factor (TDRF). Ratio of the number of activity control

transitions to any human participant to the total number of transitions between

participants in a process.

It is worth to mention that one of the metrics, RIF, is different than the others, since it

is local to roles. For finishing this unifying step, we define an augmented version of

RIF, RIF+, as the average of the local measures of RIF for all human roles.

4.3 Step 3: i* Metrics Formulation

In this section we tackle i* metrics formulation. We base this step on the iMDF

language of patterns [5], see Table 2 below for a sample. For space reasons, we

cannot present the metrics in detail. For illustration purposes, we show the two most

difficult cases that may give an upper bound of the complexity of the process.

AAF. The main pattern applied is Normalization (shown in Table 2). The Elem is

the i* Routine that represents the business process under analysis in the i* model, and

the resulting Type is a float number. The Size is the number of tasks in that Routine:

Size ::= self.step.oclAsType(TaskSRE)-> size()

For Value, it must be noted that an automated activity is represented in an i* model

as a task that: 1) belongs to a Software actor and, 2) the task and all of its subtasks, if

any, have dependencies just to other Software actors. An interactive activity is a task

that: 1) belongs to a Human actor and, 2) the task itself, or some of its subtasks, has

some dependency going to a Software actor:

Value ::= self.const.oclAsType(Precedence)->select(t | t.interactive() or t.automated())->size()

10 Xavier Franch

Table 2. Examples of patterns (given in abridged form, see [5] for details).

 Category Name Description

 Declaration Individual The metric applies just to one type of element, Elem

context Elem::metric(): Type

 Definition Sum The element metric’s value is the sum of its components’ values

context Aggregated::metric(): Type
post: result = self.aggregees().metric()->sum()

 Numerical Normalization The metric needs to be restricted to some interval

context Elem::metric(): Type

post: Size = 0 implies result = 1.0

post: Size > 0 implies result = Value / Size

 Navigational Property evaluation The value of some property is needed

context Node::propertyEval(name: String): Type

pre: self.value->select(v | v.property.name = name)->size() = 1
post: self.value->select(v | v.property.name = name).val

The refinement of the auxiliary operations is given below; they are obtained by

applying the following patterns: isHuman and isSoftware, applying propertyEval (see

Table 2); allSubtasks, applying TopDownDecomposition over task-decomposition

links; requiresSoftware, applying TransitiveCheck (if task T1 depends on task T2, the

condition holds either if T1 is inside a human actor, or if T2 or any of its subtasks

depends on a human actor). Other auxiliary patterns were also applied.

Task::interactive() ::= isHuman(self.owner) and

 exists(t | self.allSubtasks()->includes(t) and t.requiresSoftware())

Task::automated() ::= isSoftware(self.owner) and

 forAll(t | self.allSubtasks()->includes(t) implies not t.requiresSoftware())

APF. Again we apply the Normalization pattern, computing the length of the

longest path of the business process (i.e., Routine) and dividing by the total number of

activities. Computing the length of the longest path is not straightforward due to

possible branches and joins:

Elem ::= Routine; Type ::= Float

Size ::= self.step.oclAsType(Task)->size()

Value ::= self.allPaths()->select(p | self.allPaths()->forAll(p2 | size(p) >= size(p2))) ->size()

Routine::allPaths() ::= self.step->select(t | t.initialActivity()).allPaths()

Task::allPaths() ::= if self.finalActivity() then self

 else self.allDirectSuccessors().allPaths()->prepend(self) end-if

Task::allDirectSuccessors() ::= self.firstComp->select(source=self).target

Task::finalActivity() ::= self.firstComp->size() = 0

A Method for the Definition of Metrics over i* Models 11

4.4 Step 4: iMDF Update

Special importance takes the update of the language or patterns. It is still too early in

our research to decide the removal of some pattern from the language, although some

were not used in this particular case. Concerning the discovery of new patterns, we

remark that 7 out of the 8 metrics were defined by a similar application of the

Normalization pattern as done with AAF:

– The Size parameter is the size of a collection of i* elements, e.g. the collection of

all tasks in AAF, the collection of all stakeholder goals in PVF, etc.

– Value is defined by applying a filter (i.e., an aggregation operation such as Sum,

Count, etc.) over the same collection than before.

– As a consequence, the Type is a float (in the interval [0, 1]).

Let’s call Col that collection. Thus, the form that the Normalization pattern takes in

these seven metrics is:

context Routine::metric(): Float

 post: Col->size() = 0 implies result = 1.0

 post: Col->size() > 0 implies result = Col.filter()->size() / Col->size()

Given its rationale, it is reasonable to expect that this variation of the Normalization

pattern will be useful in future experiments and case studies. This is why we have

decided to enlarge our pattern language with this expression upgraded to pattern

(specialization of the Normalization pattern –we have specializations in our pattern

language), just abstracting Routine to Elem.

Concerning the metrics catalogue, we incorporated this new suite.

5 Observations

In this section we summarize the key observations on this application of the iMDFM

method and we try to extract some general risks and facts summarized in Table 3.

5.1 Step 1: Domain Analysis

This first step was really crucial for the success of the experiment, even more than

expected beforehand. We observed two different sources of difficulties,

corresponding to the two identified activities.

Creation of the domain ontology. In the 3-view model of business processes

proposed in [6], we faced the problem of model integration (risk R1 in Table 3). We

found two concrete difficulties:

– The relationship among interactions in the interaction view and transitions in the

workflow view is not explicit. If just one transition exists among two actors in the

workflow view, it may be inferred, but otherwise the link must be established by

observation or even it may require further investigation.

12 Xavier Franch

Table 3. Risks (Ri) and facts (Fj) that may appear during the application of iMDFM.

Step Act. Risk / Fact

1.1 R1 Need of aligning different types of domain models that do not match exactly

R2 Lack of some of the i* expressive power in the domain ontology

D
o
m
ai
n

A
n
al
y
si
s

1.2
R3 Some concepts of the domain ontology cannot be directly mapped to i*

2.1 R4 The metrics suite is not completely aligned with the domain ontology

R5 The suite of metrics is not uniformly defined

M
et
ri
cs

A
n
al
.y
si
s

2.2
R6 Some metric is not accurately defined and demands further investigation

R7 Definition of many properties in the metamodel needed for mapping metrics
3.1

R8 Mapping of metrics defined over an i* metamodel richer than strictly needed

R9 Some inherent characteristics may make the process harder (e.g., transitivity)

F1 As the process progresses, reuse of concepts and OCL facilitates the process M
et
ri
cs

F
o
rm
u
la
ti
o
n

3.2

F2 The language of patterns is a good starting point for the metrics definition

4.1 F3 Keeping track of pattern use statistics is essential for maintaining the framework

4.2 F4 Upgrading an OCL expression into patterns mostly depends on frequency of use

iM
D
F
M

u
p
d
at
e

4.3 F5 Incorporating the result of the process into the catalogue will be the usual case

– The relationship among the milestones in the stakeholder view and the activities in

the workflow view is not explicit. In this case, it is much harder to try to observe

the link.

Both are instances of the same generic difficulty: aligning different types of models

that are part of the departing domain.

Mapping onto the i* metamodel. Basically we found two types of difficulties:

– Those coming from the departing ontology. If we assume that a business process

model cannot be modified, the consequence is that the resulting i* model is not as

rich as it could be (risk R2). For instance, as a consequence of the observations

above, resource dependencies cannot be established at the level of intentional

elements but just at the level of actors. We may argue that this is not a problem

since our goal is to define metrics on the i* models that are equivalent to the

original ones. Thus if the departing metrics were formulated without needing this

information, we can do the same over the i* models. This being true, we also think

that wasting some capabilities of i* models may make the approach less useful

and less attractive. We envisage two solutions: 1) to refine the departing ontology;

2) to refine the resulting i* model adding the missing information. Trade-offs

between all the options should be considered in detail before taking any decision.

– Those coming from the fundamental differences between the domain ontology and

the i* metamodel (risk R3). Here, we have succeeded in translating all the cons-

tructs from the business process case, even those that had not a direct counterpart

in i*, by enriching the i* metamodel. Enriching the metamodel means losing some

kind of standardization, but as shown e.g. in [11], there are a lot of variants in the

i* framework and this is one of the features that makes i* attractive.

5.2 Step 2: Domain Metrics Analysis

Extension of the Domain Ontology. In the definition of the departing metrics

appeared some concepts that were not present in the ontology after Step 1 (risk R4).

A Method for the Definition of Metrics over i* Models 13

Notions like “decision activity”, “parallel execution of activities” and “process state”

were not described precisely enough in the framework and we were forced to set our

own interpretation of these terms. Other concepts like “activity control transitions”

and “passing process control” had to be carefully examined. As a result, our [6]-based

business process ontology grew.

Consolidation of the Metrics Suite. The definition of the metrics needed to be

examined in detail. In our case, we found risks that may arise in future situations:

– Non-uniform definition of the metrics suite (risk R5). Uniformity is a fundamental

property for conceptual frameworks. In our case, the metric RIF was clearly

different from the others since it focused not just on a business process but also on

a role. Thus, it did not fit with the overall goal of the metric framework, namely

evaluating business processes. As a result, we proposed a slightly modification

RIF+, although we also kept RIF to be respectful with the original proposal.

– Not accurate definition of a metric (risk R6). We look for metrics giving as much

relevant information as possible, thus we were not happy with the definition of

APF given in [6] and we preferred the original definition in [14], even paying the

price of having a metrics quite different in structure than the others, therefore

hampering somehow the uniformity criteria stated above.

5.3 Step 3: i* Metrics Formulation

Mapping the Metrics onto the i* Metamodel. Firstly, an issue is to what extent we

need to add information (represented by properties in the i* metamodel) to i* models

(risk R7). Too many properties would eventually require a lot of effort in the

definition. In this case, we just needed 3 properties for the 8-metric framework. One

of them, Nature, for knowing the type of an actor (human, software, etc.) was already

introduced in iMDF before this experiment. Another one, Process-Stakeholder, to

know the actor that owns a routine, has a high probability of reuse. Both of them are

quite straightforward to evaluate. Thus their need is not really a strong drawback in

terms of effort. The third one, DecisionActivity, to check if an activity is a decision

activity, could be more difficult to handle in the general case but, in the departing

proposal, decision activities are explicitly labeled as such. So, this third property does

not raise any relevant problem neither (although it has a lower chance of reuse).

On the other hand, we have defined our metrics without considering some

simplifications of the model to make them more robust (risk R8). Just to mention an

illustrative example, in some metrics we have considered that tasks could be

decomposed into subtasks although the departing framework as defined in [6] did not

mention this case.

Expression of the metrics in OCL. Two of the most error-prone and cumbersome

characteristics to face are transitive clousure and transitive definition of some

operations (risk R9). Illustrative examples are: for the first case, the generation of all

the paths or subtasks; for the second case the analysis of chains of dependencies.

In the positive side, as the definition of metrics progresses, it becomes easier to

write them (fact F1). Two related reasons behind: the flavor of the metrics is similar

after Step 2, and also some OCL expressions may be reused.

14 Xavier Franch

Use of the pattern language. For the definition of metrics itself, we used intensively

the pattern language. The detailed results are given in the next subsection, but as a

kind of summary we are quite happy with the results, the language demonstrated to be

powerful and versatile enough (fact F2).

5.4 Step 4: iMDF update

Updating statistics. We have applied 59 patterns to define the 8 metrics (without

considering RIF+). Each metric needs two declaration patterns (one for the context,

other for the type) and a third pattern applied is Proportion (Normalization in the case

of APF). The most complex in terms of number of applications has 11 whilst APF has

just 4 (because we couldn’t solve allPaths() by patterns) and next, PDF has 6. If we

consider RIF+, we add 6 new applications of patterns. Keeping track of this statistics

provide useful insights to the iMDF framework (fact F3).

Updating the pattern language. We have been able to formulate most of the

metrics using intensively our pattern language. During the experiment, we faced two

different expressions that could be upgraded into patterns. As seen in section 4.4, we

defined a new pattern Proportion due to its intensive use in this framework and the

conjecture that the situation dealt is likely to happen in the future. On the contrary, the

allPaths() operation needed in APF, which was difficult and done ad-hoc, seemed so

particular that we decided not upgrading it into a pattern (fact F4).

Updating the catalogue of metrics. For the metrics catalogue, since all the

metrics were successfully solved, the whole suite of metrics could be incorporated

into the catalogue. After the several experiences we have had, this is expected to be

the usual case, provided that the whole experiment makes sense (fact F5).

6 Conclusions and Future Work

In this paper we have presented a method for defining metrics in i* using the iMDF

framework. Since we are interested in porting already existing, validated metrics to i*,

the method is largely concerned with the analysis of the domain and the metrics

themselves, and the mapping onto the i* metamodel, more than on design of com-

pletely new metrics, which would a different matter of research. The method has been

articulated by defining the relevant activities (organized into steps) and the artifacts

involved. We have identified some risks and facts that may be used in future cases.

In addition, this paper has fulfilled a second goal, to offer a new suite of perfor-

mance metrics for business process models represented in i*. This new suite enforces

our current catalogue in a domain we hadn’t addressed before. Our language of pat-

terns has been enlarged and we have obtained more statistical data about pattern use.

As future work, we are planning new experiments on different fields to the method

and the whole iMDF framework whilst offering an increasingly large catalogue of

metrics to the community. The experiments shall also assess the effort required to use

this approach; this is a crucial validation to perform, since iMDF requires knowledge

A Method for the Definition of Metrics over i* Models 15

in: domain analysis, ontology construction, metamodeling and metrics. On the other

hand, about implementation, after a first prototype available over an existing tool, we

are starting to build a new tool taking advantage of the recent proposal of an XML-

like standard for encoding i* models called iStarML [18]. Our plans are to build the

tool able to import models expressed in an iStarML-based grammar (the codification

of the customization of the i* metamodel). Translators from other models to iStarML

(following the rules coming from Steps 1 and 2 of the process) would allow

evaluating metrics over models built in the departing ontology.

References

1. van Lamsweerde, A.: “Goal-oriented Requirements Engineering: A Guided Tour”. In Procs.

5th ISRE Intl’ Symposium, IEEE, 2001.

2. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,

Univ. of Toronto, 1995.

3. Giorgini, P., Mylopoulos, J., Nicciarelli, E., Sebastiani, R.: “Formal Reasoning Techniques

for Goal Models”. In Procs. 21st ER Intl’ Conference, LNCS 2503, 2002.

4. Sebastiani, R., Giorgini, P., Mylopoulos, J.: “Simple and Minimum-Cost Satisfiability for

Goal Models”. In Procs. 16th CAiSE Intl’ Conference, LNCS 3084, 2004.

5. Franch, X., Grau, G.: “Towards a Catalogue of Patterns for Defining Metrics over i*

Models”. In Procs. 20th CAiSE Intl’ Conference, LNCS 5074, 2008.

6. Balasubramanian, S., Gupta, M.: “Structural Metrics for Goal Based Business Process

Design and Evaluation”. Business Process Management Journal, 11(6), 2005.

7. Kaiya, H., Horai, H., Saeki, M.: “AGORA: Attributed Goal-Oriented Requirements

Analysis Method”. In Procs. 10th RE Intl’ Conference, IEEE, 2002.

8. Sutcliffe, A., Minocha, S.: “Linking Business Modelling to Socio-technical System Design”.

In Procs. 11th CAiSE Intl’ Conference, LNCS 1626, 1999.

9. Bryl, V., Giorgini, P., Mylopoulos, J.: “Designing Cooperative IS: Exploring and Evaluating

Alternatives”. In Procs. OTM Conferences, LNCS 4275, 2006.

10. Franch, X., Maiden, N.A.M.: “Modelling Component Dependencies to Inform Their

Selection”. In Procs. 2nd ICCBSS Intl’ Conference, LNCS 2580, 2003.

11. Ayala, C.P. et al.: “A Comparative Analysis of i*-Based Goal-Oriented Modeling

Languages”. In Procs. 17th SEKE Intl’ Conference, KSI, 2005.

12. Franch, X.: “On the Quantitative Analysis of Agent-Oriented Models”. In Procs. 18th CAiSE

Intl’ Conference, LNCS 4001, 2006.

13. Grau, G., Franch, X.: “A Goal-Oriented Approach for the Generation and Evaluation of

Alternative Architectures”. In Procs. 1st ECSA Intl’ Conference, LNCS 4758, 2007.

14. Nissen, M.E.: “Valuing IT through Virtual Process Measurement”. In Procs. 15th ICIS Intl’

Conference, ACM, 1994.

15. Nissen, M.E.: “Towards Enterprise Process Engineering: Configuration Management and

Analysis”. NPS Technical Report, NPS-GSBPP-02-003, 2002.

16. Kueng, P., Kawalek, P.: “Goal Based Business Process Models: Creation and Evaluation”.

Business Process Management Journal, 3(1), 1997.

17. White, S.A.: “Introduction to BPMN”. Report at BPMN website,

http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf, 2004.

18. Cares, C., Franch, X., Perini, A., Susi, A.: “iStarML: An XML-based Model Interchange

Format for i*”. In Procs. 3rd i* Intl’ Workshop, CEUR Workshop Proceedings, 322, 2008.

