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ABSTRACT 

 

Contact lenses (CL) provide visual correction but their use may also induce several adverse effects 

causative of discomfort and conditions that lead to stop or discontinue their use. Discomfort is mainly 

caused by insufficient wetting, impairment of the antioxidant defence system and eye infections. The 

current work reports on a single step sonochemical coating of CL with ZnO nanoparticles (NPs), chitosan 

(CS) and gallic acid (GA). GA and CS are expected to improve the comfort of CL by imparting 

respectively antioxidant properties and enhanced wettability, while their combination with ZnO NPs 

provides the CL with antimicrobial properties. The ternary composite coating presents high antibacterial 

efficiency (> 4.5 logs reduction) against S. aureus causative of CL-related conditions, and maintains good 

biocompatibility (> 72 %) with human cell lines. The obtained multi-functionality on the CL did not 

affect their geometry and refractive properties.  

 

KEYWORDS: contact lenses, ZnO nanoparticles, chitosan, gallic acid, sonochemistry, antibacterial 

coating  

 

Abbreviations 

Antimicrobial peptides: AMP, Atomic force microscopy: AFM, Chitosan: CS, Contact lenses: CL, 

Energy-dispersive X-ray spectroscopy EDS, Field emission scanning electron microscopy: FESEM, 

Gallic acid: GA, Metal oxide: MeO, Nanoparticles: NPs, Reactive oxygen species: ROS, Ultrasound: US, 

Water contact angle: WCA. 

1. INTRODUCTION 

Well-performing contact lenses (CL) provide good comfort, physiology and handling, which are achieved 

through a combination of material characteristics, CL design and manufacturing process. At present, over 

50 million people in the USA and nearly 150 million worldwide wear CL [1]. However, more than 25 % 

of CL wearers experience discomfort and in more than 50 % of these cases, people discontinue wearing 

CL [2]. The most common causes for discomfort are the insufficient wetting, lubrication and protein 

adsorption on the ocular surface [3] and a fear of, or history of eye infections [4].  
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The healthy eye is constantly wetted by tear film, which lubricates and protects the ocular surface, 

distribute nutrients, maintain optical clarity, and collect and eliminate wastes. The wearing of CL reduces 

the tear film function thus altering the native eye environment allowing bacteria to grow and affect the 

eye health [4]. Microbial contamination of CL is the reason for several eye-related conditions that, 

besides the discomfort, may cause serious complications resulting in vision loss [5]. The most relevant 

microbial conditions associated to CL wearing are microbial-associated keratitis (MK), infiltrative 

keratitis (IK), acute red eye (CLARE) and CLs peripheral ulcer (CLPU) [6]. Gram-positive 

representatives such as Staphylococcus aureus (S. aureus) and Streptococcus pneumonia are mainly 

responsible for IK and CLPU, but also involved in MK and CLARE [1,7].  

Different antimicrobial approaches were proposed to reduce the high incidence of bacterial infections on 

medical devices [8]. In particular, CL were coated with antimicrobial peptides (AMPs) [9] with a broad 

spectrum biocidal activity. However, the use of AMPs is limited due to their elevated cost and low 

functional stability in vivo [10]. The impregnation of CL with nonsteroidal anti-inflammatory drugs 

successfully inhibited the adhesion of bacteria on the CLs surface [11], but the use of these drugs is 

compromised due to adverse effects [12]. Another more innovative strategy is based on coating the CL 

with quorum sensing inhibitors [13], but their toxicity and poor stability requires further research. 

Alternatively, metal and metal-oxide nanoparticles (NPs) have been proposed as antimicrobial agents for 

bacterial eradication in biomaterials [14]. Silver NPs are the most widely used antimicrobial nano-entities, 

however, their potential toxicity [14] shifted the attention to zinc oxide (ZnO) NPs with good 

antimicrobial activity coupled to biocompatibility at low concentration [15–17]. The mechanism of action 

of ZnO NPs includes formation of reactive oxygen species (ROS) that affect bacterial membrane causing 

leakage of intracellular components and damage of bacterial proteins and DNA [18,19]. ZnO nano-

functionalization of CL would provide them with antimicrobial properties. 

The perception of comfort at wearing CL is related to the facile tear film spread and the reduced 

deposition of proteins and lipids from the tear film on CL surface as a function of the CL wettability [20]. 

High wettability, additionally, fairly diminishes the CL-related adverse effects, such as reduced vision, 

inflammatory responses and bacterial colonization [21,22]. Previous works used hydrophilic polymers to 

functionalize the surface of CL improving their wettability [23,24]. Although chitosan (CS) has been 

widely studied in the field of biomaterials development because of its biodegradability, biocompatibility 
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and antibacterial properties [25], only few studies [26,27] have exploited its multiple benefits for reducing 

protein deposition on biomaterials. Herein, coating the CL with CS will bring about their enhanced 

wettability and antimicrobial properties. On the other hand, the CS integration with gallic acid (GA) [28] 

would additionally increase the comfort of the coated CL imparting antimicrobial and antioxidant 

activities. The human eye is subjected to oxidative stress due to its constant and intense exposure to light, 

metabolic activity and high oxygen tension. The cornea is the first barrier of the eye to the external 

environment and presents a robust antioxidant defence system [29]. However, deficiencies or alteration of 

this system may contribute to pathogenic eye conditions such as cataract, glaucoma, keratoconus and dry 

eye [29–31].  

Surface modification has been recognized as one of the most versatile methods to tailor the properties of 

materials. Unlike the time-consuming coating procedures using harsh chemicals, high intensity ultrasound 

(US) has emerged as a straightforward and environmentally friendly approach to functionalize the surface 

of paper, polymers and textiles [28,32–34]. The coating results from the high-speed microjets generated 

upon the implosive collapse of bubbles formed in liquid medium under US, i.e. the cavitation 

phenomenon [35]. These microjets project NPs or molecules found in the vicinity of the collapsing 

bubbles towards the surface of a solid material of interest forming stable coatings [34].  

The current work aims to develop biocompatible and efficient antibacterial coatings on CL that 

simultaneously confers comfort at wearing and maintain CL optical properties. This will be achieved by 

the simultaneous deposition of ZnO NPs, CS and GA in a one-step US coating process. These three 

bioactive compounds will contribute to the antibacterial properties and biocompatibility of the coatings. 

Additionally, the antioxidant activity of GA coupled to the enhanced wettability conferred by CS would 

increase substantially the comfort of the CL. The antibacterial efficiency of the coatings will be validated 

against S. aureus causative of CL-related ocular conditions. Additionally, the biocompatibility and optical 

properties of CL after the coating will be evaluated to verify whether the surface nano-structuring upon 

exposure to US would not modify the original vision correction properties. 
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2. MATERIALS AND METHODS 

2.1 Materials, reagents and bacteria 

Comfilcon A (silicone-hydrogel) CL - nominal dioptric power (PWRd) - 7.00 D and nominal water 

content 48 % - were purchased from Coopervision (USA). Low molecular weight CS with Mw = 15 kDa 

and 87 % DDA was provided by Kitozyme. Water dispersion of ZnO NPs (20 % (w/v) in H2O, avg. NP 

size ≤ 40 nm), GA (≥ 97,5 %), sodium acetate (> 99 %), sodium phosphate (> 99 %), 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (≥ 98 %, ABTS), Folin-Ciocalteu’s phenol reagent (2N), 

Dulbecco's Modified Eagle Medium (DMEM), plate-count agar and all other reagents for bacterial studies 

were purchased from Sigma–Aldrich (Spain) unless otherwise specified. S. aureus (ATCC 25923) was 

used in the antibacterial activity assays. Nutrient broth (NB) for bacterial culturing was provided by 

Sharlab (Spain).  

 

2.2 Sonochemical coating of CL with ZnO NPs, CS and GA 

The US coating process was performed using ultrasonic transducer (Ti-horn, 20 kHz, 750 W, Sonics and 

Materials VC750, USA) for 30 min at 22 ± 1 ºC and 35 % amplitude in a glass vessel containing 50 mL 

of 0.3 % (w/v) CS, 0.3 % (w/v) GA and/or 0.006 % (v/v) ZnO NPs aqueous solutions as well as one CL. 

The power and the intensity were 21.5 W and 0.43 W/cm3, respectively. The reaction composition and 

samples abbreviations are summarized in Table 1. After the reaction, the CL was thoroughly washed with 

milliQ water to remove the loosely fixed compounds. Control samples were prepared at the same coating 

conditions, but in milliQ water without any actives to assess the effect of the US on the CL optical 

properties.  

Table 1. Reaction conditions and samples abbreviations. 

Sample 
abbreviation 

ZnO CS CS/ZnO GA GA/ZnO CS/GA 
CS/GA/ 

ZnO 

Reaction 
mixture 

0.006 % 
ZnO 
NPs 

0.3 % CS 
0.3 % CS 
0.006 % 
ZnO NPs 

0.3 % GA 

0.3 % GA 
0.006 % 
ZnO NPs 

 

0.3 % CS 
and 0.3 % 

GA 

0.3 % CS 
and 0.3 % 
GA 0.006 

% ZnO 
NPs 

 

2.3 Characterization of CL 
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Dioptric power of CL 

In order to evaluate the PWRd of coated and control CL, they were dehydrated in a vacuum desiccator (≈ 

3 hours) and analysed using the Auto Lensmeter TL-3000B (Tomey Corporation). All results are reported 

as mean values ± SD (n = 3). 

 

Water content of CL 

The coated and control CL were dehydrated in a vacuum desiccator (≈ 3 hours) until no further change in 

their weight was observed. The water content of the CL was expressed as a percentage according to eq. 1: 

 H % = ((Wh-Wd)/Wd)) x 100 (1) 

where Wh is the weight of the hydrated coated CL after immersing in milliQ water for 24 h, Wd is the 

weight of the uncoated dried CL and H % is the percentage of water content. All results are reported as 

mean values ± SD (n = 3). 
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Water contact angle of CL 

The wettability of CL surface was evaluated by advancing water contact angle (WCA) using the sessile 

drop method using a DSA100 drop shape analyser from KRÜSS GmbH. The measurements were 

performed at 22 ± 1 ºC and at a relative humidity of 35 ± 2 % as described previously [36]. Briefly, the 

CL was placed on a lens cleaning tissue to absorb the residual surface liquid, fixed on a holder and then 

introduced in the drop shape analyser. A 4 µl milliQ water drop controlled by a micrometer pass dosage 

was dispensed by the tip of the dosing needle and transferred to the CL surface by moving the sample 

stage upwards the drop, ensuring a total time of exposure of CL to air of 2 min. The process was captured 

and processed by DSA4 software using tangent method to calculate the WCA. All results are reported as 

mean values ± SD (n = 3). 

 

Surface morphology of the coated CL 

The surface morphology and the presence of ZnO NPs in the coatings were studied by field emission 

scanning electron microscopy (FESEM) JEOL J-7100 with Energy-dispersive X-ray spectroscopy (EDS) 

detector. The surface topography of the coatings was further assessed by atomic force microscopy (AFM) 

in liquid tapping mode using a Multimode AFM controlled by Nanoscope IV electronics (Veeco, Santa 

Barbara, CA) under ambient conditions. Triangular AFM probes with Antimony (n) doped Si cantilevers 

and silicon tips were used (RTESPA-150, Bruker) with nominal spring constant of 6 N/m and a resonant 

frequency of 150 kHz. The CL was cut and glued on a polytetrafluoroethylene (PTFE) surface that, in 

turn, is glued to a metallic AFM disk. Afterward, a drop (20 µL) of milliQ water was placed on the CL 

and 10 min were lagged for stabilization prior placing the holder in the AFM instrument. After thermal 

stabilization (10 min), the images were acquired at 1 Hz line frequency and minimum vertical force to 

reduce sample damage. Nanoscope Analysis v1.5 software was used for image processing.  

 

Zn, CS and GA quantification  

Determination of Zn was performed by inductively coupled plasma mass spectrometry (ICP-MS) in a 

“Perkin Elmer Nexion 350d” instrument under standard conditions. Calibration with five standards was 
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prepared from certified standard solutions. The amount of ZnO NPs embedded on the coatings was 

determined after extraction with 1 mL HNO3 and 1 mL H2O2 at 90 ºC for 24 h.  

The amount of CS in the ternary CL coating was assessed using fluorescein isothiocyanate (FITC)-

labelled CS. Prior to US coating, CS (10 mg/mL) was dissolved in miliQ water and mixed with 1 mg/mL 

FITC solution, prepared in anhydrous dimethyl sulfoxide, under continuous stirring. For each 1 mL of CS 

solution 50 µL of FITC were added. The reaction was incubated in the dark at 4 ºC overnight and the 

unreacted FITC was removed from the FITC-CS conjugate using PD-10 Desalting Columns (GE 

healthcare). Afterwards, the US coating process was carried out with 0.3 % FITC-CS, 0.3 % GA and 

0.006 % ZnO NPs as described above. The fluorescence intensity of the solution containing FITC-CS was 

measured at Ex/Em (490/525) at the beginning (Iin) and the end (If) of the reaction using TECAN Infinite 

M 200. The amount of CS deposited on the CL was calculated from the intensity difference (If - Iin) using 

a calibration curve plotted between fluorescence intensity of the FITC-CS and its concentration. 

The amount of GA in the ternary CL coating was also determined. The coated CL was immersed in 3 mL 

miliQ water with pH 10 for 24 h to dissolve/extract the GA. Then, 50 μL of the solution were mixed with 

35 μL of 0.2 N Folin-Ciocalteu’s reagent, 600 μL of milliQ water and 60 µL 20 % (w/v) sodium 

carbonate. The samples were placed in a dark for 1 h at room temperature. After, 200 μL of each solution 

were transferred to a 96-well microplate and the absorbance was recorded at 765 nm. A calibration curve 

was constructed with GA standard solutions and used to calculate the amount of GA in the coating.  

 

2.4 Bioactivity evaluation 

Antioxidant activity 

The antioxidant activity of GA containing CL was determined by the DPPH free radical scavenging 

method. The assay measures spectrophotometrically the decrease of absorbance of the DPPH radical at 

517 nm [37]. Briefly, a portion of CL (5 mg) was incubated in 60 µM DPPH solution in methanol at 37 

ºC in dark conditions for 30 min, and after removal of the CL, the absorbance at 517 nm was measured 

(Infinite M200, Tecan, Austria). Eq. 2 was used to calculate the antioxidant activity of the samples,  

DPPH scavenging (%) = [1 − (A/A0)] × 100,   (2) 
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where A0 is the absorbance of the negative control (neat DPPH solution) and A is the absorbance of 

DPPH after incubation with CL. All results are reported as mean values ± SD (n = 3). 

Antibacterial activity 

The antibacterial activity of CL was assessed as follows: single S. aureus colony was transferred from 

streak agar plate in 5 mL NB and incubated at 37 ºC and 230 rpm overnight. Then, the culture was diluted 

with sterile PBS solution until O.D.600 = 0.01. A portion (5 mg) of the coated CL was incubated with 5 

mL of the diluted bacterial suspension for 24 h at 37 ºC and 230 rpm. After, the suspensions were serially 

diluted with sterile PBS solution, plated on the corresponding plate count agar and further incubated at 37 

ºC for 24 h to determine the number of survived bacterial colonies. The antibacterial activity is expressed 

as Log reduction according to the Eq. 3,  

Log reduction = log10 (B) – log10 (C) (3), 

 where B and C are the average number of bacterial colony forming units (CFU) per mL at the 

beginning and after 24 h of incubation with coated CL, respectively. All results are reported as mean 

values ± SD (n = 3). 

 

Cytotoxicity evaluation  

Human foreskin fibroblasts (ATCC®-CRL-4001™, BJ-5ta) and keratinocytes (HaCaT cell line) were used 

to assess the biocompatibility of the coatings as described previously [38]. The cells were maintained in 

4 parts DMEM at 37 °C in a humidified atmosphere with 5 % CO2. At pre-confluence, the cells 

were harvested using trypsin-EDTA (ATCC-30-2101) and seeded at a density of 1.2 x 105 

cells/well. After 24 h, the cells were washed twice with sterile PBS; the CL (5 mg) were placed in 

the wells and 500 µL of DMEM was added. The cells were incubated at 37 °C for 24 h. 

Afterward, the samples were removed, the growth media withdrawn and the cells were washed 

twice with PBS and stained for 4 h at 37 °C with 100 μL 10 % (v/v) AlamarBlue™ Cell Viability 

Reagent in DMEM. After that, the absorbance at 570 nm was measured in a microplate reader 

(Infinite M200, Tecan, Austria). 
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3. RESULTS AND DISCUSSION 
 

3.1 Characterization of CL 

 

Commercial CL were sonochemically functionalized with the antimicrobial compounds ZnO NPs, CS and 

GA. The high intensity US produces a strong cavitation  that favours the homogeneity of the NPs solution 

and simultaneously projects the ZnO NPs, GA and CS towards the CL surface [39]. The lack of 

aggregation and the uniform distribution of ZnO NPs on CL surface, coupled to their small size and 

narrow size distribution favours the antimicrobial effect [40]. The presence of CS and GA is anticipated 

to improve the comfort of CL by conferring better wettability and antioxidant properties, respectively. 

However, the coatings on the lenses may interfere with their optical properties since the power depends 

on the lens radius and water content. In this work, the sonochemical process and the generated coating did 

not alter the dry nominal dioptric power (PWRd) of the CL (Fig 1A). The difference in PWRd of coated 

CL compared to control was lower than the ± 0.25 D - tolerance limit indicated in the ISO 18369-3:2017. 

On the other hand, the equilibrium water content of CL remained invariable after the sonochemical 

treatment (Fig 1B). The amount of coating was too small to influence the water content of the CL (Sec. 

3.5). The invariable water content and PWRd pointed out that CL maintained their geometry and 

refractive properties [41]. On the other hand, the reduction of the surface hydrophobicity of silicone 

hydrogel CL has been the main driving force for the evolution of these optical devices [42,43]. Comfilcon 

A material is the main component of our CL that are the III generation silicone hydrogel CL, and was 

developed using long silicone chains with OH-groups in order to avoid additional surface treatments 

previously required for improving the wettability of the I generation silicone hydrogel CL [44]. The 

coatings containing CS present lower WCA, e.g. higher surface hydrophilicity (Fig. 1C) than those 

without CS as anticipated by the high hydrophilicity of CS [27]. The high hydrophilicity (low WCA) of 

the ternary coating was a result of the surface enrichment of the CL with the amino and hydroxyl 

functional groups of CS and the hydroxyl and carboxylic groups of GA contributing to the establishment 

of hydrogen bonds with water [41,45].  
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Figure 1. A) Dry dioptric power, B) water content and C) water contact angle of CL after the 

sonochemical coating.  
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3.2 Antioxidant activity 

All GA functionalized CL showed similar DPPH scavenging abilities. Up to 95 % DPPH inhibition was 

achieved (Fig 2), due to the saturation of the liquid medium with sufficient amount of polyphenols. The 

presence of other compounds in the hybrid coatings did not affect the GA antioxidant activity. High 

antioxidant activity of the coatings would help the innate antioxidant defense system of cornea to face the 

oxidative stress generated by the formation of ROS [46] thus reducing the pathogenesis of ROS-

associated eye diseases [29–31].  

 
 
Figure 2. Antioxidant activity of CL after the sonochemical functionalization with GA containing 

coatings. 

 

3.3 Antibacterial activity 

The antibacterial properties of ZnO NPs, CS and GA used for coating of CL have been reported 

previously [25,47,48]. However, the antibacterial potential of sonochemically-generated nanocomposite 

coatings of the three bioactives are not studied yet. In this study, we assessed the antibacterial efficiency 

of the NP-coated CL against S. aureus (Fig. 3), which is associated with CL-related eye conditions, such 

as MK, IK, CLARE and CLPU [1].  

Coatings containing GA demonstrated the highest antibacterial efficiency, which is correlated with the 

prevalent GA content [48]. Moreover, the individual ZnO NPs coating provided also strong bactericidal 

activity as expected [15,49,50]. The ternary hybrid coating composed of ZnO NPs, CS and GA shares the 

highest antibacterial efficiency (Fig. 3), achieving more than 4.5 logs reduction of bacterial viability.  
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Figure 3. Antibacterial activity of CL after 24 h of contact with S. aureus. 

 

3.4 Biocompatibility assay 

GA and CS are natural non-toxic compounds, whereas ZnO NPs have shown reduced biocompatibility to 

mammalian cells [51] despite their extended use in cosmetics and sun protection creams [52]. The 

antibacterial effect of ZnO NPs comprises the ROS formation [18] that besides being harmful for bacteria 

may affect significantly the viability of the human cells. The toxicity tests (Fig. 4) with fibroblast and 

keratinocyte cell lines revealed high cell viability (70 - 100 %) for all CS containing coatings as expected 

due to its previously demonstrated biocompatibility [53]. However, lower cells viability was observed in 

the case of GA based composite coatings, in particular the individual GA material, where probably the 

high GA concentration and lower coating stability in aqueous medium led to the burst GA release and 

cells death within the 24 h of exposure [54]. In contrast, the ZnO NPs - coatings presented good 

biocompatibility, due to the low amount of NPs used [55] for the CL functionalization. Importantly, the 

ternary hybrid nanocomposite coating showed good biocompatibility - 93 and 72 % of fibroblasts and 

keratinocytes cells were viable, respectively.  
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Figure 4. Viability of human A) fibroblasts and B) keratinocytes cell lines after 24 h of contact with the 

sonochemically functionalized CL.  
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3.5 Hybrid CS/GA/ZnO CL coating characterization  

 

As expected the hybrid nanocomposite coating led to multiple benefits as enhanced biocompatibility (Fig 

4), strong antibacterial activity against common ocular pathogen (Fig 3), high antioxidant effect (Fig 2) 

and improved wettability (Fig 1C). Therefore, the surface morphology and topography of the CS/GA/ZnO 

NPs CL was further analysed by SEM and AFM. The AFM images revealed a uniform surface of pristine 

CL with no relevant structures observed (Fig. 5A) and low surface roughness as previously observed for 

Comfilcon A CL [56,57]. In contrast, nanoscale irregularities were observed on the coated CL (Fig. 5B). 

The dark and light shades on the AFM images correspond respectively to the CL surface and the coating. 

Coated CL presented bright protuberances of 92.5 ± 47.5 nm that are related to the deposition of the 

hybrid CS/GA/ZnO coating. The root mean square roughness (Rq) assessed from the AFM images was 

55.8 nm, confirming the surface nanostructuring of the sonochemically coated CL. Furthermore, the 

nanometric height of the coatings correlates with the invariable water content (Fig 1B) and shows that the 

CL structure is negligibly modified. The coatings onto the CL surface were probably physically 

embedded [32] via the high energy US, as previously observed for a number of US functionalized 

materials and surfaces [28,32,33].  

 

Figure 5. Topographic images of the surface of: A) pristine CL and B) CS/GA/ZnO coated CL. Scanned 

area: 5 × 5 µm2. 

The pristine CL surface presents no relevant surface microstructures (Fig 6A) when imaged in SEM, 

whereas the coated CL (Fig 6B) presents needle shaped structures with size ~ 1 µm. The EDS analysis 

further confirmed the presence of Zn in the coated CL.  
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Figure 6. SEM images of CL and EDS spectrum showing the composition of pristine CL (A) and 

CS/GA/ZnO coated CL (B).  

The amount of each compound of the ternary coated CL was further determined. The coated CL had 2.16 

± 0.75 µg of Zn, 2.72 ± 0.78 µg of CS and 0.93 ± 0.1 mg of GA. The use of the CS, GA and ZnO NPs 

with different antibacterial modes of action defines the high antibacterial potential of the hybrid CLs 

while at the same time diminishes the side effects to human cells (Fig 4). Phenolic compounds possess 

strong antibacterial activity as result of membrane destabilisation, inhibition of nucleic acids synthesis 

and inactivation of essential for bacteria enzymes,[48] whereas amino-bearing polymers are able to 

interact electrostatically with bacterial cell and disturb its membrane [25]. Therefore, GA and CS together 

in the CL coatings could destabilize bacterial membrane and potentiate the antibacterial action of ZnO 

NPs. The ZnO dissolution to Zn2+ and the subsequent ROS generation would then lead to cellular proteins 

and DNA damage [18,19]. The utilization of small sized ZnO NPs (< 40 nm) with high surface area to 

volume ratio would lead to the increased formation of Zn2+, favouring their killing potential [40,55,58]. 

From other side, the visible light exposure upon wearing the ZnO NPs coated CL would also enhance 

their bactericidal efficacy [58] while maintaining unaffected the optical properties of the CL. Despite the 
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bactericidal activity, the hydrophilic character of the ternary hybrid coating will additionally enhance the 

CL wearing comfort inhibiting the attachment of proteins and bacterial cells [59].  

Nevertheless, the strong antibacterial activity, the biocompatibility of the hybrid coatings is the most 

critical parameter for their final medical application. Herein, we could successfully design effective 

antibacterial and antioxidant composite coatings of ZnO NPs, CS and GA, which do not induce human 

cells damage. The amount of ZnO NPs embedded in the coating is significantly lower than the previously 

determined toxic concentrations in in vivo studies with rats. Damage of eye retina (retinopathy) was 

observed in the rats treated with ZnO NPs at concentrations between 250 and 500 mg of ZnO NPs/kg 

[60,61]. The authors were however unable to discern if this effect was due to the ZnO NPs themselves or 

to the release of Zn2+ ions [61]. Oppositely, Zn2+ at concentration below 100µM were able to prevent 

retinal ischemia when administrated [60]. The presence of antioxidant GA at non-toxic concentrations 

would scavenge the free oxygen radicals and therefore reduce the ocular oxidative stress implicated in the 

pathogenesis of numerous eye diseases [29]. Recent studies have defined the 10 % (w/v) concentration of 

polyphenols [59] as the limit for treatment without causing irritation in the eyes. These values are far 

below of the amount 0.3 % (w/v) we have used in our antioxidant hybrid coatings. The combination of 

ZnO NPs with the biocompatible CS and GA resulted in the generation of safe and efficient hybrid 

coating, which would also protect the eye from ROS damage. Moreover, the multi-action antimicrobial 

mechanism would make the development of resistance less unlikely, because multiple simultaneous gene 

mutations in the same bacterial cell would be required [64].  
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4. CONCLUSIONS 

 

Multifunctional coatings containing of ZnO NPs, CS and GA were engineered on CL in a one-step 

sonochemical process. High intensity US embeds the three compounds onto CL maintaining at the same 

time invariable the geometry and refractive properties of CL. The hybrid CS/GA/ZnO coating improved 

the surface wettability and antioxidant activity by 95 % of the CL, which could be correlated with an 

increase in the CL wearing comfort. The ternary hybrid coating couples high antibacterial efficiency (> 

4.5 logs reduction) towards the main bacteria causing CL-related conditions, with high biocompatibility 

to human cells. The sonochemical approach showed to be an efficient fast, simple and reproducible 

method for surface nano-functionalization of CL, without altering their geometry and refractive 

properties. 
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