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Abbreviations  

HRT Hydraulic retention time 

Lv  Volumetric load 

Q Flow 

Vm  Mixed liquor discharge volume 

Vs  Supernatant discharge volume 

SOC  Soluble organic carbon 

SRT  Solids retention time 

TAN  Total ammoniacal nitrogen 

TIC  Total inorganic carbon 

TIN  Total inorganic nitrogen 

TN  Total nitrogen 

TIP  Total inorganic phosphorus 

TOC  Total organic carbon 

TON  Total organic nitrogen 

TOP  Total organic phosphorus 

TSS  Total suspended solids 

TSSm  Mixed liquor total suspended solids 

TSSx  Supernatant total suspended solids 

TP  Total phosphorus 

VSS  Volatile suspended solids 

 

 

 

  



3 
 

Abstract 

In this work, a strategy based on photo-sequencing batch operation was used to 

select cyanobacteria over unsettled green algae in a wastewater treatment system, 

evaluating for the first time the effect of hydraulic regimes on nutritional dynamics and 

microorganisms’ competition. During 30 days of operation, an initial microalgae mixed 

consortia dominated by the green microalgae Scenedesmus sp. was cultivated in two 

different photo-sequencing batch reactors operated at hydraulic retention time (HRT) of 

6 days (PSBR6) and 4 days (PSBR4) at a theoretical solids retention time (SRT) of 10 d. 

Both reactors were compared with a semi-continuous reactor (SC10) operated at 10 d of 

HRT and 10 days of SRT (used as a control). The results indicated that PSBR6 and PSBR4 

decreased Scenedesmus sp. population by 88% and 48%, respectively. However, only 

PSBR6 provided suitable conditions to select cyanobacteria from an initial green algae 

dominated culture. These conditions included volumetric loads of 11.72 mg TN L−1 d−1, 

2.04 mg TP L−1 d−1 and 53.31 mg TOC L−1 d−1. The remaining nutrients in the culture led 

also to a phosphorus limiting N:P ratio (34:1) that improved the increase of cyanobacteria 

from an initial 2% until 70% of the total population. In addition, PSBR6 reached a biomass 

production of 0.12 g L-1 d-1, while removing TN, TP and TOC by 58%, 83% and 85%, 

respectively. Conversely, the application of higher nutrients loads caused by lower HRT 

(PSBR4) led to an increase of only 13% of cyanobacteria while SC10 remained with the 

same biomass composition during all the experimental time. Thus, this study showed that 

the dominance of cyanobacteria in microalgal-based wastewater treatment systems can 

be controlled by the operational and nutritional conditions. This knowledge could 

contribute to control microalgae contamination from up-scaling cyanobacterial biomass 

production in wastewater treatment systems. 
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1. Introduction 

Nowadays, the cultivation and use of microalgae and cyanobacteria as feedstock 

to obtain biofuels, bioproducts and bioenergy has become a relevant research topic. 

Increasing scientific interest has been devoted to cyanobacteria (blue-green algae) due to 

their ability to grow in wastewater effluents and to their capacity to produce and 

accumulate intracellular bioactive compounds of interest for food and non-food purposes, 

such as, phycobiliproteins, polyhydroxybutyrates and glycogen (Abed et al., 2009; 

Shalaby, 2011). These bioproducts can be used as pigments, bioplastics and a biofuel 

substrates, respectively (Markou et al., 2013; Samantaray and Mallick, 2014; Stal, 1992; 

Van Den Hende et al., 2016). 

The alternative use of wastewater effluents as nutrients source for cyanobacteria 

growth represents the most promising, cost-effective and eco-friendly strategy to reduce 

production costs associated with nutrients and water input (Samantaray et al., 2011; Zhou 

et al., 2012). However, cyanobacteria cultivation in such a variable media implies certain 

disadvantages related to the competition with other microorganisms, especially with 

green microalgae. Certain studies have related competition relationships to abiotic factors 

such as temperature, nutrients and pH (Tang et al., 1997). Although several studies in 

lakes and reservoirs have dealt with the importance of nutrients’ interaction with algal 

composition (Dolman et al., 2012), there are comparatively few studies focusing on the 

relation between nutritional conditions in wastewater and the presence of cyanobacteria 

(Arias et al., 2017; Van Den Hende et al., 2016). Hence, the factors controlling these 

competition relationships are still not completely understood. Recently, Arias et al. (2017) 

successfully selected and maintained a dominant population of cyanobacteria from an 

initial green algae dominated consortium under a long term operation. The dominance of 

cyanobacteria over green algae as Chlorella sp. and Stigeoclonium sp. was associated to 
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the total nutrients concentration controlling competence relationships, in particular low 

inorganic phosphorus loads (<0.23 mg P-PO4
3- L d-1) and N:P ratios between 16:1-49:1 

(molar basis). However, this factor cannot be considered as the only aspect favoring the 

competition of cyanobacteria since other green microalgae such as Scenedesmus sp. can 

also tolerate low phosphorus content and high N:P ratios (Arias et al., 2018; Gantar et al., 

1991; Xin et al., 2010). Indeed, Scenedesmus sp. has been widely reported in different 

types of wastewater treatment systems (i.e. waste stabilization ponds and high rate algal 

ponds) because of its high tolerance to a wide range of N and P loads (Xin et al., 2010); 

besides, it is considered as one of the best competitors for inorganic carbon in comparison 

to cyanobacteria and other green algae (Ji et al., 2017). These similar optimal nutrient 

conditions for Scenedesmus sp. and cyanobacteria species suggest that the latter could be 

highly exposed to contamination and competition in mixed cultures. This fact would 

represent a serious drawback during cyanobacterial biomass production for bioproducts, 

since Scenedesmus sp. is unable to produce certain metabolites that can be accumulated 

in cyanobacteria (e.g. phicobiliproteins and polyhydroxybutyrates). Moreover, in the case 

of carbohydrates for biofuels, Scenedesmus sp. presents disadvantages due to its hard 

cellulose cell wall, which typically requires additional pretreatments and further 

expensive conversion processes to extract the product (Bohutskyi and Bouwer, 2013; 

Nozzi et al., 2013). Hence, production strategies should be developed in order to improve 

cyanobacteria competition over these green algae. 

Contrary to Scenedesmus sp. and other eukaryotic microalgae, many species of 

cyanobacteria have the ability to easily form aggregates in the culture and promote a high 

settleability and natural gravity harvesting (Arcila and Buitrón, 2016; de Godos et al., 

2014). This advantage could be used as a strategy to select cyanobacteria over unsettling 

green algae. Thus, the use of optimized hydraulic retention time (HRT) and solids 
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retention time (SRT) during biomass production could be used under continuous 

operation to select microorganisms able to form flocs fast, while unsettling 

microorganisms will be continuously removed. However, despite being a promising 

alternative, uncoupled HRT and SRT can also lead to changes related to nutrients loads 

and their consequences on microbial changes need to be addressed.  

In a previous work by Arias et al., (2018a), it was demonstrated that nutrients 

dynamics in photo-sequencing batch reactors operated at low HRT and SRT are efficient 

in the removal of unsettleable microalgae. However, the high carbon and nutrients loads 

caused by low HRT employed in this study led to high bacteria and low cyanobacteria 

populations at the end of four weeks of operation. Taking this into consideration, the main 

objective of this study is to select cyanobacteria from an initial consortium dominated by 

unsettleable green algae (Scenedesmus sp.), by means of applying higher uncoupled HRT 

and SRT, which represents lower loads of nutrients in a photo-sequencing batch reactor 

using secondary effluent and digestate as feedstock. This work aims to evaluate the 

balance in the effect of batch operation (including a settling phase), nutrient loads and 

ratios, and SRT and HRT conditions on the dominance of cyanobacteria in mixed 

cultures. 

2 Material and methods  

2.1 Experimental set up 

2.1.1 Inoculum 

The experimental set-up was located at the laboratory of the GEMMA research 

group (Universitat Politècnica de Catalunya. BarcelonaTech, Spain). A mixed culture was 

used as inoculum. Green microalgae, cyanobacteria, diatoms, protozoa and rotifers 

abundance was evaluated by microbial counting and revealed a consortium mostly 
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dominated by Scenedesmus sp. (93±2%), with other species of green algae (4±1%), 

cyanobacteria (2±1%) and diatoms (1±0.01%). Microscopic images of the initial culture 

biomass are shown in Fig. 1. It was obtained from a pilot tertiary wastewater treatment 

system consisting of a closed photobioreactor (30 L) fed with urban secondary wastewater 

and liquid digestate (not centrifuged), operated at a HRT of 10 days. Operational details 

and other characteristics of this system can be found in detail elsewhere (Arias et al., 

2018a). The biomass was collected from a harvesting tank connected to the 

photobioreactor and it was thickened by gravity in laboratory Imhoff cones during 30 min 

before inoculation. 

2.1.2 Experimental set-up 

The experiments were carried out indoors and performed with three experimental 

closed photobioreactors of polymethacrylate and cylindric shape, with an inner diameter 

of 11 cm, a total volume of 3 L and a working volume of 2.5 L (Fig. A1).  

All the photobioreactors were continuously maintained in alternate light:dark 

phases of 12 h and continuously stirred (with the exception of the settling periods) with a 

magnetic stirrer (selecta, spain) set at 250 rpm to ensure a complete mixing in the 

photobioreactor. Temperature was continuously measured by a probe inserted in the 

photobioreactor (ABRA, Canada) and kept approximately constant at 27 (±2) °C by 

means of a water jacket around the photobioreactor. Illumination during the light phase 

was supplied by two external halogen lamp (60W) placed 11 cm from each 

photobioreactor. Each two sets provided a constant 220 μmol m−2 s−1 of light. pH was 

continuously measured with a pH sensor (HI1001, HANNA, USA) and kept at 8.5 with 

a pH controller (HI 8711, HANNA, USA) by the automated addition of HCl 0.1 N and 

NaOH 0.1 N. This pH set point of 8.5 was selected based on previous literature that 
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reported a pH preference of cyanobacteria ranging from 8 to 9 (Ahn et al., 2002; Arias et 

al., 2017; Reynolds, 1987; Unrein et al., 2010). Automatic addition and discharge of the 

mixed liquor, the supernatant and the feeding in the photobioreactors was carried out 

automatically by peristaltic pumps. 

Two photo-sequencing batch reactors were operated with different uncoupled 

hydraulic retention time (HRT) and solids retention time (SRT) during an experimental 

time of 30 days. As observed in our previous publication (Arias et al., 2018a), a HRT of 

2 days led to increase eukaryotic microalgae and bacterial populations, and for this reason 

in the present study higher HRT (4 and 6 days) were tested in order to reduce the carbon 

and nutrients loads in the culture. Theoretical SRT in both photobioreactors was fixed at 

10 days. This SRT was chosen based on the results of the previous works (Arias et al., 

2017, 2018a, 2018b), demonstrating that SRT lower than 10 affects negatively 

cyanobacterial growth. 

A semi-continuous photobioreactor (namely SC10), operated with coupled 

HRT/SRT of 10 days was used as control in order to evaluate the effectiveness of 

uncoupling those operational conditions in relation to the removal of unsettleable green 

algae. 

2.1.2.1 Photo-sequencing batch reactors and semi-continuous reactor set-up 

Each photobioreactor was inoculated with 100 mL of thickened biomass and filled 

up to 2.5 L with deionized water. From the first day of operation the volume 

corresponding to the HRT chosen for each photobioreactor was removed, meaning that 

deionized water was almost completely removed after the first HRT.  
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One photo-sequencing batch reactor, named PSBR6, was a photobioreactor 

operated with an HRT of 6 days, while the other, named PSBR4, was operated at an HRT 

of 4 days. The operational diagram of each photobioreactor can be observed in Fig. 2.  

In PSBR6, 0.250 L of the mixed liquor were discharged at the end of the dark 

phase. Later, the agitation was stopped and biomass was allowed to settle during 30 

minutes, followed by the discharged of 0.167 L of the supernatant. Total volume removed 

was therefore of 0.417 mL, which was replaced by the same volume of wastewater 

influent. 

In PSBR4, 0.250 L of the mixed liquor were discharged at the end of the dark 

phase, followed by 30 min of biomass settling and a subsequent discharge of 0.375 L of 

the supernatant. Total volume removed of 0.625 L was replaced by the same volume of 

wastewater influent. It should be noticed that real SRT calculated in the photo-sequencing 

batch reactors was conditioned by the solids discharged in the mixed liquor prior to 

sedimentation and the solids contained in the supernatant. 

On the other hand, the semi-continuous reactor (SC10) was operated by removing 

0.250 L of the mixed liquor at the end of the dark phase and subsequently replaced by the 

same volume of wastewater influent. 

2.1.2.2 Wastewater  

Wastewater influent consisted in digestate diluted in secondary effluent in a ratio 

of 1:50. Digestate was obtained daily from a lab-scale microalgae anaerobic digester (1.5 

L, flow of 0.075 L d−1), operated at 35 °C and a SRT and HRT of 20 days. Secondary 

effluent was obtained from a secondary settler after a high rate algal pond (HRAP) 

treating urban wastewater (Gutiérrez et al., 2016a; Passos et al., 2014). Dilution of 1:50 
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was chosen according to a previous study by Arias et al., (2017), which showed an annual 

nutritional concentration <15 mg total ammoniacal nitrogen (TAN) L-1, preventing TAN 

toxicity, avoiding high turbidity in the feeding and allowing suitability for cyanobacteria 

growth. 

Characteristics and operation of the anaerobic digester are detailed in Passos et al. 

(2013). Characteristics of the digestate, the secondary effluent and the wastewater 

influent mixture are shown in Table 1. 

2.3. Microalgal population 

Quantitative analysis of green microalgae, cyanobacteria, diatoms, protozoans and 

rotifers was performed once a week by microscopic area counting (cells mL-1) (Guillard 

and Sieracki, 2005). To this aim, 20 µL of mixed liquor were added to a slide with a 

coverslip and individual cells were counted per field until reach >400 cells to have a total 

standard error lower than 5% (Margalef, 1983) alternating bright field microscopy and 

fluorescence microscopy. Microalgae, diatoms, protozoa and rotifers were quantified in 

bright field microscopy at 40X, while cyanobacteria species were counted using 

fluorescence microscopy at 40X with the operation of filters containing an excitation filter 

(510-560 nm), emission filter (590 nm) and dichroic beam splitter (575 nm). Both bright 

field and fluorescence microscopy were performed using a fluorescence microscope 

(Eclipse E200, Nikon, Japan). 

Qualitative evaluation of microalgae composition changes within each 

photobioreactor was monitored by microscopy once a week. Microbial visualization was 

performed in bright field microscopy at 40X in an optic microscope (Motic, China) 

equipped with a camera (Fi2, Nikon, Japan) connected to a computer (software NIS-

Element viewer®). Cyanobacteria and microalgae species were identified in vivo using 
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conventional taxonomic books (Bourrelly, 1985; Palmer, 1962), as well as a database of 

cyanobacteria genus (Komárek and Hauer, 2013). 

2.4 Analytical methods 

Samples taken from influent wastewater (digestate + secondary effluent) and 

effluent of the three photobioreactors (supernatant after settling) were analyzed for 

nutrients concentration. It should be noticed that dissolved nutrients in the effluent are 

equivalent to the nutrients contained in the mixed liquor of the culture. Note that in the 

case of SC10, the supernatant sample was taken from the mixed liquor discharged and 

subsequently submitted to a separation process in laboratory Imhoff cones during 30 min 

before in order to remove biomass from the effluent. 

  Nutrients analysis were performed three times per week for total organic carbon 

(TOC), total inorganic carbon (TIC) and soluble organic carbon (SOC), total inorganic 

phosphorus (TIP, P-PO4
3-), nitrite (N-NO2

-), nitrate (N-NO3
-) and total ammoniacal 

nitrogen (TAN, sum of N-NH3
– and N-NH4

+). Total nitrogen (TN) and total phosphorus 

(TP) were measured two days per week. TAN was determined using the colorimetric 

method indicated in Solorzano (1969). Ion chromatography was used to measure 

concentrations of IP, N-NO2
- and N-NO3

- by means of a DIONEX ICS1000 (Thermo-

scientific, USA), whereas TOC, TIC and TN were analyzed by using a C/N analyzer 

(21005, Analytikjena, Germany). TP was analyzed following the methodology described 

in Standard Methods (APHA-AWWA-WPCF, 2001). Total inorganic nitrogen (TIN) was 

calculated as the sum of N-NO2
-, N-NO3

- and TAN. Total organic nitrogen (TON) (the 

sum of dissolved and particulate form) was calculated as the difference between TN and 

N-NO2
- and N-NO3

-, whereas total organic phosphorus (TOP) (the sum of dissolved and 

particulate form) was determined as the difference between TP and TIP.  
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Total suspended solids (TSS) and volatile suspended solids (VSS) were measured 

in the mixed liquor (in all photobioreactors) and in the supernatant (only in PSBR6 and 

PSBR4) three days per week, while Chlorophyll a concentration was measured in the 

cultures once per week. Those procedures were based in the methodology described in 

Standard Methods (APHA-AWWA-WPCF, 2001). All parameters defined above were 

determined in triplicate, and measured in samples taken at the end of the dark phase.  

2.5. General calculations 

Actual SRT [d-1] was calculated as follows: 

𝐒𝐑𝐓 =
𝑉

[𝑉𝑚+𝑉𝑠(
𝑇𝑆𝑆𝑥

𝑇𝑆𝑆𝑚 
)]

                                                   (1) 

Where: V [L-1] is the total volume of the photobioreactor, Vm [L-1] is the mixed liquor 

discharge volume, Vs is the supernatant discharge volume, TSSm [mg L-1] is the mixed 

liquor suspended solids concentration and TSSx [mg L-1] is the supernatant suspended 

solids concentration. 

Settleability [%] was determinate according to the following equation: 

𝐒𝐞𝐭𝐭𝐥𝐞𝐚𝐛𝐢𝐥𝐢𝐭𝐲 = 𝟏𝟎𝟎 ∗ [𝟏 − (
𝑻𝑺𝑺𝒔

𝑻𝑺𝑺𝒙
)]                                   (2) 

Where TSSm [mg L-1] is the mixed liquor suspended solids concentration and TSSx [mg 

L-1] is the supernatant suspended solids concentration. 

Biomass production of each photobioreactor in [g VSS L−1 d−1] was estimated using the 

equation: 

𝐁𝐢𝐨𝐦𝐚𝐬𝐬 𝐩𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧 =
𝑸∗𝑽𝑺𝑺

𝑽
                                     (3) 
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where Q is the flow [L−1 d−1], VSS is the biomass concentration in the photobioreactor [g 

L−1] and V [L−1] is the volume of the photobioreactor.  

Applied nutrients (TOC, TIC, TAN, N-NO2
-, N-NO3

-, TIN, TON, TN, TIP, TOP and TP) 

volumetric load (Lv-X) in [mg X L−1d−1] was calculated as follows: 

𝐋𝐯 − 𝐗 =
𝑸∗𝑿

𝑽
                                                              (4) 

Where Q is the flow [L−1 d−1], X is the corresponding nutrient influent concentration [mg 

X L−1] and V [L−1] is the volume of the photobioreactor. 

3. Results  

3.1 Settling efficiencies and actual solids retention time (SRT) 

In this study the presence of a settling phase to the photobioreactors operation was 

assessed in order to select flocs forming biomass and remove the unsettled biomass, 

composed mostly by green algae Scenedesmus sp., achieving an increase in the abundance 

of cyanobacteria from an initial mixed green algae-cyanobacteria consortium. Indeed, the 

settling phase tested promoted cyanobacteria dominance, but the relative abundance of 

cyanobacteria in the different photo-sequencing batch reactors was also influenced by the 

SRT and nutritional loads. 

As observed in Fig. 3, settleability increased from 38% to 90% in PSBR6 and from 

24% to 77% in PSBR4. This increase was caused by the natural gravity harvesting of 

cultures. These changes in settleability affected the SRT. In PSBR6, the actual SRT at day 

1 was 7.1 d, increasing until reaching a SRT of 9 days, which remained constant after day 

12 until the end of the experiment. On the other hand, the operation of PSBR4 started with 

an actual SRT of 6.6 d that increased until reaching a SRT of approximately 8 d after the 

day 8 of operation, which maintained quite constant from this day.  
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3.2 Biomass production and microbial evolution 

Changes in settleability and actual SRT also had an impact in biomass 

concentration, as shown in Fig. 4. Biomass concentration in SC10 (with a hydraulic 

retention time (HRT)/SRT of 10 d) showed a quite constant pattern during all the 

experimental time (0.56±0.05 g VSS L-1). PSBR6 and PSBR4 showed an increase in the 

biomass during the first 12 days of operation, until reaching a steady state from day 15 

onwards 0.57±0.09 g VSS L-1 and 0.65±0.072 g VSS L-1, respectively. The highest 

biomass production was achieved in PSBR4 (0.16 g VSS L-1 d-1), higher than that 

observed in SC10 (0.06 g VSS L-1 d-1) and PSBR6 (0.12 g VSS L-1 d-1). 

Microscopic qualitative observations during the last 10 days of operation, when 

all the reactors showed a biomass steady state, are provided in Fig. 5 and clearly show 

how the culture in the SC10 remained mostly dispersed and with a population dominated 

by Scenedesmus sp. On the contrary, the cultures in PSBR6 were turned into a culture 

dominated by flocs throughout the experimental time. More interestingly, a more 

predominant presence of flocs formed by cyanobacteria cf. Aphanocapsa sp. were 

observed. In the case of PSBR4, dispersed cells of Scenedesmus sp. were observed in the 

culture, and other green algae such as Stigeoclonium sp. were also present.  

These observations agreed with the microscope quantitative counting of the 

biomass in the three photobioreactors. Biomass in SC10 showed the dominance of 

Scenedesmus sp. throughout the experimental time with a slow decreasing trend, from an 

initial abundance of 91% to 74%. While other species such as cyanobacteria and green 

algae as Chlorella sp. and Stigeoclonium sp. increased from the initial 4% to 7% and 14%, 

respectively (Fig. 6a). In this case, diatoms and protozoa remained with the same 

abundance than in the beginning (1-2%) during all the experimental time.  
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On the other hand, the initial Scenedesmus sp. abundance in PSBR6 was reduced 

from 95% to only 7% (Fig. 6b). Interestingly, Scenedesmus sp. population lowered while 

cyanobacteria abundance (mostly composed by cf. Aphanocapsa sp.) increased from 2% 

until up to 70% from day 9 onwards. The abundance of other green algae different than 

Scenedesmus sp. also gradually increased from 3% to 28% on day 19 and then decrease 

to 21% on day 33. Other microorganisms as diatoms and protozoa remained low (2% and 

1%, respectively) during all the experimental time.  

In PSBR4, Scenedesmus sp. abundance was gradually reduced from the initial 94% 

until reaching 52%. On the contrary, cyanobacteria abundance increased, reaching 15% 

in the last day of operation from an initial 2%. Other green algae abundance also increased 

from 4% until 29% in the last day of operation (Fig. 6c). Other microorganisms as diatoms 

and protozoa where also observed in all the experimental time, remaining an abundance 

of 1-2%. 

Although the presence of heterotrophic bacteria was not directly quantified in this 

study, it was indirectly evaluated through the ratio of chlorophyll a mass (implying green 

algae and cyanobacteria) divided by total biomass (VSS) (which integrates the biomass 

of all microorganisms). Thus, the highest content of photosynthetic microorganism was 

found in SC10 control, with a Chlorophyll a/VSS ratio of 1.03 mg Chl a/g VSS, whereas 

PSBR6 and PSBR4 reached values of 0.56 and 0.53 mg Chl a/g VSS, respectively. Lower 

values in photo-sequencing batch reactors indicate higher content of bacteria, also 

according to the higher organic applied. 

3.3 Nutritional conditions 

3.3.1 Nutrients uptake and wastewater treatment  
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Unsettling and settling operation performed in this study led to different 

nutritional loads in the photobioreactors by means of the operational HRT (Table 2). In 

general, the volumetric loads Lv-TIC/Lv-TOC, as well as all the nitrogen and phosphorus 

forms, increased in each photobioreactor in relation to the decrease in HRT. These 

differences in the loads caused different culture compositions (Table 3) and led a selective 

pressure on microbial populations, as has been shown in previous Sections. 

Total nitrogen, phosphorus and carbon concentrations in the effluent (therefore, 

concentrations in the photobioreactors) with respect to the load applied are shown in Fig. 

7. As it can be observed, TN and TP were completely consumed in SC10 during the 

experiment (Fig. 7a). TIN was almost completely eliminated during the experiment, 

whereas TON decreased gradually. Conversely, TIP was completely removed during the 

experimental time. Likewise, TOP was completely removed along the experiment.  

In the case of the effluent of PSBR6, TN was not completely removed due to an 

increase in TIN (Fig. 7b). It should be noticed that the Lv-TIN was composed of 60% 

TAN and 30% N-NO2
-+N-NO3

- (Table 1), and in the effluent, 98% of the TIN 

concentration was based on N-NO3
- values. On the other hand, TIP was completely 

consumed during the first 15 days of operation, and afterwards it occasionally showed 

effluent concentrations above 1.5 mg L-1. This increase in the TIP concentration can be 

associated to the mineralization of organic phosphorus, since TOP concentration in the 

effluent maintained values between 3.02 to 4.2 mg L-1, which means that the process of 

mineralization of organic phosphorus to inorganic phosphorus was sometimes slow and 

the microorganisms didn’t have enough time to uptake the TIP (Table 3). Note that a 

fraction of TON and TOP concentration is related to particulate species. Thus, 

concentrations of TOP may be associated to intracellular polyphosphates accumulated in 

unsettling biomass. 
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PSBR4 effluent showed a similar pattern to that found in PSBR6 regarding TIN, 

TON, TIP and TOP concentrations. However, PSBR4 showed a better TN removal despite 

the higher loads applied. Hence, a complete transformation of TON to TAN was observed 

along the experiment. While an efficient removal of the influent TIN was achieved during 

the first half of the experiment (Fig. 7c). After that period, TIN values remained around 

10 mg L-1 (mostly in the form of N-NO3
-), that are lower than those observed in PSBR6. 

Similarly, TIP was also completely removed during the first half of the experiment and 

afterwards the effluent showed values around 2 mg L-1, mostly due to the mineralization 

of the accumulated TOP, that was more evident in the second half of the experiment (Fig. 

7c). 

On the other hand, according to the SOC concentrations in the photobioreactors, 

a better removal was obtained with high loads. For instance, SC10 showed higher 

concentrations (61.8±12.0 mg L-1) than PSBR6 (48.8±8.0 mg L-1), indicating a better 

elimination of organic matter in spite of having initial higher loads than that of the SC10 

(Fig. 7b). In the case of PSBR4, it showed similar concentrations than PSBR6. As 

observed in Figure 7c, with the exception of the results obtained on day 4, the 

concentrations of TOC along the experimental time showed values of approximately 50 

mg L-1.  

Main nutrients and organic matter removals are presented in Table 4. In general, 

SC10 showed the highest percentage removal of all N and P forms (>80%), whereas 

PSBR6 and PSBR4 reached values ranging from 54% to 78% of TN as well as TP removal. 

Indeed, previous studies have related high nutrients removal efficiencies in 

photobioreactors operated under longer HRT (Muñoz and Guieysse, 2006). Remarkably, 

in spite that PSBR6 and PSBR4 showed lower percentage removal, they reached higher 

removal rates than SC10 due to the higher volume of wastewater treated.  
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Conversely, in the case of organic matter removal, SC10 showed the lower removal 

efficiency, achieving only 41% of TOC removal, while PSBR6 and PSBR4 doubled that 

removal percentage (Table 4). Similarly, higher removal rates were observed in PSBR6 

and PSBR4 with respect to SC10, more specifically PSBR4 showed the highest removal 

rates of all the photobioreactors. This lower performance of SC10 in comparison with both 

photo-sequencing batch reactors can be associated to higher microalgae content, releasing 

organic carbon compounds and thus contributing to the dissolved carbon in the culture.  

On the other hand, TIC, which is consumed by autotrophic microorganisms, was 

unlimited in the three photobioreactors. In the case of SC10, influent TIC concentration 

was removed only by 43% along the experiment, while PSBR6 showed an average 

percentage removal of 55% and the highest removal rate and PSBR4, presented the lowest 

TIC removal by 13% (Table 4).  

4. Discussion 

According to the results obtained, the competition dynamics of Scenedesmus sp., 

other green algae and cyanobacteria in SC10, PSBR6 and PSBR4 were defined by the 

pressure created by coupling and uncoupling HRT/SRT. It is clear that the SC10, 

employing a coupled SRT/HRT, maintained the same microalgaepopulation during most 

of the experiment. However, in PSBR6 and PSBR4 the settling phase which allowed 

uncoupling of HRT and SRT affected the competition dynamics of the microorganisms 

present in the culture. It is interesting to note that PSBR6 showed a higher efficiency in 

removing unsettled Scenedesmus sp. than PSBR4, despite that the latter had a highest 

unsettled volume discharged. This implies that other factors such as organic loading, 

nutrients content, and changes in SRT than the washing-out of unsettled microorganisms 

provided by the uncoupled SRT/HRT also played an important role in microorganism’s 

dynamics. 
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Biomass composition and growth presented different patterns according to the N 

and P concentrations and ratios in the influent and effluent of each photobioreactor. Even 

though influent TN:TP ratio was the same for all the photobioreactors (7.9:1), nutrient 

loads were different (Table 2) and led to different effluent N:P ratios, biomass production 

and the main dominant algae (Table 5). It should be noticed that in the present study 

calculated influent N:P ratio in the influent includes all dissolved and particulate forms, 

whereas effluent ratio only includes TIN:TIP ratio, since it represents the direct available 

nutrients for microorganisms (Pick and Lean, 1987). In SC10, the dominance of 

Scenedesmus sp. over other species can be associated to the low loads of N and P 

introduced to the culture (Table 2) in addition to the absence of a settling phase. Low 

nutrient loads promoted nitrogen limitation in the culture (low TIN:TIP ratio). 

The ratio obtained in PSBR6 is within the optimum range of 16:1 - 49:1, proposed 

in a previous study by Arias et al., (2017) and that related the dominance of wastewater 

borne cyanobacteria in competition to green algae to high TIN:TIP values. This high 

TIN:TIP ratio, suggesting P limitation in the culture favoured the increase in 

cyanobacteria population, in particular the dominance of unicellular cf. Aphanocapsa sp.. 

In addition, the washing-out of unsettling microorganisms such as Scenedesmus sp. 

contributed to improve the dominance of cyanobacteria. It should be noted that, despite 

of P limitation, cyanobacteria dominated culture in PSBR6 achieved a higher biomass 

production than SC10. This fact can be associated to the lower HRT of PSBR6 and also to 

the capability of cyanobacteria to accumulate phosphorus as polyphosphates and perform 

luxury uptake (uptake of P in excess of their need for growth) (Cottingham et al., 2015). 

High biomass production of cyanobacteria under limiting P conditions has also been 

observed in previous studies (Arias et al., 2017; Arias et al., 2018).  
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In the case of PSBR4, high nutrients loads (Table 2) led to a TIN:TIP ratio in the 

influent similar to the Redfield ratio (16:1 in molar bases), considered the optimum ratio 

for microalgae growth (Redfield, 1958). This caused a fast growth and reestablishment 

of Scenedesmus sp., and in turn a lower settleability in PSBR4 than in PSBR6  (Fig. 3). 

Furthermore, the high Lv-TOC added to this photobioreactor also improved the 

heterotrophic bacterial activity, contributing to a higher biomass production (Table 5).  

Another factor that should be considered regarding the dominance of 

cyanobacteria in PSBR6 is the calculated SRT, which was always above 9 days, and in 

consequence slow growing microorganisms such as cyanobacteria were favoured. On the 

contrary, calculated SRT of PSBR4 led to an HRT close to 8 days, which could have 

influenced the predominance of microorganisms able to perform a faster growth rate. In 

this case, cells of Scenedesmus sp. and other green algae that were unsettled could have 

been able of reestablish (at least, partially) the cell concentration that was daily retired 

from the supernatant. This same trend was observed in previous studies, in which either 

cyanobacteria or green algae dominance was enhanced depending on the SRT and under 

similar nutritional conditions (e.g. cyanobacteria in SRT of 10 d (Arias et al., 2017; Hu 

et al., 2017) and Scenedesmus sp. in 8 d (Arias et al., 2018; Gutiérrez et al., 2016; Passos 

et al., 2014)). It should be highlighted that the lower biomass production of SC10 and 

PSBR6 could also be related to the higher SRT registered (9-10 days); such high values 

are associated to a slow growth rate in the culture (de Godos et al., 2014; Valigore et al., 

2012). 

Comparing all these results with our previous study (Arias et al., 2018a), in which 

the photo-sequencing batch reactors were operated at HRT of 2, negatively affected 

cyanobacteria competition in the culture. High nutrients (37.60 mg TN L−1 d−1 and 5.63 

mg TP L−1 d−1) and high carbon loads (186.10 mg TC L−1 d−1) provided by the low HRT 
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increased bacterial activity instead and also the appearance of filamentous green algae, 

diatoms, rotifers and protozoa. The encompassing of this previous work with the results 

of the present study allows concluding that sequencing batch operation can be used to 

select cyanobacteria from a green algae dominant culture. According to our overall 

results, the conditions for improving cyanobacteria dominance include the use of closed 

stirred PSBR fed with secondary effluent, operated at an HRT of 6 d and a SRT of 10 d, 

and with loads of approximately of 11.72 mg TN L−1 d−1, 2.04 mg TP L−1 d−1, 53.31 mg 

TOC L−1 d−1 and 18.5 mg TIC L−1 d−1. Under these conditions, the culture would be able 

to have residual nutrients concentrations which allow for a phosphorus limiting N:P ratio 

in the culture (34:1) and improve the increase of the total cyanobacteria populations from 

an initial 1% until 70%. Additionally, this operation led to a biomass production up to an 

average of 0.12 g L−1 d−1 while removing 3.85 mg L−1 d−1 of TN, 1.81 mg L−1 d−1 of TP 

and 55.38 mg L−1 d−1 of TC. On the contrary, the decrease of HRT favoured the presence 

of green algae, diatoms and heterotrophic bacteria. 

 To the authors knowledge, the strategy of uncoupling SRT and HRT has been 

employed mostly to promote the formation of green-algae and cyanobacteria aggregates 

and the enhancement of nutrients rates removal, as shown in the studies of Van Den 

Hende et al., (2014; 2016), and Wang et al., (2015). However, in these studies, the effect 

of operational conditions on nutritional dynamics and the competition of specific 

microorganisms were not considered. Thus, this work addresses this issue for the first 

time, as well as the influence of factors such as nutrients loads, settleability and microbial 

evolution in the selection process. Such knowledge about the influence of these factors in 

microorganism’s competition could facilitate the cultivation of cyanobacteria controlling 

contamination by other species (even in pure cultures). In this way, cyanobacteria 

cultivation could be integrated into a real wastewater treatment plant in order to treat 
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wastewater treatment effluents, while producing valuable products used for non-food 

purposes such as, phycobiliproteins, polyhydroxybutyrate and glycogen (Abed et al., 

2009; Shalaby, 2011). Following the encouraging results obtained from this study, it is 

worthwhile to investigate whether the operational conditions tested could influence the 

accumulation of those byproducts. Further research addressing these issues need to be 

done before scaling-up of the technology.  

5. Conclusions 

In this study, it has been proven that cyanobacteria could be selected from an 

initial consortium dominated by unsettleable green algae (Scenedesmus sp.), by means of 

applying uncoupled HRT and SRT in a photo-sequencing batch reactor using secondary 

effluent and digestate as feedstock. The results indicated that a photo-sequencing batch 

reactor operated at 6 days of HRT provided suitable conditions to select cyanobacteria 

from a green algae dominant culture. These conditions included volumetric loads of 11.72 

mg TN L−1 d−1, 2.04 mg TP L−1d−1 and 71.81 mg TC L−1 d−1. The remaining nutrients in 

the culture led also to a phosphorus limiting N:P ratio in the culture (34:1). Altogether the 

conditions of this reactor allowed to increase cyanobacteria population from an initial 

percentage of 2% to 70% at the end of the experiment. 
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Fig. 1. Microscopic images of the inoculum observed in bright light microscopy at a) 

400x, b), c) 1000x and d) 400x. Algal flocs and dispersed cells are composed of green 

algae Scenedesmus sp. and Chlorella sp., cyanobacteria cf. Aphanocapsa sp., cf. 

Chroococcus sp. and diatoms.  
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Fig. 2. Scheme of operation of the photobioreactors showing the process during the last 

minutes of the dark phase; a)-b) biomass discharge (5 min); c) biomass settling (30 min); 

d) supernatant discharge (10 min); e-f) effluent addition (10 min) and mixing. Biomass 

separation in SC10 was performed in an independent process. 
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Fig. 3. Settleability after 30 min along the experimental time obtained in PSBR6 and 

PSBR4 after 30 minutes of settling. 
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Fig. 4. Biomass concentration changes in different photobioreactors SC10, PSBR6 and 

PSBR4) during the experimental time. Biomass is given as volatile suspended solids (g 

VSS L−1). 
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Fig. 5. Microscopic images illustrating the microbial composition during the last days of 

operation of A) SC10, operated with a HRT of 10 d, observed at 200x (A1, A2) and 1000x 

(A3); B) PSBR6, operated with a HRT of 6 d observed at 400x (B1, B2) and 1000x (B3) 

and C) PSBR4 operated with a HRT of 4 d, observed at 200x (C1, C2) and 1000x (C3). 

All the images were observed in bright light microscopy.  
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Fig. 6. Biomass composition of different photobioreactors a) SC10, b) PSBR6 and c) 

PSBR4. Percentages were calculated considering the total cells mL-1. 

 

  

a) b) c) 
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Fig. 7. Time course of effluent concentration for total nitrogen (TIN), total phosphorus 

(TP) and total organic carbon (TOC) in [mg L-1]. a) SC10, b) PSBR6 and c) PSBR4. Lines 

represents influent average volumetric loads in [mg L-1 d-1]. 

 

  



37 
 

 

Table 1. Average (standard deviation) of the main quality parameters of the digestate, 

secondary effluent and the influent (mixture of digestate and secondary effluent) (n=5–

10). 

Parameter Digestate Secondary effluent Influenta 

TSS [g L-1] 28.09 (6.15) -b 0.56 (0.12) 

VSS [g L-1] 21.50 (4.45) -b 0.43 (0.09) 

TOC [mg L-1] 15999.74 (1337.55) 18.35 (2.06) 320.36 (26.79) 

SOC [mg L-1] 3117.68 (315.51) 18.37 (2.05) 62.72 (6.35) 

TIC [mg L-1] 5538.51 (845.8) 21.50 (1.78) 111.19 (16.95) 

TAN [mg L-1] 1020 (93.95) -c 20.41 (1.88) 

N-NO2
-[mg L-1] <LOD 1.73 (0.29) 1.73 (0.29) 

N-NO3
-[mg L-1] <LOD 8.12 (3.07) 8.12 (3.07) 

TIN  [mg L-1] 1020.02 (257.05) 9.85 (4.94) 30.25 (5.24) 

TN [mg L-1] 3555.50 (1036.51) 23.50 (1.54) 71.58 (20.76) 

TON [mg L-1] 2535.02 (779.45) 13.65 (3.91) 40.18 (12.06) 

TIP [mg L-1] <LOD 1.97 (3.41) 1.97 (3.41) 

TOP [mg L-1] 920 (90) -d 18.40 (1.80) 

TP [mg L-1] 1000.8 (93) 0.69 (0.52) 20.03 (1.87) 

TOC:TICe - - 2.88:1 

TN:TPe - - 7.9:1 

<LOD Limit of detection. 

a The influent was prepared as a dilution of digestate within secondary effluent in a 1:50 ratio. 
b TSS and VSS in the secondary effluent corresponded to values <0.03 g L−1. 
c TAN in the secondary effluent corresponded to values <0.002 mg L−1. 
d TOP in the secondary effluent corresponded to values <0.09 mg L−1. 
e Ratio in molar bases. 
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Table 2. Average (standard deviation) of the nutrients volumetric loading (Lv) in each 

photobioreactor.  

Parameter SC10 PSBR6 PSBR4 

Lv-TOC [mg L-1 d-1] 32.04 (2.68) 53.31 (4.46) 80.09 (6.70) 

Lv-TIC [mg L-1 d-1] 11.12 (1.70) 18.50 (2.82) 27.80 (4.24) 

Lv-TAN [mg L-1 d-1] 2.04 (0.19) 3.39 (0.31) 5.10 (0.47) 

Lv-N-NO3
- [mg L-1 d-1] 0.81 (0.31) 1.35 (0.51) 2.03 (0.77) 

Lv-N-NO2
- [mg L-1 d-1] 0.17 (0.03) 0.29 (0.05) 0.43 (0.07) 

Lv-TIN [mg L-1 d-1] 3.03 (0.52) 5.03 (0.87) 7.56 (1.31) 

Lv-TON [mg L-1 d-1] 4.02 (1.21) 6.69 (2.01) 10.05 (3.02) 

Lv-TN [mg L-1 d-1] 7.04 (2.08) 11.72 (3.45) 17.61 (5.19) 

Lv-TIP [mg L-1 d-1] 0.20 (0.34) 0.33 (0.57) 0.49 (0.85) 

Lv-TOP [mg L-1 d-1] 1.04 (0.11) 1.73 (0.18) 2.60 (0.26) 

Lv-TP [mg L-1 d-1] 1.24 (0.45) 2.06 (0.75) 3.09 (1.12) 
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