New developments in low clinker cement paste mineralogy

M. Frías1,*, R. Vigil de la Villa2, R. García2, S. Martínez-Ramírez3, L. Fernández-Carrasco4

1Eduardo Torroja Institute for Construction Science (IETcc-CSIC), 28033 Madrid, Spain.
2Department of Geology and Geochemistry, CSIC-UAM Associated Unit (Geomateriales), Autonomous University of Madrid, 28049 Madrid, Spain.
3Institute for the Structure of Matter (IEM-CSIC), 28006 Madrid, Spain
4Department of Civil and Environmental Engineering, Barcelona TECH, 08034 Barcelona, Spain.

*Corresponding author: e-mail: mfrias@ietcc.csic.es, Tel +34913020440, Fax +34913020700

Abstract
The use of industrial waste as a cement addition often changes the composition and development of the hydrated phases and with them matrix performance and durability, in particular at later ages. The effect of the presence in blended cement of 20% to 50% Kaolinite based activated carbon waste (ACW) on paste hydration has been characterized by means of XRD, SEM/EDX, TG/DTG, NMR and FTIR to identify and monitor the mineralogical phases forming in materials at ages of up to 180 d. The results showed that the main reaction products forming in the first 7 d included C-S-H gels, C₄ACH₁₂ and C₄AH₁₃ (hydroxy-AFm). Whilst monocarboaluminate (Mc) content declined with rising percentages of ACW, the amount of hexagonal phase hydroxy-AFm rose generally speaking. Then microstructure of the C-S-H gels developing in the OPC and the 50% additioned paste differed. Compact C-S-H gel plates, and
phyllosilicate-like laminar spongy microplates with high polymerised C-S-H gel formed in the blended cement paste.

Keywords: mineralogy, hydrated phases, activated clay waste, blended cement

I. Introduction
The cement industry’s standard reuse of large amounts of industrial waste and by-products as supplementary cementitious materials has a very beneficial effect on its sustainability as well as on socio-economic development. Not only does the end product have a smaller environmental footprint (lower CO$_2$ emissions) and lower energy consumption which translates into lower costs, but also improves upon cement performance (Juenger and Siddique, 2015; Stark, 2011; Medina et al. 2017; Mohammed et al., 2016; Wang et al., 2016). In keeping with European legislation on commercial cement manufacture (European Committee for Standardization, 2011) thermally activated pozzolans, whether natural or industrial (such as fly ash, silica fume or blast furnace slag), have traditionally been added to cement at replacement ratios (alone or mixed) of up to 55%, depending on the type of cement. Given that worldwide cement production stands at around 4.2 billion tonnes/year, with demand predicted to rise substantially by 2050, natural pozzolan consumption is expected to be very high. The scientific community is consequently exploring industrial by-products as a possible source of other types of pozzolanic materials.

Kaolinite-based waste has been the object of a recent line of research as an alternative to the kaolinite extracted from natural quarries (Chakchouk and Samet, 2012; Rodriguez et al., 2013; Frías et al., 2013; Frías, 2006). The sludge generated by the paper industry, which recycles paper into cellulose, is one such waste (Segui et al., 2012; Monte et al., 2009; Yan et al., 2011). Of the
over 14.4 million tonnes produced in Europe yearly, 70% is generated during
the manufacture of de-inked recycled paper. Earlier studies (Frías et al. 2015;
Vigil et al., 2007; Vegas et al., 2014; Goñi et al., 2013) laid the scientific-
technical grounds for converting kaolinite/calcite-based industrial waste to a
high pozzolanicity product, identifying the main hydrated phases to be C-S-H
gels, metastable hexagonal phases (hydroxy-AFm and C₂ASH₈), C₄ACH₁₁ and
layered double hydroxide (LDH)-like structures such as carbonate and
metakaolinite (MK).

Research presently focuses on by-products such as coal mining waste
(kaolinite/mica) (Fan et al., 2014; Modarres and Ayar, 2014; Frías et al., 2012),
the stockpiling of which in areas around mines poses substantial environmental
problems (Haibin and Zhenling, 2010; Dontala et al., 2015). According to the
information available (BP Statistical Review of World Energy, 2017), worldwide
coal output amounted to 19.350 Gt in 2016, and the respective waste to 40% of
site production, depending on geology and mine conditions. When thermally
activated at 500°C to 900°C for 2 h, such clayey waste can be converted to a
metakaolinite-containing pozzolan, activated coal waste (ACW) (García et al.,
2015; Vigíl et al., 2017) although the activation conditions must be controlled to
prevent the formation of quasi-stable dehydroxylated mica (Vigil et al., 2014).

To date, research has focused on the pozzolanicity of ACW/lime system, in
which the hydrated phases identified include C-S-H gels, Hydroxy-AFm,
C₂ASH₈ and LDH-like phyllosilicate/carbonate structures. The use of coal waste
as a component in blended cements is a line of research scantly pursued by the
scientific community, with the few papers available all dealing with its technical
properties (Modarres et al., 2016; Beltramini et al., 2010; Vegas et al., 2015). In
a previous paper, Frias et al., 2016 reported the reaction kinetics of blended cement pastes containing up to 20% ACW. They identified C-S-H gels, ettringite (Et), hydroxy-AFm and C₄AH₁₂ as the phases primarily involved in the synergies between cement hydration and the pozzolanic reaction. Insight into the behaviour of such binary cements, presently unknown, would contribute to a deeper understanding of low cement content and hence low CO₂ systems. This study, the first to explore 20% to 50% activated coal waste cement hydration used XRD, SEM-EDX, TG/DTG, FTIR and NMR techniques to identify and monitor the hydrated phases in 1 d, 7 d, 28 d, 90 d and 180 d pastes.

II. Experimental

(1) Materials
Spanish coal mining waste from an open-pit mine (Sociedad Anónima Hullera Vasco-Leonesa, León) was thermally activated at what are generally regarded as optimal conditions (García et al., 2016): 600°C for 2 h in an electric muffle furnace. The product (ACW) was subsequently ground to particle sizes of under 90 µm.

Further to the requirements laid down by the European Committee for Standardization (2011) for the manufacture of type II A/B commercial cements, a CEM I 52.5R commercial portland cement was used in this study. The D₉₀ (diameter through which 90 % of the product passes) for the cement was 35.9 µm and 32.6 µm for the waste. The chemical composition of the starting materials is given in Table I;
while the mineralogy by Rietveld of the starting materials is collected in Table II and the datasets for phase identification in Table III, using X^2 as an index of disagreement or goodness of fit to the quotient between Rwp and Rexp.

Table I. Chemical compositions (%) of OPC and ACW

Table II. Rietveld analysis of XRD-identified phases

Table III: Datasets for phase identification and Rietveld quantification

The blended cements contained 0%, 20%, 30% or 50% ACW. Prismatic (1x1x6 cm) cement paste specimens were prepared at a water/binder ratio of 0.5, to which 40% solid Sikament FF superplasticiser was added to attain the same fluidity as in the reference paste. The mixing water was corrected for the admixture water to maintain a constant water/binder ratio. All the specimens were cured in water for up to 180 days. After each curing period they were immersed in acetone for 24 h and vacuum dried for a further 24 h to stop cement hydration.

(2) Methods

The chemical composition of the starting ACW and OPC samples was analysed on a Philips (Eindhoven, Netherlands) PW 1404 X-ray fluorescence analyser fitted with an Sc-Mo X-ray tube and Super-Q Manager analytical software.

The mineralogical composition of the bulk samples was determined by random powder X-ray diffraction (XRD) on a Siemens D-5000 (Munich, Germany) X-ray diffractometer fitted with a Cu anode. Their operating conditions were 30 mA and 40 kV and divergence of 2 and 0.6 mm with reception slits, respectively. The samples were scanned in (29) 0.041 steps with a 3-count time. The characterization of bulk samples was carried out using the random power
method operating from 3° to 70° 2θ at a rate of 2°/min (Moore and Reynolds, 1997). The XRD patterns were analyzed with the Match 3 Rietvel Fullprof software (Match, Fullprof) using the Inorganic Crystal Structure Database (ICSD) (Allmann and Hinek, 2007) and the Crystallography Open Database (COD) (Grazulis et al., 2012). Rietveld quantification (Rietveld, 1967,1969) accuracy is typically presented in terms of constants R and X^2. While, R only compares peak intensities calculated from the spectra of the material to the intensity of the experimentally line, the X^2 calculation in phase weight as well. Ideally, both constants should be equal to 1. Due to discrepancy between observed and calculated data, however, which are particularly significant for materials comprising more than three phases, X^2 values of 20 to 5 are generally accepted as satisfactory for valid results.

In light of the optics of all the data gathering instruments used (including Bragg Brentano geometry, Cu Kα1 wavelength, fixed divergence and Soller slits), the pseudo-Voigt function was chosen as the most suitable to describe peak shape in the preliminary fit performed. The information on the structural parameters listed for the phases on their COD or ICSD cards was entered. The parameters were refined in the recommended order (McCusker et al., 1999): first the global parameters, i.e., background functions (the Chebyshev polynomial function, using three variable coefficients), zero shift and scale factors, followed by the unit cell parameters for each phase. The March-Dollase function, normally apt for correcting preferred orientation in flat-plate specimens, was applied (Dollase, 1986). The instrumental polarisation factor (0.7998) and optics used in these diffraction trials were applied to modify peak shape and isotropic and anisotropic factors. Two corrections to optimise the fit were introduced during
the refinement cycles: for micro-absorption (Brindley, 1951) to minimise the
effect of different absorption coefficients for the phases present in the mix and
for diffraction peak alternations using the Caglioti equation (Caglioti, 1958).

Sample morphology and microanalysis were determined with SEM/EDX on an
Inspect FEI electron microscope (Hillsboro, OR, USA), fitted with a W source,
DX4i energy dispersive X-ray analyser and a Si (Li) detector. Freshly cut
samples were observed using a backscattered electron (BSE) detector,
whereas the gold-sputtered field samples were examined with a high-vacuum
imaging secondary electron detector (resolution: 3.0 nm at 30 kV [ETD], 10 nm
at 3 kV [ETD], and 4.0 nm at 30 kV [BSE]). The accelerating voltage was 26-30
kV and the working distance 10 mm. Sample microanalysis was conducted on
an Oxford Instruments INCA Energy 200 energy dispersive X-ray spectrometer,
running at 20 kV. SEM-EDS precalibration tests were conducted with internal
standards to improve ZAF correction. The chemical composition, found as the
mean of 10 scans per sample, is shown in Table IV together with the standard
deviation. These semi-quantitative analyses were performed on clean surfaces
to prevent contamination as far as possible. The findings are expressed in wt% of oxides.

Sample particle size distribution was determined with a Malvern Mastersizer
3000 laser granulometer (Great Malvern, UK), with air as the dispersing medium
(Frías and Sánchez de Rojas, 1997).

Thermogravimetric studies (TG/DTG) were conducted with an SDT Q600 V20.9
Build 20 analyser on 45 mg to 50 mg powder samples, heated at a rate of
10 °C/min in an N₂ (100 mL/min) atmosphere.
Pellets in which 1.2 mg of hydrated paste sample were mixed with 10 mg of potassium bromide were analysed on a Bruker Alpha infrared spectrometer. The spectra were recorded in the 4000 cm\(^{-1}\) to 400 cm\(^{-1}\) region at a resolution of 4 cm\(^{-1}\).

The 180 d pastes were analysed on a Bruker Avance III 400 MHz nuclear magnetic resonance (NMR) mass spectrometer fitted with a 9.4 T magnet. \(^{29}\)Si spectra were recorded at the following settings: resonance frequency, 79.49 MHz; spin rate, 10 kHz; single 5 \(\mu\)s pulse; recycle delay, 10 s; external standard, tetramethylsilane (TMS). \(^{27}\)Al spectra were recorded at the following settings: resonance frequency, 104.3 MHz; spin rate, 10 kHz; single 2 \(\mu\)s pulse; recycle delay, 5 s; external standard, Al(H\(_2\)O)\(_6\)\(^{3+}\).

III. Results and Discussion

Figure 1 shows the 180 d diffractograms with the mineralogical phases identified. Rietveld quantification of the crystalline mineralogical phases in the four cements are given by age in Table II.

<table>
<thead>
<tr>
<th>Table II. Rietveld analysis of XRD-identified phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>The anhydrous OPC consisted primarily in tricalcium silicate (alite), dicalcium silicate (bredigite), tricalcium aluminate, bassanite and a ferritic phase. The 1 d materials contained the most prominent crystalline phases, portlandite and ettringite, and exhibited a significant decline in anhydrous phases C(_3)S and C(_3)A compared to the anhidrous cement. The hydrated phase content, greater in the 7 d pastes, included tetracalcium aluminate monocarbonate hydrate (C(4)ACH({12})),</td>
</tr>
</tbody>
</table>
a line with an intensity that continued to rise up to 90 d of hydration. After 28 d of hydration the metastable hexagonal phase, tetracalcium aluminate hydrate (hydroxyl-AFM), was formed (4-7%). \(\text{C}_4\text{ACH}_{12} \), product of a solid state mechanism-governed reaction between \(\text{C}_3\text{A} \) and \(\text{CaCO}_3 \), stabilised ettringite formation (Bonavetti et al., 2001; Feldman et al., 1965; Zajac et al., 2014).

The 1 d diffractograms for the mixed pastes contained the same lines as the anhydrous cement, along with reflections indicating the presence of the quartz and mica present in the ACW. This waste originally contained calcite and an amorphous phase in addition to quartz and a phengite-like mica.

As no product derived from the reaction between pozzolan and cement was observed at that age, it was assumed that the addition would act as a filler, accelerating the hydration of cement particles. That in turn induced a substantial (around 75%) decline in the alite and bredigite contents and a 20% rise in the portlandite content relative to the reference cement.

At later hydration ages the presence of ACW favoured \(\text{C}_4\text{AH}_{13} \) formation but not the monocarboaluminate generation observed in OPC. The appearance of an aluminium-high phase was attributed to the uptake of the reactive alumina present in the pozzolan (metakaolinite) (Frías et al., 2016; Wu and Young, 1984; Atkins et al., 1991).

Up to 28 d, the materials containing the pozzolan, particularly the 30 % and 50 % blended cements, had a higher proportion of amorphous phase than the control (Table III). Its presence began to decline after 90 d, in inverse proportion to the cement replacement ratio. That turning point in the amount of amorphous
material might be related to the excess pozzolan relative to the amount of portlandite generated by the portland cement.

The SEM/EDX scans of the OPC exhibited laminar hydrated portlandite and prismatic ettringite phases, in addition to short C-S-H gel fibres. Intertwined with the ettringite prisms, the gels occupied the voids surrounded by layers of portlandite and alite, which grew thicker with curing time. Adding 20% ACW to the OPC paste induced the formation of more compact laminar portlandite structures, along with ettringite and C-S-H gel fibres (Frías et al., 2016). The 180 d morphologies of the four cements analysed are shown in Figures 2-4. The pastes containing 0% and 20% ACW had dense, compact morphologies (Figure 2). The 30% and 50% blended pastes, in contrast, were characterised by spongy, scantily compact morphologies, differences that widened with rising ACW content and curing time (Fig. 3).

A detailed study of cement morphologies revealed two types of plates. a) Compact plates comprised C-S-H gel, in which a higher ACW content favoured a decline in calcium and a rise in silicon and aluminium contents. b) Less compact plates consisted in a mix of laminar and fibrous structures (Figure 4, left; Table IV). The laminar phyllosilicate microplates characterising the 50%ACW paste (Figure 4, right; Table IV) induced the aforementioned spongy, scantily compact morphology. The EDX analysis for the major mineralogical phases is shown in Figure 5.

Table IV. EDX chemical analysis of 180 d blended cements (%)
The SEM micrographs clearly attested to differences in paste morphology with the percentage of ACW added. At replacement ratios of over 20%, the matrices were neither uniform nor porous, a finding compatible with the evolution of the amorphous stage in these pozzolan-high cement pastes.

The high frequency region (4000 cm\(^{-1}\) to 3000 cm\(^{-1}\)) on the FTIR spectrum (Fig.6) contained a signal at 3645 cm\(^{-1}\) attributed to the OH stretching vibrations in portlandite. That band was more intense in the OPC sample and declined in intensity as the ACW content rose. OH stretching vibrations generated by water molecules were also detected, with peaks at around 3430 cm\(^{-1}\) and 3626 cm\(^{-1}\), due to C-S-H gel. This wide band exhibited shoulders at 3673 cm\(^{-1}\), 3667 cm\(^{-1}\), 3642 cm\(^{-1}\), 3625 cm\(^{-1}\) and 3522 cm\(^{-1}\) due to OH vibrations that grew in intensity with ACW content and curing age, most prominently in the 50% replacement samples. Inasmuch as C\(_4\)AH\(_{13}\), ettringite and monocarboaluminate all have a band at those frequencies, these shoulders could be attributed to any or several of them. A signal appearing at 3529 cm\(^{-1}\) might denote the presence of aluminium hydroxides resulting from the formation or carbonation of calcium aluminates. As these hydroxides are amorphous, they would not be detected by XRD (Qoku et al; 2017).

In the FTIR study of the C-S-H gel formed, at lower frequencies, the OPC paste spectrum exhibited bands at around 1118 cm\(^{-1}\) and 973 cm\(^{-1}\). Earlier authors (Yu et al.,1999) reported that the band at 973 cm\(^{-1}\) can be attributed to the stretching vibrations generated by the Si-O bonds in Q\(_2^2\) tetrahedra present in C-S-H gel. This band clearly shifted toward higher wavenumbers in the presence
of ACW: 995 cm\(^{-1}\) with 20%, 1002 cm\(^{-1}\) with 30% and 1015 cm\(^{-1}\) with 50%
additions (Fig. 7). A band that appeared at 1085 cm\(^{-1}\) possibly denoted a more
d polymerised structure. According to Sáez del Bosque et al. (2014), structures
with a high Ca/Si ratio generate bands at 902 cm\(^{-1}\), 964 cm\(^{-1}\), 984 cm\(^{-1}\) and
1081 cm\(^{-1}\), associated with the Q\(^2\) stretching vibrations in Dreierkette-arranged
silicates, whereas in structures with a low Ca/Si ratio the same units generate
bands at around 1120 cm\(^{-1}\) and 969 cm\(^{-1}\). In the spectra shown here, however,
the signals at 798 cm\(^{-1}\), 780 cm\(^{-1}\), 696 cm\(^{-1}\), 558 cm\(^{-1}\) and 480 cm\(^{-1}\) were
attributed to ACW, which also generated Si-O bands at 1040 cm\(^{-1}\) and 1082
cm\(^{-1}\).

\(^{27}\)Al and \(^{29}\)Si NMR scans were recorded of the 180 d materials to determine
whether those shifts were due to the existence of a different gel or to the effect
of unreacted phases in the ACW.

The 180 d \(^{29}\)Si NMR (Fig. 8) for all the pastes contained signals for Q\(^{0}\) units at
-71.5 ppm and -73.6 ppm, the intensity of which declined with rising
percentages of pozzolan, for at lower percentages of cement its anhydrous
phases C\(_2\)S and C\(_3\)S logically generated less intense signals. The most intense
signal, positioned at -71.5 ppm, was attributed to \(\beta\)-C\(_2\)S, as C\(_2\)S hydration is
slower than that of C\(_3\)S the intensity of the peak associated with the presence of
C\(_2\)S is higher than that of C\(_3\)S. Other researchers (Kunter et al., 2016)
calculating the percentage of alite and bredigite in white cement samples with a
5% to 30% metakaolin content, observed that as the percentage of MK rose,
the amount of bredigite reacting declined substantially, whereas the effect on
alite was less accentuated. That would explain the intense bredigite signals on the 29Si NMR spectrum.

The decline in intensity with rising replacement ratios in the signals for the Q1 units present in the hydrated phases denoted greater polymerisation of the C-S-H gels, corroborating the FTIR and SEM findings. In the presence of the waste, a Q3 unit signal generated by the clayey minerals, primarily micas, present in the ACW, appeared between -89 ppm and -97 ppm, growing in intensity with the pozzolan content in the cement paste.

Q2_B and Q2_P signals were observed in the pastes in proportions that varied with the replacement ratio, with the former declining as the ratio rose. The Q2 (1Al) units likewise detected denoted the presence of greater amounts of aluminium from the ACW and the replacement of bridging silicon with aluminium atoms.

The 180 d 27Al NMR spectra for the cement pastes containing 0%, 20%, 30% and 50% ACW reproduced in Figure 9 contain two areas of signals attributable to Al(IV) and Al(VI). The latter confirmed ettringite and monocarboaluminate formation in all the samples, albeit in different proportions, as observed with XRD. Raising cement replacement ratios raised the percentage of Mc and lowered the amount of Et.

The intensity of the wide signal observed in the area of the spectrum attributed to tetrahedral aluminium rose with the amount of waste added. That signal, peaking at 68.6 ppm and shifting to lower values with higher replacement ratios, was indicative of the presence of Al uptake in the C-S-H gel. Moreover, the shoulder with a well-defined peak appearing at 61.5 ppm in this area of the
spectrum for the paste containing 50% ACW might be related to the SEM-identified laminar phyllosilicate microplates in that material.

The OPC and 50% ACW DTG curves up to 180d are shown in Figure 10, by way of example of all the blended cements analysed (0%, 20%, 30% and 50% ACW), exhibit three distinct areas with significant weight loss.

1. The wide band at 70°C to 300°C was generated by dehydroxylolation of the main hydrated phases during both cement hydration and the pozzolanic reaction. Bearing these two reactions in mind, the most prominent band (outside of the one at 61°C to 65°C attributed to the loss of moisture in the samples), located at 70°C to 135°C and peaking at 102°C to 106°C, would be associated with ettringite and especially C-S-H gel dehydroxylolation. A less intense band in the 130°C to 210°C interval was attributed to several hydrated phases with overlapping signals: hydroxy-AFm (180°C), C₄ASH₁₂ (170°C) in the 90 d and 180 d blended cements with 50% ACW and carboaluminate hydrate (C₄ACH₁₂) (190°C to 210°C) (Martínez and Frías, 2011). Those findings corroborated the presence of the hydrated phases observed with XRD, FTIR, SEM and NMR.

2. As the thermogravimetric interval ranging from 400°C to 470°C, peaking at 430°C to 445°C, was generated by the dehydroxylolation of portlandite present in the cements, band intensity was greater at lower ACW percentages (OPC >20%ACW >30%ACW >50%ACW), as observed in the FTIR analyses.

3. The area between 550°C and 740°C, with a peak at around 700°C to 705°C, was associated with calcite decarbonation in the blended cements.
Weight loss due to hydrated phase dehydroxylation at 70°C to 300°C is graphed against portlandite content (in percent of Ca(OH)$_2$) and cement age in Figure 11. The graph clearly shows that the Ca(OH)$_2$ content declined as the percentage of coal waste rose due to the pozzolanic reaction between the MK present in the ACW and the portlandite generated in cement hydration. The portlandite content in OPC was 13% to 16%; in 20%ACW, 11% to 12.5%; in 30%ACW, 9 to 9.5%; and in 50%ACW from 5% to 6.5%.

The greatest bound water loss (hydrated phase dehydroxylation in the 70°C to 300°C range) was observed at 28 d in OPC and 20%ACW and at 90 d in 30%ACW and 50%ACW. A slight decline in bound water content was detected at longer reaction times, perhaps associated with the presence of majority hydrated phases such as hydroxy-AFm, with a lower water molecule content in their structure than found in early age-forming ettringite (C$_6$AS$_3$H$_{32}$).

IV. Conclusions

The instrumental techniques applied in this study to appraise the hydration of binary cements with a low clinker content showed that the partial replacement of cement with 20 wt% to 50 wt% ACW favoured the formation of hydroxy-AFm, a metastable crystalline phase, over monocarboaluminate (C$_4$ACH$_{12}$) (4% to 12%). The former may account for up to 20% of all the crystalline phases, peaking in 28 d 20%ACW cement paste and subsequently declining with rising pozzolan content. In the OPC paste, monocarboaluminate prevailed over hydroxy-AFm (4% to 7%), peaking at 17% of the total in the 90 d and declining slightly in the 180 d paste.
Two types of plates were distinguished with the addition of pozzolan: compact C-S-H gel plates, and phyllosilicate-like laminar spongy microplates, the presence of which grew with pozzolan content, most visibly in the 50%ACW paste.

Silicon is partially replaced by aluminium during C-S-H gel polymerisation, as attested to by the band shift to higher frequencies (950→1015 cm\(^{-1}\)) and FTIR (Si-O Q\(^2\) stretching vibrations) and NMR (Q\(^2\) (1Al)) findings. Further research would be required to confirm whether those developments have a beneficial effect on the performance of ACW blended cements, and its possible benefits with respect to other cement matrices.

Acknowledgements

This research was funded by the Spanish Ministry of Economy and Competitiveness (BIA2015-65558-C3-1-2-3R) (MINECO/FEDER). The assistance received from Sociedad Anónima Hullera Vasco-Leonesa, SIKA (Madrid, Spain) and the Spanish Cement Institute (IECA) for this study is gratefully acknowledged.

References

Brindley, G.W., 1951. The kaolin minerals X ray identification and structures of clay minerals. Mineralogical Society, London, UK

FullProf. http://www.ill.eu/sites/fullprof/index.html

Match - Phase Identification from Powder Diffraction - Version 3, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match

Figure Captions:

Fig. 1. XRD patterns for 180 d pastes

Fig. 2. 180 d paste morphologies: left: OPC; right, 20%ACW

Fig. 3. 180 d paste morphologies: left, 30%ACW; right, 50%ACW

Fig. 4. 180 d paste morphologies: left, 20%ACW; right, 50%ACW

Fig. 5. EDX analysis of mineralogical phases

Fig. 6. FTIR spectra for 180d cement pastes

Fig. 7. Variation in the position of the Q² band in C-S-H gel with increasing waste content

Fig. 8. ²⁸Si spectra for 180 d cement pastes.

Fig. 9. ²⁷Al NMR spectra for 180 d cement pastes

Fig. 10. Evolution of DTG diffractograms for OPC and 50% OPC pastes with hydration time

Fig. 11. Bound water and portlandite contents in cement pastes versus OPC replacement ratio and hydration time
Highlights

The present paper shows new knowledge in low clinker cement manufacture.

This paper studies the influence of high contents of clay waste in the mineralogy of cement pastes cured up to 180d.

ACW favoured the formation of C₄AH₁₃ over C₄AcH₁₂.

ACW favoured the compact C-S-H gel plates, and phyllosilicate-like laminar spongy microplates.
Table I. Chemical compositions (%) of OPC and ACW

<table>
<thead>
<tr>
<th>Materials</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>SO₃</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>20.80</td>
<td>5.70</td>
<td>2.89</td>
<td>58.99</td>
<td>1.89</td>
<td>1.36</td>
<td>0.93</td>
<td>4.11</td>
<td>0.15</td>
<td>0.26</td>
<td>2.79</td>
</tr>
<tr>
<td>ACW</td>
<td>52.63</td>
<td>25.29</td>
<td>4.64</td>
<td>4.20</td>
<td>0.77</td>
<td>3.09</td>
<td>0.17</td>
<td>0.27</td>
<td>1.17</td>
<td>0.14</td>
<td>3.09</td>
</tr>
</tbody>
</table>
Table II. Rietveld analysis of XRD-identified phases

<table>
<thead>
<tr>
<th>Phases (%)</th>
<th>CF</th>
<th>Bs</th>
<th>C3</th>
<th>Al</th>
<th>Br</th>
<th>Ca</th>
<th>Q</th>
<th>M</th>
<th>K</th>
<th>Et</th>
<th>P</th>
<th>Am</th>
<th>Cc</th>
<th>C4A</th>
<th>X°</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>35</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15.4</td>
</tr>
<tr>
<td>CW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>29</td>
<td>25</td>
<td>14</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.7</td>
</tr>
<tr>
<td>ACW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>35</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.9</td>
</tr>
<tr>
<td>1d</td>
<td>OPC</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>32</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>37</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>22</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7d</td>
<td>OPC</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>29</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td>27</td>
<td>10</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>25</td>
<td>15</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>19</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>16</td>
<td>25</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>28d</td>
<td>OPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>23</td>
<td>9</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>19</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>19</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>27</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>90d</td>
<td>OPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>24</td>
<td>30</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>22</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td>12.3</td>
</tr>
<tr>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>19</td>
<td>18</td>
<td>9</td>
<td>14</td>
<td>6.0</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>23</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>16</td>
<td>25</td>
<td>7</td>
<td>12</td>
<td>8.3</td>
</tr>
<tr>
<td>180d</td>
<td>OPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>22</td>
<td>40</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>20</td>
<td>21</td>
<td>10</td>
<td>13</td>
<td>9.7</td>
</tr>
<tr>
<td>30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>17</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>23</td>
<td>9</td>
<td>10</td>
<td>8.7</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>22</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>31</td>
<td>8</td>
<td>9</td>
<td>7.0</td>
</tr>
</tbody>
</table>

CF=C4AF; Bs = bassanite; C3 = C3A; Al = C3S; Br = C2S; Ca = calcite; Q = Quartz; M=mica.; K= kaolinite; Et = ettringite; P = portlandite; Cc=C4AC H12; C4A=C4H13; Am. Mat = Amorrous.
Table III: Datasets for phase identification and Rietveld quantification

<table>
<thead>
<tr>
<th>Phases</th>
<th>COD*</th>
<th>ICSD**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alite</td>
<td>9016125</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>9007689</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>9012600</td>
<td></td>
</tr>
<tr>
<td>C_2Ach_{12}</td>
<td>2007668</td>
<td></td>
</tr>
<tr>
<td>Ettringite</td>
<td>9011103</td>
<td></td>
</tr>
<tr>
<td>Mica (Fengite)</td>
<td>9005496</td>
<td></td>
</tr>
<tr>
<td>Portlandite</td>
<td>1008781</td>
<td></td>
</tr>
<tr>
<td>Rutile</td>
<td>9007433</td>
<td></td>
</tr>
<tr>
<td>C_3AH_{13}</td>
<td>-</td>
<td>00-042-0558</td>
</tr>
<tr>
<td>Bredigite</td>
<td>9000483</td>
<td></td>
</tr>
<tr>
<td>C4AF</td>
<td>1008124</td>
<td></td>
</tr>
<tr>
<td>Bassanite</td>
<td>9005521</td>
<td></td>
</tr>
<tr>
<td>C3A</td>
<td>1000039</td>
<td></td>
</tr>
</tbody>
</table>

*COD: Crystallography Open Database, **ICSD: Inorganic Crystal Structure Database*
Table IV: Chemical analysis by EDX of blended cements at 180days

<table>
<thead>
<tr>
<th>oxides</th>
<th>20% C-S-H gel</th>
<th>30% C-S-H gel</th>
<th>30% plate</th>
<th>50% C-S-H gel</th>
<th>50% plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>0.6±0.46</td>
<td>1.1±0.63</td>
<td>0.6±0.15</td>
<td>1.4±0.48</td>
<td>1.4±0.42</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>6.7±0.94</td>
<td>6.2±0.89</td>
<td>20.2±0.96</td>
<td>9.2±0.62</td>
<td>21.1±0.77</td>
</tr>
<tr>
<td>SiO₂</td>
<td>31.5±2.59</td>
<td>36.3±2.85</td>
<td>38.8±1.46</td>
<td>37.1±2.59</td>
<td>45.3±2.38</td>
</tr>
<tr>
<td>SO₃</td>
<td>2.8±0.43</td>
<td>1.9±0.53</td>
<td>2.4±0.62</td>
<td>-</td>
<td>3.6±0.71</td>
</tr>
<tr>
<td>CaO</td>
<td>56.7±1.85</td>
<td>53.2±2.21</td>
<td>36.7±2.25</td>
<td>50.6±1.97</td>
<td>27.4±1.62</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.8±0.32</td>
<td>1.2±0.19</td>
<td>1.4±0.24</td>
<td>1.6±0.74</td>
<td>1.2±0.18</td>
</tr>
</tbody>
</table>
Figure 3

Click here to download high resolution image
Figure 7

Q2 C-S-H gel (cm$^{-1}$) vs. % ACW
The use of industrial waste as a cement addition often changes the composition and development of the hydrated phases and with them matrix performance and durability, in particular at later ages. The effect of the presence in blended cement of 20% to 50% Kaolinite based activated carbon waste (ACW) on paste hydration has been characterized by means of XRD, SEM/EDX, TG/DTG, NMR and FTIR to identify and monitor the mineralogical phases forming in materials at ages of up to 180 d. The results showed that the main reaction products forming in the first 7 d included C-S-H gels, C₄AH₁₂ and C₄AH₁₃ (hydroxy-AFm). Whilst monocarboaluminate (Mc) content declined with rising percentages of ACW, the amount of hexagonal phase hydroxy-AFm rose generally speaking. Then microstructure of the C-S-H gels developing in the OPC and the 50% additioned paste differed. Compact C-S-H gel plates, and phyllosilicate-like laminar spongy microplates with high polymerised C-S-H gel formed in the blended cement paste.