
Aligning Textual and Model-Based Process Descriptions

Josep Sànchez-Ferreresa,∗, Han van der Aab, Josep Carmonaa, Llúıs Padróa

aUniversitat Politècnica de Catalunya, Barcelona, Spain
bHumboldt University of Berlin, Berlin, Germany

Abstract

Process model descriptions are an ubiquitous source of information that exists

in any organization. To reach different types of stakeholders, distinct descrip-

tions are often kept, so that process understandability is boosted with respect

to individual capabilities. While the use of distinct representations allows more

stakeholders to interpret process information, it also poses a considerable chal-

lenge: to keep different process descriptions aligned. In this paper, a novel

technique to align process models and textual descriptions is proposed. The

technique is grounded on projecting knowledge extracted from these two rep-

resentations into a uniform representation that is amenable for comparison. It

applies a tailored linguistic analysis of each description, so that the important

information is considered when aligning description’ elements. Compared to

existing approaches that address this use case, our technique provides more

comprehensive alignments, which encompass process model activities, events,

and gateways. Furthermore, the technique, which has has been implemented

into the platform nlp4bpm.cs.upc.edu, shows promising results based on ex-

periments with real-world data.

Keywords:

Business process management; process models; natural language processing;

alignments.

∗Corresponding author. Phone number: 934137861
Email addresses: jsanchezf@cs.upc.edu (Josep Sànchez-Ferreres),

han.van.der.aa@hu-berlin.de (Han van der Aa), jcarmona@cs.upc.edu (Josep Carmona),
padro@cs.upc.edu (Llúıs Padró)

Preprint submitted to Elsevier October 4, 2018

nlp4bpm.cs.upc.edu

1. Introduction

Organizational processes can be highly complex chains of inter-related steps,

involving numerous stakeholders with various roles [52]. Due to this complex-

ity, it is crucial that the coordination among process actors is well defined [30].

Therefore, having access to the right information on business processes is vital

to their proper execution [5] and their compliance to rules and regulations [1].

To provide various stakeholders with the information that they need, organiza-

tions have recognized the value of capturing process descriptions in model-based

as well as text-based representations [22, 33, 50]. The reason for maintaining

both representation forms is that they each have their merits. Process models

have been found to be better suited to express complex execution logic of a

process in a more comprehensive manner than natural language [29]. By con-

trast, some stakeholders, especially workers who actually execute the process,

have difficulties reading and interpreting process models and, therefore, prefer

textual process descriptions over process models [7].

Despite these benefits, the usage of multiple descriptions of the same process

can also lead to considerable difficulties. In particular, it is vital that the process

information contained in different formats is correct, even when these formats

are maintained independently from each other [50]. If users access inaccurate

process descriptions, they can develop different expectations about what a pro-

cess aims to establish or how it should be executed [48]. Such situations can

have negative effects on the efficiency with which processes are executed and,

furthermore, can lead to business process non-compliance [50]. A problem in

this regard is, however, that processes are subject to continuous change [58] and,

therefore, considerable manual effort is required to maintain process descriptions

and clear up any conflicts. Given that organizations can have hundreds or even

thousands of different different process models [36], this means that manually

maintaining multiple representations for all processes is hardly manageable.

In this paper, we present an alignment approach that supports organizations

in maintaining process information in both textual and model-based representa-

2

tions. Our approach aims to establish alignments between both representations

by identifying correspondences between parts of a textual process description

and elements in a process model. These alignments enable the identification

of discrepancies between descriptions [48] and, furthermore, provide a starting

point for the propagation of changes from one description to the other [55]. A

quantitative evaluation demonstrates that our proposed approach outperforms

alignment approaches previously developed by the authors [48, 37]. Further-

more, because our approach also identifies correspondences involving process

model events and gateways, the alignments we obtain are also more compre-

hensive. Therefore, our approach provides an important foundation for the

maintenance of process information in different representation formats.

The remainder of this paper is structured as follows. Section 2 provides

necessary background information in the form of a problem illustration and

discussion of related work. Section 3 presents our proposed alignment approach.

Section 4 presents and discusses the results of a quantitative evaluation. Finally,

Section 5 concludes the paper.

2. Background

This section discusses background information relevant to the alignment of

textual and model-based process descriptions. In particular, Section 2.1 presents

a running example and discusses the main challenges associated with the align-

ment task. Section 2.2 provides an overview of related work.

2.1. Problem Illustration

To illustrate the challenges that are associated with the alignment of tex-

tual and model-based process descriptions, consider the process model shown in

Figure 1 and the textual process description contained in Table 1.

The process model is defined using the Business Process Model and Notation

(BPMN), a standard notation for process models. The model contains nine

activities, depicted as rounded rectangles. These activities denote the main tasks

3

DSS text-model matching

Cl
ai

m
s

of
fic

er

Claims officer

(e1)

Receive claim
(a1)

Review claim
(a2)

Write
recommendation

(a3)

M
an

ag
er

Manager

Review claim
(a4)

g1

Reject claim
(a5)

Accept claim
(a6)

g2 g3

Record
settlement
information

(a7)

Claim rejected
(e2)

Claim paid out
(e3)

Record reason
for rejection

(a9)

Fi
na

nc
ia

l D
ep

t.

Financial Dept.

Pay settlement
(a8)

Negative review

Positive review

Figure 1: Exemplary process model of a claims handling process in BPMN.

performed in order to execute the process. The process model, furthermore,

contains three events, illustrated by labeled circles, which describe the start

and end points of the process. The directed edges connecting activities and

events denote the control-flow of the process.The diamond shapes in the process

model indicate special routing constructs in the control-flow, called gateways.

Gateways with an X indicate a process choice, e.g. after g1, a claim can be

either rejected (activity a5) or accepted (a6). By contrast, gateways with a +

symbol indicate parallel or concurrent execution patterns. This means that the

activities a7 and a8 can be executed at the same time. Finally, the horizontal

lines denote so-called swimlanes in the process model. These swimlanes indicate

which resource roles are involved in the execution of specific process steps.

The goal of aligning a process model and a textual process description is to

identify correspondences between the elements of the process model and parts

of the textual process description. In the context of this paper, we set out

to align all elements that describe the flow in a process model, i.e. we align

activities, events, and gateways. Our goal is here to identify the sentences of

a textual process description that correspond to these process model elements,

4

Table 1: Textual process description of the claims handling process with correspondences to

the model from Figure 1.

ID Sentence Corresp.

s1 After receipt of a claim, a claims officer reviews the request. a1, a2

s2 Then, the claims officer writes a settlement recommendation and

forwards it.

a3

s3 A manager reviews the claim based on the written recommen-

dation.

a4

s4 If the review is negative, the claim is denied, otherwise it is

accepted.

g1, a5, a6

s5 In case of rejection, the process completes here. e2

s6 In case of acceptance, the manager records the settlement infor-

mation, while the financial department pays the claimant.

g2, a7, a8

referred to as correspondences. The right-most column in Table 1 indicates these

correspondences between the model and text.

To establish such alignments, several challenges must be overcome. These

challenges are primarily caused by the flexibility of natural language, that allows

the expression of the same concept via a large variety of words or phrases. In

particular, we identified the following four main challenges during our earlier

works on the development of alignment approaches [37, 48]:

1. C1: Different grammatical structures: Textual process descriptions can

use a broad variety of grammatical structures to describe a process. As a

result, there can exist considerable differences between the way in which

a text and a model describe similar aspects of a process. Consider, for

instance, the first phrase in sentence s1, “After receipt of a claim”, and the

corresponding model activity “receive claim”. The former uses a noun-

based structure, whereas the later used a verb-based description of the

same task. Therefore, an alignment technique must be able to detect such

correspondences despite the presence of grammatical differences.

5

2. C2: Different terminology: Next to differences in grammatical structures,

there can exist considerable differences in the terminology used between

model and text. Consider, for instance, sentence s4, which refers to a claim

being “denied” and activity a4, “reject claim”. An alignment technique

must be able to detect that the sentence and activity refer to the same step

in a process. It is here important to note that terminological differences

play an even bigger role when there are also differences in the level of

detail used by the two types of descriptions [46].

3. C3: Activities with identical labels: A different challenge occurs when

process models use activities with similar or even identical labels. This

can, for instance, happen in larger processes with multiple actors or when

the labels used in a model are fairly coarse-granular. Activities a2 and

a4 provide an example of this, because they both have the label “Review

claim”. When establishing alignments, an alignment should be able to

recognize that these identically labeled activities refer to process steps

that are performed in different parts of the process, either by different

actors (i.e., a2 by a claims officer and a4 by a manager), or even by the

same actor but in different contexts.

4. C4: Partial alignments: Finally, it is important to recognize that a process

model and textual description may not describe exactly the same steps

that comprise a process, whether intentional or not [48]. For instance,

activity a9, “Record rejection reason”, does not have a corresponding sen-

tence in the textual description and should, therefore, not be part of a

correspondence. As a result, to produce a correct alignment, alignment

techniques must also be able to detect when certain process model ele-

ments actually do not appear in the text. Those process model elements

should, therefore, not be included in any correspondence.

These challenges illustrate the complexity associated with the alignment of

textual process descriptions and process models. To overcome these challenges,

we build on techniques from the areas of natural language processing and match-

6

ing, as discussed next.

2.2. Related Work

In this section we discuss how natural language processing (NLP) is applied

in the context of Business Process Management (Section 2.2.1) and discuss var-

ious alignment approaches that exist in this context (Section 2.2.2).

2.2.1. Natural Language Processing in Business Process Management

NLP techniques are applied to address a variety of use cases in the context of

business process management [43]. Several of these focus on the text contained

in process models themselves. This includes a variety of works that focus on the

quality of process model labels, for example by detecting violations of labeling

conventions [3, 20, 53], inconsistent use of terminology [18], or common modeling

errors [16]. Other approaches use NLP to augment process models with semantic

or ontological information [21, 12, 4].

Other use cases involve texts that exist outside of process models. Several

approaches extract process models from different kinds of text, such as from use

cases [41], group stories [8], or methodological descriptions [11], while others

take general textual process descriptions as input [15, 13]. However, these ap-

proaches have been found to produce inaccurate models, which require extensive

manual revision [39]. Other use cases involving texts include a technique that

considers work instructions when querying process repositories [25] for confor-

mance checking against textual process descriptions [49].

2.2.2. Process Matching

The establishment of alignments between artifacts, often referred to as match-

ing, has received considerable attention in the context of BPM. In particular the

importance of process model matching has been recognized, in which alignments

between two process models are established. This has resulted in the develop-

ment of a considerable number of matching techniques. Nearly all process model

matchers focus on the analysis of similarity between the labels of process model

elements. To achieve this, techniques consider label similarity from a syntactic

7

perspective [57, 9, 27] as well as from a semantic perspective [23, 35, 38]. The

former set focuses on how similar the characters used in labels are, whereas the

later set focuses on similarity in the meaning of labels. Aside from the analysis

of process model labels, existing matching techniques have also recognized the

importance behavioral or structural characteristics [17]. By taking such char-

acteristics into account, matchers, such as [9, 17, 26], are able to recognize if

activities occur in the same parts of a process. Other techniques also focus

on matching based on other information, such as a technique that take work

instructions associated with models into account [57], as well as a technique

that matches based on event-log information [44]. A new approach by Meilicke

et al. [28] provides a means to create an ensemble of various process model

matchers that can combine their different strengths.

Aside from techniques that establish alignments between different process

models, focus has recently shifted towards the establishment of alignments

among a broader range of process-related artifacts. For example, several tech-

niques exist that establish correspondences between event logs and process mod-

els [2, 40], and a technique for the alignment of process performance indicators

and process models [45].

There are several key differences that distinguish the technique proposed in

this paper when compared to those existing works. First, our technique estab-

lishes more comprehensives alignments between model and text, because the

alignments cover activities, events, and gateways, whereas the previous works

only focus on the alignment of activities. Second, in order to address challenge

C3 described in the previous section, which relates to activities with identical

labels, our technique explicitly considers resource-related information. Third,

we here encode the constraints into an Integer Linear Problem (ILP) optimiza-

tion, rather than using a best-first search algorithm, which greatly improves

the computational efficiency of our technique and provides more flexibility with

respect to the inclusion of additional constraints and their weights. Finally,

our approach applies predictors defined in [48] in a novel manner to detect and

adapt to differences between process model and text. This allows us to also

8

address challenge C4, which implies that alignments between model and text

are not always complete.

3. Alignment Approach

This section describes our proposed alignment approach. It takes as input

a textual process description and a process model. Our approach is tailored

towards graph-based process model notations like BPMN, Petri nets or Event-

Driven Process Chains, and on the other hand imposes no restrictions on the

structure of the textual process description.” Furthermore, these two formats

may have been defined and maintained independently from each other. Given

this input, the approach aims to establish an optimal alignment between the

sentences of the textual description and the elements, i.e., the activities, events,

and gateways, of the process model. To achieve this, our approach consists of

four main steps, as visualized in Figure 2.

Textual process
description

Process model

1. Feature
extraction

2. Similarity
computation

Model-Text 
Alignment

3. Alignment
creation

4. Predictor-
based

Refinement

Figure 2: Overview of our alignment approach

For a model-text pair, our approach first aims to extract features that corre-

spond to important process-related and linguistic information from the provided

inputs. For example, we extract information about actions, actors, and busi-

ness objects. Second, based on the features extracted, we set out to quantify

the semantic similarity between process model elements and sentences. Third,

we combine the semantic similarity scores with ordering information (i.e., in-

formation about the process flow) in order to establish an alignment between

the textual description and process model. In the fourth and final step, our ap-

proach uses so-called predictors to detect if a provided model-text pair is likely

9

to contain inconsistencies. If this is the case, our approach uses this informa-

tion to refine the previously established alignment in order to produce the final

result.

In the remainder of this section, we describe the steps of our approach in

detail.

3.1. Process Information Extraction

The goal of the first step in our approach is to extract process-related infor-

mation from both a textual process description and a process model. Through

this extraction step, we convert process information contained in the two het-

erogeneous sources into a format that enables their accurate comparison.

3.1.1. Extraction from Process Models

To describe the extraction approach, we first need to define the notion of

a process model. Process models can be created using a variety of modeling

languages, such as Petri nets, Event-Driven Process Chains (EPCs), and the

Business Process Model and Notation (BPMN). The contributions of this paper

are independent of the specific notation used to define a process model. There-

fore, we define process models using the relevant parts of the generic definition

provided in [19, p.13], given in Definition 1.

Definition 1 (Process Model) We define a process model as a tuple M =

(A,E,G,R, , L,N, F, t, ρ, λ), where:

• A is a finite set of activities,

• E is a finite set of events,

• G is a finite set of gateways,

• R is a finite set of resources,

• L is a finite set of labels,

• N = A ∪ E ∪G is a finite set of nodes,

• P = A ∪ E is a finite set of process steps,

• F ⊆ N ×N is the flow relation, such that (N,F) is a connected graph,

10

• t : G→ {and, xor} is a mapping that associates each gateway with a type,

• ρ : R → A ∪ E is a surjective mapping that associates a resource r to an

activity a ∈ A or an event e ∈ E,

• λ : N ∪ R → L is a surjective mapping that relates process model nodes

and resources to labels.

Note that this definition does not contain inclusive OR-gateways because of

their marginal relevance in industrial process models [51] and since these are not

generic to all graph-based modeling notations (e.g. Petri nets). From a given

process model, we aim to extract the information depicted in Figure 3. In par-

ticular, we aim to extract information regarding activities, events, and gateways,

their inter-relations, as well as the semantic components of their labels.

Node

Gateway

Type Condition

0..*

0..1

1..*

Activity /
Event

Actor Business
objectAction

10..10..10..1

Process
model

Partial order

Figure 3: Process information extracted from process models

For process model activities and events, also referred to as process steps, we

extract three semantic components: (i) an actor performing the step, (ii) an

action that characterizes the step, usually described with a verb, and (iii) a

business object on which the action is performed. We note that process steps

are required to at least consist of an action, whereas the other components are

optional, e.g. there can be steps without a defined actor or business object.

Aside from process steps, we also extract information from the gateways in a

process model, which denote routing aspects of a process, such as choices or

11

parallelism. A gateway is assigned a type, i.e., either and or xor. Furthermore,

if an xor-gateway has an associated execution condition, such as illustrated in

Figure 1 for g1, we augment the gateway with this information.

Process models have explicit constructs to denote activities, events, their

actors, gateways, and the flow relation. Therefore, most information depicted

in Figure 3 can be directly derived for process models abiding to Definition 1.

However, the extraction of semantic components, namely actions and business

objects, requires further processing of the natural language labels associated

with process model elements:

Actions and business objects. Natural language labels associated with

activities and events define their essential semantics [19]. In particular, labels

generally convey the action, business object, and some additional information of

a process step [31]. Therefore, the action and business objects used in the canon-

ical format for process information need to be extracted from the labels associ-

ated with events and activities. A considerable problem here is that these labels

often represent textual fragments, rather than proper sentences [20]. As a re-

sult, standard NLP techniques often fail to get accurate results for them [24]. To

still be able to extract semantic components from labels, dedicated techniques

have been developed that specifically aim to extract verbs, business objects,

and auxiliary objects. For instance, Leopold [19] proposes a technique that uses

knowledge about common label structures and an analysis of the model context

to decompose activity and event labels. In our approach, we utilize a similar

technique to extract the action and business object of process steps.

3.1.2. Extraction from Textual Descriptions

Unlike process models, textual process descriptions do not have explicit con-

structs that represent activities, events, or gateways. Therefore, all process-

related information needs to be extracted from a textual process description

using natural language processing. Our alignment approach aims to align pro-

cess model elements to individual sentences. Therefore, our extraction step sets

12

Actor Business
object

Discourse
type Condition

0..1 0..1

Action

Textual process
description

Sentence

0..* 0..*0..*

1..*Strict order

Figure 4: Process information extracted per sentence

out to identify process-related information at a sentence level. In particular, we

aim to extract the components depicted in Figure 4.

As shown in the figure, we extract similar components from a sentence as we

do from a process model element. The actor, action, and business object com-

ponents correspond to the equally-named counterparts from Figure 3. These

three describe the semantic components that characterize process steps. Fur-

thermore, discourse type and condition are used to indicate if sentences contain

information regarding the control-flow of a process, similar to the purpose of

gateways in a process model. Finally, we also store the strict order relation that

exists between sentences, which captures the order in which sentences appear

in the text.

We extract the semantic components as follows:

Actions, actors, and business objects. In order to extract the desired

process information from sentences in a textual process description, we can build

on general-purpose NLP technology, such as techniques that analyze the gram-

matical and semantic structure of sentences and techniques for the resolution

of anaphoric references (e.g., [34]) . These techniques have been widely applied

in the context of textual process description for the extraction of activities and

their actors, cf. [13, 47, 25]. We can employ such existing techniques in order

to extract actions, actors, and business objects from a text.

For instance for the sentence 2 from the running example, “Then, the claims

officer writes a settlement recommendation and forwards it.”, the technique will

13

extract the following information: there are two actions: “writes and forwards,

one actor, “claims officer”, and a single business object, “settlement recom-

mendation”. Note due to anaphora resolution that is part of state-of-the-art

techniques, our approach is also able to identify that the term “it” at the end of

the sentence refers to the business object “settlement recommendation”. This

reference resolution is also possible if the business object is described in a sep-

arate sentence and can also be applied to actors that perform process steps.

Discourse types. To determine if a sentence describes a discourse marker,

i.e., a choice or parallelism, we employ a technique similar to the method ap-

plied in the text-to-model generation technique from Friedrich et al. [13]. We

use NLP techniques to detect discourse markers. A dictionary of multi-word

expressions is applied to phrases like “in the meantime” to merge them into

a single token in the meantime. As a result, our approach is able to detect if

a sentence contains conditional statements (typically corresponding to process

choices), such as seen for sentences s4, s5, and s6 of the running example, or

describes steps that can be executed concurrently.

Conditions. Conditions are associated with the discourse markers used to

identify conditional statements, as described above. For instance, statements

such as “if” or “in case of” are followed by conditions, such as seen in the phrase

“If the review is negative” in s3 of the running example. In those cases, the

grammatical structure of the corresponding sentence is matched against several

patterns in order to extract the clause containing the execution condition, e.g.

to extract “review is negative” as a condition in sentence s3.

3.2. Similarity Computation

After extracting process information from a textual process description and

process model, we encode the extracted information into feature vectors that can

be used to accurately quantify the similarity between process model elements

and sentences from a textual process description.

14

3.2.1. Feature Vectors

To quantify the similarity between process model nodes and sentences, we

use feature vectors as a means to encode the information extracted from process

models and sentences. These vectors represent a linearization of the extracted

information that allows for an easy comparison. We define a number of different

feature types, such as types related to actions, actors, or business objects. By

doing so, we are able to assign different weight to the various types in order to

tailor the quantification of similarity.

To quantify the similarity between a process model step p, i.e., an activity

or an event, and a sentence s, we use the following feature types:

contains action(a) This feature type denotes the actions contained in a step

p or sentence s. For instance, when comparing the task “write recom-

mendation” to sentence 2, we extract two actions: “write” and “for-

ward”, that produce two feature instances contains action(write) and

contains action(forward). When considering these only two actions, on

the task side this generates the vector 〈1, 0〉, whereas for the sentence we

obtain the vector 〈1, 1〉.

contains actor word(w) & actor main word(w) These features denote the ac-

tors that execute steps in a process. The former feature, contains actor word,

is extracted for each word w that is part of an actor. For instance, the

“claims officer” actor comprises the two words “claims” and “officer”. By

contrast, we use the actor main word feature to denote the main word

of the actor, typically represented as the main noun, e.g., to explicitly

capture the word “officer”. This separation allows us to give different

importance to the main word with respect to the others. See Section 3.2.2

for more details.

contains object word(w) & object main word(w) These features encode the

same information for business objects as the previously described features

do for actors.

15

contains lemma(l, pos) This feature is extracted from the target text if it con-

tains a word1 with the lemma l and part-of-speech pos. This feature has

a lower abstraction level than the previous ones. This feature is included

as a fall-back solution whenever the actor, role or action cannot be deter-

mined due to natural language ambiguity. In those cases the algorithm

works at the word level. For example, for the event “Claim paid out”, the

features contains lemma(claim, noun) and contains lemma(pay-out, verb)

will be extracted.

contains synset(s) This feature is extracted whenever the WordNet [32] synset

s appears in the text sentence. It captures the semantics of words to help

identify similarity when synonyms are used. For example, the WordNet

synset 05747582-n recognizes that “review” is a synonym of “evaluation”,

such as used in the running example.

contains hypernym(s) This feature is extracted from a target text containing a

word for which s is an hypernym2 at distance HL or less. HL is a parameter

of the algorithm. In the running example, a hypernym of “review” is

“assessment” (05733583-n)

3.2.2. Vector Similarity

Instead of treating features as binary values, we opted for associating weights

to the features individually. This way, the different importance each feature has

can be considered in the comparison. The weight of each feature is the product

of two magnitudes:

The feature instance weight is different for each instance of a feature type,

and solves the problem of all instantiations not being equally important in

terms of information provided. This is used in all lemma-based features,

1Note that in all feature types stopwords are not considered.
2A word w1 is a hypernym of w2 iff w1 describes a superclass of w2 (e.g. mammal is

a hypernym of cat, and document is a hypernym of letter). Hypernymy is obtained from

WordNet.

16

where the extracted lemma has an instance weight equal to the tf-idf score

of the word3. It is also used in synset-based features, where the instance

weight of the feature is K−l, where l is the length of the hipernymy chain

with respect to the original synset and K is a parameter of the algorithm.

The feature family weight is a weight defined for each feature type that ac-

counts for the problem that not all feature types are equally likely and

some of them provide more information than others. For example, a pro-

cess step label sharing a word with a sentence is less important than having

the same main action. The second reason for family weights is to adapt

the scale of the instance weights, since they measure different magnitudes

depending on the feature family.

Finally, the real-valued feature vectors are compared by using a standard

similarity metric. In particular, we apply the Weighted overlapping index, de-

fined as follows:

WeightedOverlapping(A,B) =

∑
f∈A∩B wf∑

g∈smallest(A,B) wg
(1)

Where wx is the weight, i.e. the product between the family weight and the

instance weight, of a feature x.

The rationale for using this metric arises from the nature of the alignment

problem we address. In general, textual process descriptions are more verbose

than process model. Therefore, textual descriptions have larger feature vectors.

Other metrics like the Jaccard Index or the Cosine Similarity [42], produce

overall lower values when the compared elements differ in size. By contrast, the

Overlapping index is able to deal with such size differences and, hence, provides

more intuitive results.

3We define the tf-idf of a token t as the product of tf := (Number of appearances of t in

its sentence / Number of tokens in that sentence) and idf := loge(Total number of sentences

/ Sentences containing t)

17

3.3. Alignment Creation

The next step in our approach is the computation of the alignment between

process model elements and the sentences of a textual description. The align-

ment contains the corresponding sentence for each activity, gateway and event

of the process model (see the rightmost column in Table 1 for an example of

alignment).

Formally, we define an alignment σ to be a set of correspondences of the

form nk ∼ si for some nk ∈ N, sk ∈ S, where N denotes the set of nodes of a

process model and S is the set of sentences that comprise a text.

3.3.1. Alignment Constraints

In order to establish an alignment between process model elements and sen-

tences, we impose two types of constraints on the alignment: cardinality con-

straints and ordering constraints.

Process step-to-sentence cardinality. For process model activities and

events, which we shall jointly refer to as process steps in a set P = A ∪ E, we

enforce that each of them is aligned to exactly one sentence, whereas we allow

multiple steps to be aligned to the same sentence. This constraint imposes

the assumptions that each step is described in the text and that steps are not

described repeatedly. Furthermore, it enables the proper alignment of sentences

that describe multiple process steps, such as seen for sentence 5. This sentence

corresponds to both the “record settlement information” and “pay settlement”

activities.

Gateway-to-sentence cardinality. Gateways require different cardinality

constraints. In particular, we allow gateways from the set G to be aligned to

one sentence or to none at all. Furthermore, we allow at most one gateway to

be aligned to a single sentence, given that sentences typically describe at most

one control-flow structure.

Process step ordering. If we, for the purposes of this step in our approach,

assume that a textual process description and a process model do not contradict

each other, we can impose ordering constraints on the alignments that our

18

approach establishes. To define these ordering restrictions, we use the following

notations. First, given two nodes n, n′ ∈ N , we use n � n′ to denote that there

is a path from node n to n′ according to the flow relation F ⊆ N ×N , as given

in Definition 1. Second, given two sentences s, s′ ∈ S, we use s s′ to denote

that sentence s occurs before s′ in a textual process description.

We require that process steps that precede each other in a process model

cannot be aligned to sentences that occur in the reverse order. Therefore, we

impose the following restriction on the order of process steps from the set P =

A ∪ E: if a process step p ∈ P precedes the execution of a step p′ ∈ P , then

node p cannot be aligned to a sentence s that occurs after the sentence s′ to

which the node p′ is aligned. Formally, this means that if it holds that p � p′

and s′ s, an alignment cannot contain both p ∼ s and p′ ∼ s′. Note that,

in situations where two activities p and p′ respectively follow each other in a

loop, we only consider the order relation p ∼ p′ and not p′ ∼ p. This enables

the approach to appropriately apply the ordering constraints to loops.

Gateway ordering. The ordering constraints required for the alignment

of gateways should account for several challenges. To illustrate these, consider

the fragment of a textual process description and process model depicted in

Figure 5. To align text and model, the following correspondences are required:

{s7 ∼ a7, s8 ∼ g2, s8 ∼ a8, s9 ∼ e3}. These correspondences indicate that,

unlike for process steps-to-sentences, the order in which gateways and process

steps are described in a text can be reversed. In particular, the model con-

tains relation g2 a7, whereas a7 occurs before the description of g2 in the

text. Furthermore, none of the sentences explicitly denotes when the parallel

construct is closed, i.e., none of the sentences describes gateway g3.

Because of these complications, we can only impose fairly weak constraints.

Specifically, we can state that:

• Process steps appearing before the opening gateway in the model cannot

be described after the corresponding discourse marker in the text. E.g.

if g2 ∼ si holds, any activity occurring before g2 cannot be aligned to a

19

s7 : The manager records the settle-

ment information.

s8 : In the meantime, the financial

department takes care of the

payment.

s9 : The process ends when the claim

is paid out

Figure 5: Description of a parallel construct in text

sentence sj for which si sj holds.

• Process steps appearing after the closing gateway in the model cannot

be described before the corresponding discourse marker in the text. E.g.

if g2 ∼ si, then event e3 cannot be aligned to a sentence sk for which

sk si holds.

3.3.2. Optimal Alignment

For an alignment σ to be considered optimal σ̂, the following three properties

must hold:

Cardinality consistency The alignment follows the cardinality constraints

described in the previous section.

Order consistency The alignment is consistent with the order restrictions

described in the previous section.

Optimality The value of
∑
nk∼si ∈ σ̂ sim(nk, si) is the maximum value such

that the two other properties hold.

To define the order restrictions in a formal way we first introduce the fol-

lowing definitions:

Sdisc ⊆ S: the set of sentences containing a discourse marker.

20

Gsplit ⊆ G: the set of gateways with one input flow and more than one output

flow4.

ν : G → G ∪ {⊥}: a function that given a gateway returns the corresponding

gateway such that the two delimit a single-entry single-exit region in the

model [54], or ⊥ if there is no such gateway.

In order to obtain a solution, the aforementioned properties are encoded in

the following ILP:

maximize:∑
s∈S

∑
n∈N σn,s · sim(n, s)

subject to:∑
s∈S σp,s = 1 ∀p ∈ P∑
sd∈Sdisc

σg,sd ≤ 1 ∀g ∈ G∑
g∈G σg,sd ≤ 1 ∀sd ∈ Sdisc

σp,s′ + σp′,s ≤ 1 ∀(s, s′) ∈ S × S, (p, p′) ∈ P × P, p � p′ ∧ s s′

σg,sd + σs,p ≤ 1 ∀s ∈ S, sd ∈ Sdisc, g ∈ Gop, p ∈ P, p � g, sd s

σg,sd + σs,p ≤ 1 ∀s ∈ S, sd ∈ Sdisc, g ∈ Gop, p ∈ P,

ν(g) 6= ⊥, ν(g) � p, s sd

variables:

an,s ∈ {0, 1} ∀s ∈ S, n ∈ N

The variables σn,s can be interpreted as binary variables meaning: “Model

node n corresponds to sentence s”, i.e: σs,n = 1 ⇐⇒ s ∼ n. The first

set of three constraints enforce the Cardinality consistency property5. This is

4Note that we purposefully avoid considering anomalous cases such as multiple inputs

and outputs or single-input single-output gateways and restrict ourselves to the subset of

well-formed BPMN models.
5Note that these equations can also be encoded using the Special Ordered Sets (SOS)

constraint of the form: at,1, · · · , at,|S| for all model elements t, which denotes exactly the

same constraint, and has better performance on the ILP solvers that implement it.

21

naturally encoded in ILP by restricting the sum of a subset of binary variables

to either exactly one, or at least one depending on the desired cardinality. The

second set of three constraints encodes the Order consistency property. This is

done by explicitly restricting pairs of s ∼ p correspondences, i.e. they cannot be

both true at the same time, for those pairs that constitute an order violation.

3.4. Predictor-based Refinement

The alignments that results from Section 3.3 are established under the as-

sumption that a process model and a textual process description describe the

same process, i.e., that the two representations do not contain inconsistencies.

By operating under this assumption, we are able to impose constraints that have

considerable positive effects on the quality of the resulting alignments, most

notably resulting from the application of the ordering constraints described in

Section 3.3.1. Nevertheless, it is important to acknowledge that varying descrip-

tions of a process can contradict each other in practical settings [50]. Therefore,

this section presents the final step of our approach in which we set out to detect

the presence of inconsistencies and, if so, adapt obtained alignments accordingly.

To perform this refinement step, we first apply so-called predictors that quan-

tify the likelihood that an obtained alignment contains inconsistencies. This no-

tion of a predictor is inspired by according notions used to analyze alignments in

the context of schema and process model matching [14, 56] and were originally

applied in Van der Aa et al. [48]. The core premise underlying predictors is that

alignments associated with consistent and inconsistent model-text pairs differ.

For a consistent model-text pair, all process model elements should be aligned

to a sentence with a high similarity score. By contrast, the similarity scores

of the correspondences in the alignment of an inconsistent model-text pair will

have different characteristics. Predictors quantify these characteristics and, as

such, quantify the likelihood that an alignment contains a particular kind of

inconsistency. If these predictors indeed detect likely inconsistencies, we sub-

sequently weaken the alignment constraints accordingly in order to establish a

refined alignment that takes the presence of likely inconsistencies into account.

22

s : “A manager must review the claim before he can accept it”

dke fragment

Review claim

Accept claim

Reject claim
negative review

positive review

Figure 6: Example of a missing activity

We perform this refinement step for two types of inconsistencies: (i) process

model elements that are missing from a textual description and (ii) ordering

conflicts.

3.4.1. Missing Process Steps

The alignment technique described in Section 3.3 aligns each activity and

event to a single sentence. However, it can happen that not all model elements

are actually described in the text. Consider for instance the example depicted

in Figure 6. In this fragment of a model-text pair, the textual description only

focuses on the positive outcome of a review step and, therefore, does not describe

the possibility that a claim can also be rejected. By contrast, the process model

shows both possibilities.

The similarity scores of correspondences included in an alignment represent

highly valuable indicators to identify missing elements. Process model elements

that are contained in a textual description are expected to be aligned to sen-

tences with a high similarity score. By contrast, if a process model element is

not described in a textual description, it cannot be aligned to a sentence with

a high similarity score, because none of the sentences in the text describe the

same process step as the model elements. For instance, none of the sentences

related to the example from Figure 6 contain terms related to the rejection of a

claim, which results in considerably lower similarity scores for the “reject claim”

activity. Given these lower similarity scores of missing process model elements,

23

s1: The junior officer enters the details
of the settlement into the system.

s2: Finally, a notification is sent to the
customer.

a1: Send
notification

a2: Enter
details into

system

Figure 7: Example of an ordering conflict

we use predictors that recognize such instances.

To distinguish between high and low similarity scores, we evaluate similarity

scores in an optimal alignment according to the following predictors:

• p-sim(p, s): the likelihood that a correspondence p ∼ s relates to a missing

step, given as the similarity score between the step p and the sentence s i.e.

sim(p, s).

• p-rel-S (p, s): the value of the previous predictor, normalized by the max-

imum similarity between s and any other process step, i.e.

sim(p,s)
max {sim(p′,s) | p′∈P}

Subsequently, we remove correspondences from the obtained alignment that

are likely to be missing from the textual description, i.e. the correspondences

for which the predictor values are below a certain threshold. In this manner

we can improve the quality of obtained alignments in terms of their precision,

because incorrect correspondences will be excluded.

3.4.2. Ordering Conflicts

The ordering constraints imposed on alignments, described in Section 3.3.1,

assume that a process model and a corresponding textual description describe

the various steps of a process in the same order. However, when a model-text

pair is inconsistent, it can happen that text and model contain ordering conflicts.

Figure 7 presents an example of this, in which the two artifacts denote a different

order of the “send notification” and “enter details into system” activities.

24

Due to the applied ordering constraints, alignments cannot contain both

correspondences a1 ∼ s2 and a2 ∼ s1, even though these denote actual cor-

respondences between model and text. To refine such alignments, we apply a

predictor that aims to identify ordering conflicts, which allows us to remove

the ordering constraints that impede the ability to establish alignments. The

existence of conflicting orders between model and text can manifest itself in the

form of large differences between the similarity scores contained in an optimal

alignment and potential similarity scores that could have been achieved with-

out these ordering constraints. For instance, in the above example, the total

similarity scores of having the true correspondences a1 ∼ s2 and a2 ∼ s1 will

be much higher than the similarity scores of the correspondences that abide to

the ordering constraints.

We capture this characteristic difference between consistent and inconsistent

model-text pairs in the predictor max-constrained. This predictor quantifies the

maximum difference that exists between the aligned and potential score for a

single process step in a model-text pair. It thus captures the largest similarity

difference caused by imposing ordering restrictions on the optimal alignment.

We operationalize this as follows:

• max-constrained(∼̂): the maximal difference between the potential and

aligned similarity scores for a process step p ∈ P .

For the cases where the predictor detects a likely ordering conflict, i.e. where

the value of max-constrained is above a certain threshold, our approach re-

computes a renewed alignment without ordering constraints. For instance, for

the provided example, the refined alignment will contain both correspondences

a1 ∼ s2 and a2 ∼ s1.

4. Evaluation

To demonstrate the capabilities of our approach, we conduct a quantitative

evaluation by comparing automatically generated model-text alignments to a

25

manually created gold standard. The goal of this evaluation is to assess the

quality of the automatically generated alignments. Both the data collection

and the implementation of our approach used to conduct the evaluation are

publicly available 6.

4.1. Test Collection

To perform the evaluation, we use a set of 74 model-text pairs obtained from

various sources. Given the different nature of these sources, we partition the set

into two data collections.

The first collection consists of 49 model-text pairs, corresponding to the

original dataset used for the evaluation of existing model-text alignment ap-

proaches [48, 37]. In this test collection, we detected 30 models (61%) contain-

ing at least one missing activity and an average of 1.32 nodes per sentence. The

model-text pairs in this dataset have been obtained from 11 different indus-

trial and academic sources, including inubit AG, the Federal Network Agency

of Germany, and various universities. [48] provides an in-depth overview of

these sources. The gold standard alignments of this collection were built on the

already established ones used in [37]. However, since the existing gold stan-

dard only included activity-to-sentence correspondences, we augmented it with

correspondences involving events and gateways.

The second collection consists of 25 additional model-text pairs. For this

second test collection, we observed 12 models (48%) with at least one missing

activity and an average of 1.54 nodes per each sentence. The process models

in this collection have been obtained from the repository of the BPM Academic

Initiative[10]. The texts accompanying these models were authored by 8 expe-

rienced modelers. In order to obtain textual descriptions covering a variety of

styles, the experts were asked to perform the following three steps: (i) Study the

process model diagram. (ii) Write the textual description without looking at the

source model. (iii) Compare the textual description with the source model to

6https://github.com/setzer22/alignment_model_text

26

https://github.com/setzer22/alignment_model_text

make sure the text accurately describes the process model. This final step was

introduced to reduce the amount of inconsistencies between texts and models.

Furthermore, the authors of the text were not involved in the development of

the approach of this paper nor aware of the exact purpose of their task. For the

25 model-text pairs in this new collection, the gold standard alignments were

annotated and subsequently verified by the authors of this paper.

Table 2 provides an overview of the characteristics of the model-text pairs

included in the evaluation set.

Table 2: Characteristics of model-text pairs in the test collections

Collection P Pma N A G E S N/S

Original 49 30 11.99 8.12 1.66 2.21 9.13 1.32

New 25 12 12.40 7.44 2.80 2.16 7.72 1.54

Total 74 42 12.13 7.89 2.05 2.19 8.65 1.39

Legend: P = Model-text pairs, Pma = Amount of model-text pairs with

missing elements, N = Nodes per model (avg.), A = Activities per model

(avg.), G = Gateways per model (avg.), E = Events per model (avg.) S

= Sentences per text (avg.), N/S = Nodes per sentence (avg.)

4.2. Setup

To conduct the evaluation, we have implemented our proposed alignment

approach in the form of a Java prototype. For this implementation we used

Freeling [34] for the natural language processing and Gurobi as the ILP solver

to compute optimal alignments.

To quantify the quality of a generated alignment for a given model-text

pair we compute the widely-employed accuracy metric. This metric quantifies

the number of correct correspondences with respect to the total number of

correspondences. Let σ be the alignment generated by our approach over a set

of sentences S and a set of process model nodes N . furthermore, let σ∗ be

27

the gold standard alignment. We then define the accuracy of our approach as

follows:

accuracy =
|σ ∩ σ∗|
|N |

In order to operationalize our implementation, the parameters of the ap-

proach have been set in the following way: The feature family weights used

were tuned using a genetic algorithm exploration. The predictor used for miss-

ing elements is p-rel-S, with a threshold value of 0.1. The predictor used for

order conflicts was max-constrained, with a threshold value of 0.8. In Section 4.4

we explore the impact of alternate parameter settings on the performance of

our approach. Finally, as a benchmark, we compare the performance of our

approach to the two earlier proposed alignment techniques from [37, 48].

4.3. Results

Table 3 shows an overview of the evaluation results for our approach with and

without predictors, as well as for the two benchmark approaches. In particular,

we depict the accuracy our approach achieves on the alignment of activities,

events, gateways, and the overall accuracy.

The result shows that our approach achieves an overall high accuracy of 0.71

for the total test collection. When considering the different types of nodes, we

observe that the approach performs best for the alignment of activities, achiev-

ing an accuracy of 0.79. For events (0.56) and gateways (0.50), the approach

is less accurate. This difference in performance could be explained by the fact

that our approach is more informed with respect to activities than the other

two element types. Particularly, the agent, action and business object features

are not extracted for gateways and do not always fit the writing style of event

descriptions. Furthermore, we can observe that the use of predictor-based re-

finement has a positive impact on the accuracy of the approach, increasing the

accuracy from an overall of 0.69 to 0.71. The benefits of using predictors are

most apparent for the alignment of gateways, where the accuracy increases from

0.40 to 0.50.

28

Table 3: Overview of the evaluation results

Accuracy

Collection Configuration Activities Events Gateways Overall

Original Approach from [37] 0.76 n/a n/a n/a

Approach from [48] 0.78 n/a n/a n/a

Without predictors 0.78 0.42 0.32 0.66

With predictors 0.78 0.44 0.43 0.68

New Approach from [37] 0.79 n/a n/a n/a

Approach from [48] 0.77 n/a n/a n/a

Without predictors 0.81 0.80 0.55 0.75

With predictors 0.80 0.80 0.63 0.76

Total Approach from [37] 0.78 n/a n/a n/a

Approach from [48] 0.77 n/a n/a n/a

Without predictors 0.79 0.55 0.40 0.69

With predictors 0.79 0.56 0.50 0.71

The results show that our approach slightly improves upon the accuracy

achieved by the existing approaches from [37, 48]. However, the primary dif-

ference, as clearly shown in Table 3 is that our proposed approach provides

much more complete alignments in terms of the process model elements that it

considers.

When comparing the performance of the approach across the two test col-

lections, we observe that the performance is comparable with respect to the

alignment of activities (0.78 versus 0.80). However, for events (0.44 versus 0.80)

and gateways (0.43 versus 0.63), the approach performs considerably better on

the model-text pairs in the new collection. There are several factors that may

have influenced this performance gap. On one hand, the new dataset has a

substantially higher amount of labelled gateways, which help create more in-

formed alignments. On the other hand, generating textual descriptions from

models may favor a more literal style when describing events when compared

29

to the some independently developed descriptions of the original dataset. De-

spite these differences, the evaluation results show that the approach achieves

promising results for model-text pairs from a wide range of sources.

By taking a more in-depth look at the results, we can furthermore make the

following observations:

• Our approach is able to establish alignments even when a model contains

multiple activities with identical or near-identical labels. This is achieved

because the approach considers additional semantic information obtained

from features like actors and the structural information provided by the

ordering constraints.

• The size of a process models, in terms of the notes to be aligned, has

no significant impact on the performance of our approach. The average

alignment accuracy for models with N > 15 is 0.70 and 0.65 for N > 20,

which does not differ significantly from the average performance of 0.75 for

al modes (with average N = 12.13). This observation is confirmed through

a Pearson correlation test [6], which yielded a correlation coefficient of -

0.11 and a p-value of 0.33, indicating no significant correlation between

model size and alignment accuracy.

• Using the tf-idf as a multiplicative factor for word-based features helps

automatically regulate their importance: A word that is used throughout

the process does not contribute as much to the similarity as one that is

only mentioned in a subset of the description. This is important in the

case of gateways, where the high-level information –i.e. agent, action and

business object– cannot be obtained and the word-level features alone

determine the similarity.

• Our approach currently treats events in the same way as activities. While

some events are typically described like activities, some other event types

are more naturally described in a different style. One such example is

timer events, where sentences like “After X days have passed” are more

30

common. Parsing errors that result from trying to find activity structure

in those events result in less informed alignments.

• Most gateway alignments missed in the evaluation were implicitly de-

scribed in the textual description. For example, a process model described

different alternatives for sorting invoices with an exclusive gateway, but

the textual description simply stated: “The invoices can be sorted in two

ways: by amount and by vendor.” Such implicit descriptions cannot be

detected by our alignment tool since no discourse marker is present.

4.4. Influence of the Parameters

The parametrization of our proposed approach can have a considerable im-

pact on the quality of the obtained results. In order to understand how this

occurs, we study the effect of the following parameters:

Feature family weights (Section 3.2.2) define the importance of features with

respect to each other.

Predictors, and their thresholds (Section 3.4) define the strategy and like-

lyhood of detecting a missing node or an order inconsistency in the pro-

cess.

In the next two sections we report the exploration done which additionally

lead us to the final parameters parameters used to obtain the results shown in

Table 3.

4.4.1. Effect of Feature Weights

To assess the influence of feature weights, we considered several exploration

techniques. Using an exhaustive exploration technique, or an experimental de-

sign requires discreticising the weights. Due to the high sensibility of the param-

eters and the computation time required to evaluate each individual combina-

tion, we avoided such an exhaustive analysis. Instead, we opted for an heuristic

search based on genetic algorithms, which are well known for metaparameter

31

Figure 8: Evolution of the genetic algorithm

optimization showing the population maxi-

mum, average and minimum fitness values.

Figure 9: Accuracy of the tool when varying

the threshold for different predictors.

optimization. In order to guide the search, the fitness function was defined as

the overall accuracy obtained by the tool using the original dataset.

Figure 8 shows the evolution of the optimization for one of the executions.

The maximum and average values for the population fitness have a tendendy to

increase, which shows the positive effect of a good parametrization. On the other

hand, the minimum values fluctuate uniformly because of random individuals

being added at each generation. This shows the impact of the weight parameters

in our technique. While a bad set of weights affects the results negatively, the

algorithm can still perform with a reasonable accuracy even with such bad

parametrization.

Some common characteristics were observed in the fittest individuals of the

last generation: The most important features were actions, business objects

and discourse markers. On the other hand, word-based features and actors had

substantially lower weights. Finally, for features that distinguish the main word,

such as contains actor word and actor main word, the latter type was found

to consistently have a higher weight.

32

4.4.2. Effect of Predictors and Thresholds

In order to study the effect of predictors, we conducted an experiment using

only the first test collection. The goal was to observe the effect of the predictor

type (p-sim or p-rel-S), as well as the threshold value used to detect a missing

step, on the overall accuracy.

Figure 9 shows the performance of the tool when using both predictors and

varying their thresholds from 0 to 1, with a step length of 0.05. The value at 0

indicates the performance of the tool when not using predictors, while the value

at 1 represents the maximum achievable improvement of using predictors for

the detection of missing elements.

As shown, all predictor types have an initial peak region where perform-

ing the predictor-based refinement offers some benefit. After some point, the

approach becomes too strict and considers too many elements as missing, re-

sulting in a drop in the overall accuracy. This peak region is similar for the

three approaches, but p-rel-S is more stable since it offers a less steep curve.

This exploration shows us the potential benefits of predictor-based refine-

ment in our technique. We conclude a good range of values for the similarity

threshold lays in the interval (0.05, 0.2). Finally, the increased stability of the

p-rel-S predictor makes it more suited for a generic approach.

5. Conclusions

This paper presented a fully automated approach to align textual descrip-

tions to process models. The proposed approach combines tailored NLP process-

ing techniques, semantic matching, and predictors in order to establish optimal

alignments between the nodes of a process model and the sentences of a textual

description. Unlike existing approaches that address this task, our approach

aligns a broad range of process model elements, including events and gateways,

rather than just focusing on the alignment of activities. A quantitative eval-

uation performed on a collection 74 model-text pairs demonstrates that our

approach achieves satisfactory results.

33

We foresee several research directions that can be followed. On the one

hand, incorporating support to more element types and constructs may lead to

a more precise analysis; among others, we may consider subprocesses. Another

interesting direction is to improve the characterization and computation of the

order for the sentences in the text, for instance learning a classifier tailored

towards describing control flow in textual descriptions.

Acknowledgements

This work has been supported by funds from the Spanish Ministry for Econ-

omy and Competitiveness (MINECO), the European Union (FEDER funds)

via grants GRAMM (TIN2017-86727-C2-1-R) and Graph-Med (ref. TIN2013-

46181-C2-1-R, TIN2016-77820-C3-3-R), and the Alexander von Humboldt Foun-

dation.

References

[1] E. Andrade, H. van der Aa, H. Leopold, S. Alter, H. A. Reijers, Factors

Leading to Business Process Noncompliance and its Positive and Negative

Effects: Empirical Insights from a Case Study, in: 22nd Americas Confer-

ence on Information Systems, AMCIS, 2016.

[2] T. Baier, J. Mendling, M. Weske, Bridging abstraction layers in process

mining, Information Systems 46 (2014) 123–139.

[3] J. Becker, P. Delfmann, S. Herwig, L. Lis, A. Stein, Formalizing Linguistic

Conventions for Conceptual Models, in: Conceptual Modeling - ER 2009,

LNCS, Springer Berlin Heidelberg, 70–83, 2009.

[4] M. Born, F. Dörr, I. Weber, User-Friendly Semantic Annotation in Business

Process Modeling, in: WISE 2007 Workshops, vol. 4832 of LNCS, Springer,

260–271, 2007.

34

[5] T. R. Browning, On the alignment of the purposes and views of process

models in project management, Journal of Operations Management 28 (4)

(2010) 316–332.

[6] J. L. Bruning, B. L. Kintz, Computational handbook of statistics, Scott,

Foresman & Co, 1987.

[7] S. Chakraborty, S. Sarker, S. Sarker, An exploration into the process of

requirements elicitation: A grounded approach, Journal of the association

for information systems 11 (4) (2010) 212–249.

[8] J. C. de Gonçalves, F. M. Santoro, F. A. Baiao, Business process mining

from group stories, in: Computer Supported Cooperative Work in Design,

2009. CSCWD 2009. 13th International Conference on, IEEE, 161–166,

2009.

[9] R. M. Dijkman, M. Dumas, L. Garćıa-Bañuelos, Graph matching algo-

rithms for business process model similarity search, in: International Con-

ference on Business Process Management, Springer, 48–63, 2009.

[10] R.-H. Eid-Sabbagh, M. Kunze, A. Meyer, M. Weske, A Platform for Re-

search on Process Model Collections, in: J. Mendling, M. Weidlich (Eds.),

Business Process Model and Notation, Springer Berlin Heidelberg, Berlin,

Heidelberg, ISBN 978-3-642-33155-8, 8–22, 2012.

[11] E. V. Epure, P. Mart́ın-Rodilla, C. Hug, R. Deneckère, C. Salinesi, Auto-

matic process model discovery from textual methodologies, in: Research

Challenges in Information Science (RCIS), 2015 IEEE 9th International

Conference on, IEEE, 19–30, 2015.

[12] C. Francescomarino, P. Tonella, Supporting Ontology-Based Semantic An-

notation of Business Processes with Automated Suggestions, in: Interna-

tional Conference on Enterprise, Business-Process and Information Systems

Modeling, vol. 29 of LNBIP, Springer, 211–223, 2009.

35

[13] F. Friedrich, J. Mendling, F. Puhlmann, Process model generation from

natural language text, in: International Conference on Advanced Informa-

tion Systems Engineering, Springer, 482–496, 2011.

[14] A. Gal, Uncertain schema matching, Synthesis Lectures on Data Manage-

ment 3 (1) (2011) 1–97.

[15] A. Ghose, G. Koliadis, A. Chueng, Process discovery from model and text

artefacts, in: Services, 2007 IEEE Congress on, IEEE, 167–174, 2007.

[16] V. Gruhn, R. Laue, Detecting Common Errors in Event-Driven Process

Chains by Label Analysis, Enterprise Modelling and Information Systems

Architectures 6 (1) (2011) 3–15.

[17] J.-Y. Jung, J. Bae, Workflow clustering method based on process similar-

ity, in: International Conference on Computational Science and Its Appli-

cations, Springer, 379–389, 2006.

[18] A. Koschmider, E. Blanchard, User Assistance for Business Process Model

Decomposition, in: Proceedings of the 1st IEEE International Conference

on Research Challenges in Information Science, 445–454, 2007.

[19] H. Leopold, Natural language in business process models, Springer, 2013.

[20] H. Leopold, R.-H. Eid-Sabbagh, J. Mendling, L. G. Azevedo, F. A. Baião,

Detection of naming convention violations in process models for different

languages, Decision Support Systems 56 (2013) 310–325.

[21] H. Leopold, C. Meilicke, M. Fellmann, F. Pittke, H. Stuckenschmidt,

J. Mendling, Towards the automated annotation of process models, in:

International Conference on Advanced Information Systems Engineering,

Springer, 401–416, 2015.

[22] H. Leopold, J. Mendling, A. Polyvyanyy, Supporting Process Model Valida-

tion through Natural Language Generation, IEEE Transactions on Software

Engineering 40 (8) (2014) 818–840.

36

[23] H. Leopold, M. Niepert, M. Weidlich, J. Mendling, R. M. Dijkman,

H. Stuckenschmidt, Probabilistic optimization of semantic process model

matching, in: International Conference on Business Process Management,

Springer, 319–334, 2012.

[24] H. Leopold, S. Smirnov, J. Mendling, Refactoring of process model ac-

tivity labels, in: Natural Language Processing and Information Systems,

Springer, 268–276, 2010.

[25] H. Leopold, H. van der Aa, F. Pittke, M. Raffel, J. Mendling, H. A. Reijers,

Searching textual and model-based process descriptions based on a unified

data format, Software & Systems Modeling (2017) 1–16.

[26] J. Ling, L. Zhang, Q. Feng, An Improved Structure-based Approach to

Measure Similarity of Business Process Models., in: SEKE, 377–380, 2014.

[27] K. Liu, Z. Yan, Y. Wang, L. Wen, J. Wang, Efficient syntactic process

difference detection using flexible feature matching, in: Asia-Pacific Con-

ference on Business Process Management, Springer, 103–116, 2014.

[28] C. Meilicke, H. Leopold, E. Kuss, H. Stuckenschmidt, H. A. Reijers,

Overcoming individual process model matcher weaknesses using ensemble

matching, Decision Support Systems 100 (2017) 15–26.

[29] J. Mendling, Metrics for process models: empirical foundations of veri-

fication, error prediction, and guidelines for correctness, vol. 6, Springer

Science & Business Media, 2008.

[30] J. Mendling, B. Baesens, A. Bernstein, M. Fellmann, Challenges of smart

business process management: An introduction to the special issue, Deci-

sion Support Systems 100 (2017) 1–5, URL https://doi.org/10.1016/

j.dss.2017.06.009.

[31] J. Mendling, H. A. Reijers, J. Recker, Activity labeling in process model-

ing: Empirical insights and recommendations, Information Systems 35 (4)

(2010) 467–482.

37

https://doi.org/10.1016/j.dss.2017.06.009
https://doi.org/10.1016/j.dss.2017.06.009

[32] G. A. Miller, WordNet: a lexical database for English, Communications of

the ACM 38 (11) (1995) 39–41.

[33] A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, C. Menictas, Mak-

ing sense of business process descriptions: An experimental comparison of

graphical and textual notations, Journal of Systems and Software 85 (3)

(2012) 596–606.

[34] L. Padró, E. Stanilovsky, FreeLing 3.0: Towards Wider Multilinguality,

in: Proceedings of the Eighth International Conference on Language Re-

sources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012,

2473–2479, URL http://www.lrec-conf.org/proceedings/lrec2012/

summaries/430.html, 2012.

[35] F. Pittke, H. Leopold, J. Mendling, G. Tamm, Enabling reuse of process

models through the detection of similar process parts, in: International

Conference on Business Process Management, Springer, 586–597, 2012.

[36] M. Rosemann, Potential Pitfalls of Process Modeling: Part A, Business

Process Management Journal 12 (2) (2006) 249–254.

[37] J. Sànchez-Ferreres, J. Carmona, L. Padró, Aligning Textual and Graphical

Descriptions of Processes Through ILP Techniques, in: International Con-

ference on Advanced Information Systems Engineering (In press), Springer,

2017.

[38] M. L. Sebu, H. Ciocârlie, Similarity of business process models in a modular

design, in: Applied Computational Intelligence and Informatics (SACI),

2016 IEEE 11th International Symposium on, IEEE, 31–36, 2016.

[39] M. Selway, G. Grossmann, W. Mayer, M. Stumptner, Formalising natu-

ral language specifications using a cognitive linguistic/configuration based

approach, Information Systems 54 (2015) 191–208.

[40] A. Senderovich, A. Rogge-Solti, A. Gal, J. Mendling, A. Mandelbaum, The

ROAD from Sensor Data to Process Instances via Interaction Mining, in:

38

http://www.lrec-conf.org/proceedings/lrec2012/summaries/430.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/430.html

International Conference on Advanced Information Systems Engineering,

Springer, 257–273, 2016.

[41] A. Sinha, A. Paradkar, Use Cases to Process Specifications in Business

Process Modeling Notation, in: IEEE International Conference on Web

Services, 473–480, 2010.

[42] P.-N. Tan, et al., Introduction to data mining, Pearson Education India,

2006.

[43] H. van der Aa, J. Carmona, H. Leopold, J. Mendling, L. Padró, Challenges

and Opportunities of Applying Natural Language Processing in Business

Process Management, in: International Conference on Computational Lin-

guistics, 2018.

[44] H. Van der Aa, A. Gal, H. Leopold, H. A. Reijers, T. Sagi, R. Shraga,

Instance-Based Process Matching using Event-Log Information, in: In-

ternational Conference on Advanced Information Systems Engineering (In

press), Springer, 2017.

[45] H. Van der Aa, H. Leopold, A. del Rio-Ortega, M. Resinas, H. A. Reijers,

Transforming Unstructured Natural Language Descriptions into Measur-

able Process Performance Indicators Using Hidden Markov Models, Infor-

mation Systems 71 (2017) 27–39.

[46] H. Van der Aa, H. Leopold, F. Mannhardt, H. A. Reijers, On the Frag-

mentation of Process Information: Challenges, Solutions, and Outlook, in:

International Conference on Enterprise, Business-Process and Information

Systems Modeling, Springer, 3–18, 2015.

[47] H. Van der Aa, H. Leopold, H. A. Reijers, Checking Process Compliance on

the Basis of Uncertain Event-to-Activity Mappings, in: International Con-

ference on Advanced Information Systems Engineering (In press), Springer,

2017.

39

[48] H. Van der Aa, H. Leopold, H. A. Reijers, Comparing Textual Descriptions

to Process Models: The Automatic Detection of Inconsistencies, Informa-

tion Systems 64 (2017) 447–460.

[49] H. van der Aa, H. Leopold, H. A. Reijers, Checking Process Compliance

against Natural Language Specifications using Behavioral Spaces, Informa-

tion Systems .

[50] H. Van der Aa, H. Leopold, I. van de Weerd, H. A. Reijers, Causes and

Consequences of Fragmented Process Information: Insights from a Case

Study, in: 23rd Americas Conference on Information Systems, AMCIS,

2017.

[51] W. M. Van der Aalst, The application of Petri nets to workflow manage-

ment, Journal of circuits, systems, and computers 8 (01) (1998) 21–66.

[52] W. M. P. Van der Aalst, A. H. Ter Hofstede, M. Weske, Business process

management: A survey, in: International conference on business process

management, Springer, 1–12, 2003.

[53] B. Van der Vos, J. A. Gulla, R. van de Riet, Verification of conceptual mod-

els based on linguistic knowledge, Data & Knowledge Engineering 21 (2)

(1997) 147 – 163.

[54] J. Vanhatalo, H. Völzer, J. Koehler, The refined process structure tree,

Data Knowl. Eng. 68 (9) (2009) 793–818.

[55] M. Weidlich, J. Mendling, M. Weske, Propagating changes between aligned

process models, Journal of Systems and Software 85 (8) (2012) 1885–1898.

[56] M. Weidlich, T. Sagi, H. Leopold, A. Gal, J. Mendling, Predicting the

quality of process model matching, in: International Conference on Busi-

ness Process Management, Springer, 203–210, 2013.

[57] M. Weidlich, E. Sheetrit, M. C. Branco, A. Gal, Matching business process

models using positional passage-based language models, in: International

Conference on Conceptual Modeling, Springer, 130–137, 2013.

40

[58] M. Weidlich, M. Weske, J. Mendling, Change propagation in process models

using behavioural profiles, in: Services Computing, 2009. SCC’09. IEEE

International Conference on, IEEE, 33–40, 2009.

41

View publication statsView publication stats

https://www.researchgate.net/publication/328065182

	Introduction
	Background
	Problem Illustration
	Related Work
	Natural Language Processing in Business Process Management
	Process Matching

	Alignment Approach
	Process Information Extraction
	Extraction from Process Models
	Extraction from Textual Descriptions

	Similarity Computation
	Feature Vectors
	Vector Similarity

	Alignment Creation
	Alignment Constraints
	Optimal Alignment

	Predictor-based Refinement
	Missing Process Steps
	Ordering Conflicts

	Evaluation
	Test Collection
	Setup
	Results
	Influence of the Parameters
	Effect of Feature Weights
	Effect of Predictors and Thresholds

	Conclusions

