
Escola Tècnica Superior d’Enginyeria
de Telecomunicació de Barcelona

End-to-End

Photoplethysmography-based

Biometric Authentication System

by using Deep Neural Networks

Guillem Cortès Sebastià
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Abstract

Whilst research efforts have traditionally focused on Electrocardiographic (ECG) signals

and handcrafted features as potential biometric traits, few works have explored systems

based on the raw photoplethysmogram (PPG) signal.

This work proposes an end-to-end architecture to offer biometric authentication using

PPG biosensors through Convolutional Neural Networks. We provide an evaluation of the

performance of our approach in two different databases: Troika and PulseID, the latter a

publicly available database specifically collected by the authors for such a purpose.

Our verification approach through convolutional network based models and using raw

PPG signals appears to be viable in current monitoring procedures within e-health and fit-

ness environments, and shows a remarkable potential as a biometric identifier. When tested

on a verification task with one second trials, the approach achieved an AUC of 78,2 % and

83,2 %, averaged among target subjects, on PulseID and Troika datasets respectively. Our

experimental results on other small datasets support the usefulness of PPG-extracted biomar-

kers as viable traits for multi-biometric or standalone biometrics. Furthermore, the approach

results in a low input throughput and complexity that allows for continuous authentication

in real-world scenarios and implementation in little wearable devices. Nevertheless, the re-

ported experiments also suggest that further research is necessary to develop a definitive

system.
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Resum

Si bé els esforços en la investigació s’han centrat tradicionalment en senyals electrocardi-

ogràfics (ECG) i caracteŕıstiques artesanals com a trets biomètrics potencials, pocs treballs

han explorat sistemes basats en el senyal fotopletogràfic (PPG).

Aquest treball proposa una arquitectura d’extrem a extrem per oferir autenticació bi-

omètrica mitjançant biosensors PPG a través de xarxes convolucionals. L’acompliment d’a-

quest enfocament s’ha avaluat en dues bases de dades diferents: Troika i PulseID, aquesta

última disponible públicament i que ha estat recollida pels autors per a aquest propòsit.

Aquest enfocament de verificació a través de models basats en xarxes convolucionals i l’ús

de senyals de PPG en cru sembla ser viable en els procediments de monitorització actuals,

dins d’entorns de salut i esport, mostrant aix́ı un gran potencial i atractiu per a la biometria.

L’enfocament provat en la tasca de verificació, en assaigs que duren un segon, aconsegueix

una AUC de 78, 2% i 83, 2% en mitjana, entre els subjectes objectiu, en els conjunts de dades

de PulseID i Troika, respectivament. Els nostres resultats experimentals en altres conjunts

petits de dades recolzen la utilitat dels biomarcadors extrets de PPG com a trets viables per

a la biometria multi-biomètrica o autònoma. A més, l’enfocament permet una autenticació

cont́ınua degut a la baixa complexitat i nombre d’operacions, que la fan sostenible pels

escenaris del món real aix́ı com per a ésser implementat en dispositius de reduit tamany i

capacitat computacional. No obstant això, els experiments reportats també suggereixen que

més investigacions són necessàries per a poder desenvolupar un sistema definitiu.

iii



Resumen

Si bien los esfuerzos en la investigación se han focalizado tradicionalmente en las señales

electrocardiográficas (ECG) y caracteŕısticas extráıdas manualmente como rasgos biométri-

cos potenciales, pocas operaciones han explorado sistemas basados en la señal fotopletográfica

(PPG).

Este trabajo propone una arquitectura de extremo a extremo para ofrecer autenticación

biométrica mediante biosensores PPG a través de redes convolucionales. Ésta aproximación

se ha evaluado en dos bases de datos diferentes: Troika y PulseID, ésta última disponible

públicamente y que ha sido recogida por los autores para este propósito.

La verificación a través de modelos basados en redes convolucionales y el uso de señales

PPG en crudo parecen ser viables en los procedimientos de seguimiento actuales, dentro del

entorno de la salud y del deporte, mostrando aśı un gran potencial para la biometŕıa. El

trabajo testeado en la tarea de verifiación, en ensayos de un segundo, consiguen una AUC

de 78, 2 % y 83, 2 % en media, entre todos los sujetos objetivo, en los conjuntos de datos Pul-

seID y Troika respectivamente. Los resultados experimentales en otros conjuntos de datos

pequeños refuerzan la potencial utilidad de estos biomarcadores extráıdos de señales PPG

como rasgos viables para la caracterización biométrica. Además, este enfoque permite una

autenticación cont́ınua debido a su baja complejidad y número de operaciones, haciéndola

sostenible para escenarios del mundo real aśı como para poder ser implementado en dispo-

sitivos de reducido tamaño y capacidad computacional. Sin embargo, los experimentos aqúı

reportados sugieren que son necesarias más investigaciones para poder desarrollar un sistema

definitivo.
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Chapter 1

Introduction

1.1. Statement of purpose

With the evolution of the technology, the proliferation of large-scale computer net-

works, the increasing possibilities that these offers and the concern for identity theft

problems, the design of the authentication systems is becoming more and more tran-

scendent. And nowadays, with the facilities we have been used to, it is not enough to

design secure systems. The authentication process must be accurate, rapid, reliable,

cost-effectively, user-friendly, without invading privacy rights or being too invasive and

not supposing drastic changes to the existing infrastructures.

The traditional authentication systems make use of either a secret, personal key

(e.g., password, code) and/or a physical token (e.g., ID card, key) that are assumed to

be used only by the legitimate users. The problem with the traditional authentication

systems is that assumption. It is impossible to ensure hundred percent that the person

that is using this password, code, etc. is the genuine person.

However, the biometrics-based personal authentication systems use physiological

and/or behavioural traits extracted from the individuals (e.g., fingerprint, iris, voice,

face, palmprint, keystroke, mouse, . . . ) that supposes a way to be sure of the identity

of the person who is authenticating. As a result, they are more reliable since biometric

information cannot be lost, forgotten, or guessed easily. The authentication accuracy

is improved because the biometric traits are stronger than the classic eight-character

password in terms of security (Ogbanufe and Kim, 2018). They also improve the user

convenience since there is nothing to remember or carry. Nevertheless, the anatomical

traits introduced before are exposed to the world and with this, the possibility for a

theft to get them and create a copy (T. Fox-Brewster, 2017) (e.g., fake fingerprints,
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contact lenses, etc.). Thus, it is important to find new biometric traits which cannot

be forged.

Recently, many studies (see Section 2.1) have shown potential of the heart pulse as

a biometric trait. It has the advantages of the classic biometric traits and furthermore,

it is not exposed. That means that is very hard to get someone’s heart pulse.

The goal of this thesis is to develop an End-to-End system able to authenticate

persons by using Convolutional Neural Networks (CNN) from their Photoplethysmo-

graph (PPG) signal. This thesis supposes the first approach to an authentication

system formed by CNN that verifies the subject identity from it’s raw PPG.

This project has been carried out at Telefónica I+D (2018) during the 2017 Fall

semester as a contribution to the PulseID project.

1.2. Requirements and specifications

Since the requirements and the specifications are slightly different, here are pre-

sented separately. The main requirement that this project must satisfy is to be able

to authenticate person’s identity, and do it within this conditions:

� High-security system. Lowest False Positive Rate (FPR).

� Good user experience. It has to be usable, so the time required to authenticate

is limited.

� Minimum accuracy of 70%.

� Authentication algorithm has to be able to run in a Raspberry Pi model. Since

this application demands that the algorithm must be implemented in a wearable

device, it doesn’t have to need huge resources.

Furthermore, the project specifications are the following ones:

� New dataset of 30 subjects oriented for biometric authentication.

� Identity verification in 3 seconds.

� Usage of the Deep Learning.

2



1.3. Methods and procedures

This project aims to present a novel biometric authentication system and the release

of the PulseID dataset1.

The models have been trained and tested using the Troika public dataset (Zhang

et al., 2015) and the PulseID dataset developed. Troika dataset contains PPG and

ECG signals from several users in a noisy condition as running in a treadmill is. It

is worth to mention that this is a dataset created for heart rate tracking and not for

biometric authentication. Due to this, it was necessary to create a specific dataset

appropite for our research purposes (see Section 3.2).

This project has been developed using Python 3 as the programming language

of choice. In addition, we have used several libraries: NumPy, TensorFlow (Abadi

et al., 2015) and Keras (Chollet et al., 2015). We have used Keras as a deep learning

framework using TensorFlow as a back-end. Additionally, some Bash scripting has

been used in the testing stage. All developed models have been trained on GPU-

accelerated servers from Telefónica I+D.

The code developed can be found in a public repository (Cortès et al., 2018) and

can be used under Apache 2 license (The Apache Software Foundation, 2018).

1.4. Work Plan

The project has been planned into several packages, detailed in Section 1.4.1. The

planning in this section corresponds to the latest one, as the initial plan had to be

modified. The reasons for this change will be explained in section 1.5.

1.4.1. Work Packages

� WP1 - Documentation

� WP2 - Prototype

� WP3 - Dataset

� WP4 - Software

� WP5 - Reporting

1The PulseID dataset is available upon request from the authors of (Luque et al., 2018) and agreement of
EULA for research purposes
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These Work Packages (WP) are detailed in the Gantt diagram of section 1.4.2.

Each task in each WP is depicted in the diagram.

1.4.2. Gantt Diagram

Figure 1.1: Gantt diagram of the project

1.5. Incidents and Modifications

Since we were very realistic when we did the first planning of the project, there

haven’t been many notorious modifications in the time plan. Most of the little modi-

fications have been enlarging the time for each task, and overlapping it more with the

next one in order to have time to control and test if the previous task is correct and

there are not any bugs or unexpected problems. Another modification done is that we

needed more time to acquire all the data for the PulseID dataset.
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Chapter 2

State of the art

2.1. Biometric Pulse Identification

Most of the approaches in the literature for biometric pulse identification rely both

on involving Electrocardiography (ECG), based on the electrical activity of the heart,

and on a carefully design, segmentation and extraction of expert features from the

pulse signal (Israel et al., 2005; da Silva et al., 2013). A decoupled approach which

comprises mainly two stages is usually described (Gu et al., 2003; Übeyli et al., 2010;

Choudhary and Manikandan, 2016).

Firstly, biomarkers or features are extracted from the pulse ECG or Photoplethys-

mography (PPG) signals, also known as front-end processing. Then, template feature

vectors feed a second stage that performs model learning. Nonetheless, such features

are designed by hand and strongly depend on a high expertise both on the knowledge

of the addressed task and on acquisition nature of the pulse signal itself. For instance,

in (Gu et al., 2003) an experiment on a group of 17 subjects was performed, where the

authors studied four time domain characteristics, as time intervals, peaks and slopes

from the PPG signals reporting successful accuracy rates of 94% for human verification.

In the work of (Übeyli et al., 2010), feature extraction on the PPG, ECG, Electroen-

cephalography (EEG) signals was performed based on eigenvector methods. Spachos

et al. (2011) studied four feature parameters, peak number, time interval, upward

slope and downward slope. The study from (Kavsaoğlu et al., 2014) is intended for ex-

ploring the time domain features acquired from its first and second derivatives, where

a group of 40 features were extracted and ranked based on a k-nearest neighbor al-

gorithm. Choudhary and Manikandan (2016) perform a comparison of three methods

based and proposed the pulsatile beat-by-beat correlation analysis, the rejection or

acceptance of subject is performed based on the maximum similarity.

5



Finally, more recent works (Jindal et al., 2016) make use of deep belief networks

and Restricted Boltzman Machines as classifiers. With the advent of deep neural net-

work architectures (DNN), such as convolutional based neurons, end-to-end processing

pipelines are gaining popularity by building architectures capable of learning features

directly from raw data. For instance, in computer vision (Le, 2013) or speech process-

ing (Segura et al., 2016; Gong and Poellabauer, 2018) novel feature learning techniques

are applied directly on the raw representations of images and audio, avoiding the signal

parameterization or any other prior preprocessing.

2.2. Deep Learning

Deep learning (DL) has become a household name since its popularity and appear-

ances in the mass-media have risen in the last years. But the truth is that DL is not

that recent. The reason that it only appears to be new is that it was rather unpopular

for several years and it has gone through many different names. It was born under

the name cybernetics in the 1940s changing to connectionism in the 1980s until the

current deep learning.

The first thing to clarify about deep learning is its relation with other popular

names like artificial intelligence (AI) and machine learning (ML). As it can be seen

in Figure 2.1, DL is a kind of representation learning (RL) which is in turn a kind of

machine learning (ML), used from many but not all approaches to artificial intelligence

(AI). The earliest algorithms of deep learning aimed to be computational models of

biological learning (how learning happen or could happen in the brain) motivated by

two ideas:

� Proof by example behaviour is possible and intelligent.

� Intelligence can be built by doing reverse engineering the computational princi-

ples behind the brain and replicating its functionality.

On the other hand, the modern perception goes beyond this approach and appeals

to a more general principle of learning multiple levels of composition, learning and

adapting more complex structures and patterns.
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Figure 2.1: Venn diagram showing the relation between DL, RL, ML and AI. Extracted from (Goodfellow
et al., 2016)

The classic machine learning techniques depended on the processing skills of the

researcher for a specific type of data. In order to build a reliable and useful algorithm,

the researcher had to be an expert in the field he was exploring. In other words, the

analyst must had to be able to design a feature extractor that serialized the raw data,

such as the samples in audio or pixels in images, into another structure from which the

algorithm could detect, extract and classify patterns. However, deep learning methods

are able to learn multiple complex representations within different levels and depths

by composing non-linear models. Each non-linear model transforms the previous one,

combined or not with the raw input data, into a more abstract representation. Thus,

the complexity of the functions learned is bigger than the complexity of the functions

learnt with linear models and grows as new transforms and combinations between non-

linear models appear. Therefore, there are no hand-crafted features, they are learnt

directly from the data, which represents the biggest breakthrough of deep learning.

So, since it is not necessary anymore to be an expert in the field you are analysing/studying,

more people investigated more fields contributing to the evolution of the state-of-the-

art in many fields and nowadays it is difficult to find a field not explored by DL.

2.2.1. Neural Networks

Neural Networks (NNs) are the basic architecture and form every deep learning

algorithm. They are defined by neurons, a basic unit that performs a combination

7



of linear and non-linear operations, see Figure 2.2 (a). Understanding what a neuron

is and familiarizing how it works is important in order to comprehend the Neural

Networks.

An input vector x = {x0, x1, x2, . . . , xN} is injected into the neuron and it computes

an output. Each input has an associated weight w according to each input importance.

The output results from summing up all this weighted inputs wTx with a bias b term,

which provides every node with a trainable constant value.

y = wTx + b (2.1)

The result of this linear operation is passed through a function f (see Equation 2.2)

called activation function. It maps the resulting values in between 0 to 1 or −1 to 1,

etc. depending upon the function. It is usually exemplified with the sigmoid function,

for two-class logistic regression. Since probability of anything exists only between the

range of [0, 1], sigmoid is the right choice. However, it is not the only non linear

function that can be applied and other functions can be valid in other regressions.

o = f(y) =
1

1 + e−θy
(2.2)

So, a NN is created by connecting and stacking many of these simple neurons so

that the output of a neuron can be the input of another. We call layer to a collection of

nodes (neurons) operating together at a specific depth within a neural network. Every

NN, even the simplest, has three types of layers. The first and the last layer are called

input layer and output layer, logically. The layers between them are called hidden

layers, in which each layer can apply any function you want to the previous layer

(usually a linear transformation followed by a squashing nonlinearity). Hence, the

hidden layers’ job is to transform the inputs into something that the output layer can

use. This hierarchy increases the complexity and abstraction at each level, and it is the

key that makes deep learning networks capable of handling very large data sets. Figure

2.2 shows a schematic representation of one artificial neuron and a representation of a

basic NN.

NNs learn from examples, like people. This makes very understandable the learning

process of a neural network. Let’s suppose you want to build a system capable of

verifying one person’s identity using the fingerprint. Firstly you need to collect a large

dataset of fingerprints that includes genuine fingerprints (from the subject we want to

authenticate) and impostor fingerprints (from as many different people as we can find).

The first group compose the target data and the second group the impostor or world

8



(a) Artificial neuron model.
Reprinted from (Chrislb, 2005)

(b) Basic neural network architecture.
Reprinted from (Glosser.ca, 2013)

Figure 2.2: Basic artificial neuron (a) and neural network (b) architectures

data. During training, the machine sees pairs of fingerprints and labels, which indicate

whether that fingerprint is from target data or impostor data. The system tries to

find out what have the genuine fingerprints in common and produces one output as

a result of the operations carried out by all the neurons: true ’1’ (if the data comes

from the genuine user) or false ’0’ (if the data comes from an impostor user). This

scores can be interpreted as the probabilities of the input fingerprint to be genuine or

not. Then, the activation function, sigmoid in this case, is applied in order to squash

this scores to be between 0 and 1 and divide each output such that the total sum of

the outputs is equal to 1. Then, the system checks these probability scores for each

class with the input label and modifies its internal adjustable parameters (the weights

of each neuron) to maximize the accuracy in the class predictions. After training, the

system performance is measured on a different, unseen data set called test. With this,

we are testing the machine’s ability to produce good results on new inputs that have

not been used during the training process.

Neural networks are typically feedforward networks in which data flows from the

input layer to the output layer without looping back. But for systems with sequential

entries, such as audio or images, there are architectures where the inputs cross the

network in different ways, to take advantage of the previous entries, such as convo-

lutional neural networks (CNNs), which will be explained in the following section, or

recurrent neural networks (RNNs).
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2.2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) (LeCun et al., 1989) are a specialized kind

of NN for processing data and specially useful when it comes to identify patterns or

objects.

A CNN is made up of several layers that process and transform an input to produce

an output. They are widely used in computer vision, mainly in face recognition, scene

labelling, image classification, action recognition and document analysis. But also

the fields of speech recognition and text classification for natural language processing.

Although we use 1–D CNN in this thesis, the following explanation uses 2–D CNN

due to its better representation.

In order to understand how CNNs work, it is important to be familiarised with this

three concepts: local receptive fields, shared weights and biases, and activation and

pooling.

In a typical neural network, each neuron in the input layer is connected to a neuron

in the hidden layer. However, in a CNN, only a small region of input layer neurons

connect to neurons in the hidden layer. These regions are referred to as local receptive

fields (see Figure 2.3). The local receptive field is translated across an image to create

a feature map from the input layer to the hidden layer neurons. The way to do it

efficiently is by using the convolution.

Figure 2.3: CNN shared weights and biases. Note that not all input nodes are connected with all nodes in
the hidden layer. Extracted from (S. Patel, J. Pingel, 2017)

CNNs have neurons with weights and biases. The model learns these values during

the training process, and it continually updates them with each new training example.

However, in the case of CNNs, the weight and bias values are shared between the

kernels that form the layers. This means that all the hidden neurons are detecting
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the same feature (p.e. an edge) in different regions of the image. In 1–D CNNs, the

hidden neurons would detect peaks, noise or other patterns in different chunks of the

signal. This makes the network more robust and it will be able to identify the feature

whatever it is in the image.

Figure 2.4: CNN ReLU + pooling operations. CNNs reduce dimentionality and with this, the number of
features to learn. Extracted from (S. Patel, J. Pingel, 2017)

The activation step applies a transformation to the output of each neuron by using

activation functions. Rectified Linear Unit, or ReLU, is an example of a commonly

used activation function. It takes the output and if it is positive, the function remains

it the same value but, if the output is negative, the function maps it to zero. The

output of the activation step can be transformed by applying a pooling step. Pooling

reduces the dimension of the feature map by condensing the output of small regions

of neurons into a single output. This helps simplify the following layers and reduces

the number of parameters that the model needs to learn.

Figure 2.5: CNN classic architecture for a content-based image retrieval. Extracted from (S. Patel, J.
Pingel, 2017)

The Figure 2.5 shows a basic convolutional neural network configuration for an

object detection system. The hidden layers contain different filters of different lengths
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that aim to find patterns at various depths. Then, a flatten vector displays all features

in one single vector and all features in it can be fully-connected with a dense layer.

This layer together with the softmax (in multi-class logistic regression) or the sigmoid

(in two-class logistic regresison) perform the classification.

2.2.3. Optimization

Optimization refers to the task of either minimising or maximising some function

f(w), called objective function, cost function or loss function, by altering w. We can

reduce f(w) by moving w in small steps in the opposite direction of the derivative

f ′(w). This method (Cauchy, 1847) — which computes the cost and the gradient for

all the training data — is called gradient descent and the Stochastic Gradient Descent

(SGD) based on it — which computes the gradient and the cost from different groups

of few samples called batches — is widely used in deep learning since it often performs

very successfully. The use of SGD in the neural network settings is motivated by the

high cost of running back propagation over the full training set. SGD can overcome

this cost and still lead to fast convergence. So, in order to minimise f , we would like

to find the direction in which f decreases the fastest. To do so, we use the directional

derivative in the steepest descent method.

w′ = w − α∇wf(w) (2.3)

where α is the learning rate, a positive scalar that indicates the size of the step. It

is important to set up a good learning rate because if it is too small, it will take too

long to reach the convergence, but if it is too high, maybe the convergence is never

achieved. −∇w represents the negative gradient of the function we want to optimize

and indicates the direction in which x has to move. Like every project that has to

start, it is important to know about in which point is the state-of-the-art in order

to decide the perspective from which to address the hypothesis. In this chapter we

have reviewed the state of the art in biometric pulse identification and deep learning.

Passing through its classic architectures and recent applications. The components

exposed here are essential to understand our end-to-end solution since they are the

foundation above this project is based on. Our solution is explained in Chapter 4 but

first, in next chapter the datasets that have been used are depicted.
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Chapter 3

Datasets

Due to the unprecedented character of this work, the techniques that would be used

must be avant-gardist and never used before together with PPG. So in order to fulfil

these expectations, deep learning was a strong point and must be in the project, which

conditioned all the methodology.

As it is mentioned in Chapter 2, deep learing requires a lot of data to be able to

build models and it will be easier for the algorithm to do it from a specific-oriented

dataset. We regarded that there is no publicly available dataset created for the specific

purpose of biometric identification. The only dataset that we could use is the Troika

dataset, detailed in Section 3.2.2, that is oriented for a Heart Rate tracking in noisy

conditions, but all acquisitions are from different subjects. Nevertheless, this supposes

that the signal is very noisy and supposes an extra problem for the algorithm to

identify subject-unique patterns in the data. Thus, a specific dataset called PulseID

(Section 3.2.1) had to be created in order to have reliable data. So the first thing

necessary was to develop a prototype.

3.1. Prototype

The prototype must fulfil these specifications:

� As similar to a wearable bracelet as possible. Accordingly, the PPG sensor must

be of the same type than the ones used in, p.e. activity tracker bands.

� Open-sourced. In order to make it the most adaptable and flexible.

� Minimum cost. That is one of the reasons for using PPG sensors intead of ECG

sensors and the prototype must continue this purpose.
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Following the mentioned specifications, the most suitable way to build a prototype

is by using a Raspberry Pi (Upton, 2018) as a computational module due to its reduced

dimmensions, the free license and its high compatibility to work with other modules.

Besides the Raspberry Pi, the pulsesensor (Murphy and Gitman, 2018) was mounted

for obtaining the PPG signals and finally, we decided to use the 10 bits Analog to

Digital Converter (ADC) MCP3308 (Microchip, 2008) to transform voltage variations

into digital samples. This setup is ridiculously cheap, as it can be seen in Table 6.3.

Figure 3.1: Prototype setup. From left to right: Raspberry Pi 3, ADC MCP3008, Pulsesensor. Note that
a breadboard and jumper wires are used as a connection platform

3.2. Datasets

Two different datasets are employed in this work to conduct person verification

experiments through PPG signals. Firstly, a new corpus was collected aiming to fulfil

the need of, to the best of authors’ knowledge, a public domain dataset specifically

created for PPG biometric identification. For such a purpose, a new PPG dataset has

been collected, named as PulseID1, in a quiet office environment. Secondly, aiming to

verify the robustness of our approach in more challenging conditions, the Troika (Zhang

et al., 2015) dataset is used. In contrast, Troika recordings are acquired for subjects

on a treadmill, walking and running at different speeds.

Table 3.1: Summary stats for both databases, Troika and PulseID. The ”duration” column stands for the
average duration in seconds of the total acquired samples per subject

Dataset Subjects Gender (m/f) Duration

PulseID 43 31/12 240s.
Troika 20 20/— 317s.

1The PulseID dataset is available upon request from the authors and agreement of EULA for research
purposes.
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Figure 3.2: Five seconds PPG excerpts from PulseID (a) and Troika (b) databases. (c) Time sampling
deviation in µ seconds from the same PPG signal in (a). In (d), a five seconds ECG excerpt from Troika

3.2.1. PulseID

For the PulseID data acquisition, the pulse sensor described in (Murphy and Git-

man, 2018) is employed. It is essentially a photoplethysmograph, a well known medical

device used for non-invasive heart rate monitoring, consisting of a green LED and a

photo-detector. The heart pulse signal that comes out of the pulse sensor is an analog

fluctuation in voltage, with associated waveform known as photoplethysmogram or

PPG, see figures 3.2 (a) and (b). The pulse sensor responds to relative changes in

illuminance. For a sensor placed in the subject’s skin, the reflected light back to the

photo-detector changes during each pulse due to blood flowing what is perceived as

variations in the voltage signal.

The process of data acquisition involved 43 volunteers (31 male and 12 female)

with ages ranging from 22 to 55. Subjects were seated down in a calmed, relaxed
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and quiet office environment while the recordings. The PPG sensor was attached to

the fingertip of the right index finger by a belt. PPG acquisitions, lasting roughly

one minute, were recorded from each subject and repeated 5 times along the same

session. PPG analog signal was sampled at 200 Hz rate. For doing so, a python

code was developed aiming to perform sampling synchronization with a voice recorder

(data used for another projects) while reading from the ADC and ensuring a tolerant

averaged sampling rate deviation of µ = 13.32 µs and σ = 202.58 µs per subject, see

plot (c) in the Figure 3.2 as an example. For comparison purposes, an ECG waveform

from Troika is depicted in Fig. 3.2 (d). It is worth noting that no pre-processing is

performed to the raw PPG acquired signals. It can be seen in the higher noise levels

present in the acquired PPGs, where various artifacts are expected to be found. For

instance caused by analog circuit noises or medium illuminance changes, respiration

or base deviation arising from movement.

3.2.2. TROIKA

In order to verify the robustness of our approach, the Troika dataset (Zhang et al.,

2015) is used. It consists of an ECG signal, two-channel PPG signals and three-axis

acceleration signals from 20 male subjects with ages ranging from 18 to 35. For each

subject, the PPG signals were recorded from wrist by two pulse oximeters with green

LEDs of wavelength 609 nm. To make the data recordings similar to practical world

readings, the pulse oximeter and the accelerometer were embedded in a wristband and

all signals were sampled at 125 Hz. During data recording, subjects walked and ran

on a treadmill at different speeds for an average time of 4 minutes2 per subject.

The are 2 different sequences detailed in Table 3.2: TYPE 01 sequence consists in:

2 km/h for 0.5 minutes, 8 km/h for 1 minute, 15 km/h for 1 minute, 8 km/h for 1

minute, 15 km/h for 1 minute, and 2 km/h for 0.5 minutes. And the TYPE 02, which

consists in resting for 0.5 minutes, 6 km/h for 1 minute, 12 km/h for 1 minute, 6 km/h

for 1 minute, 12 km/h for 1 minute, and resting again for 0.5 minutes.

Table 3.2: Troika acquisitions structure

Sequence 30” 1’ 1’ 1’ 1’ 30”

TYPE 01 2 km/h 8 km/h 15 km/h 8 km/h 15 km/h 2 km/h
TYPE 02 0 km/h 6 km/h 12 km/h 6 km/h 12 km/h 0 km/h

In DL data is very relevant so it is important to ensure we have good data to develop

a system from. So, once we have all the necessary data, we can start developing the

system.

2The reality is that not all samples have the same duration so, is prefered to talk in terms of average time
per user.
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Chapter 4

End-to-end biomarker learning

This chapter embraces all processes, tasks, thoughts and discussions that have

brought this project to success. Starting in the documentation process and ending

in the demonstration prototype, passing through the data collection, the development

code and validation metrics.

4.1. Experiment Design

Once all data has been collected it is time to design the experiments in order to

find and demonstrate the best architecture and the best algorithm that brings with

the best results.

The end-to-end authentication system is validated and tested averaging the perfor-

mance of 31 subjects for training and 12 impostor subjects for the final test. It sums

up a total of 43 subjects for the PulseID database. In the case of Troika, 15 training

subjects and 5 impostors for the final test accounting for a total of 20 subjects were

used. So the total number of enrolled subjects is 31 and 15, respectively. For each

user, the system is trained with the training data (31 subjects in case of PulseID) in

order to find the best architecture of the system. The best system is the one that have

a better performance in average for all the training subjects. After the best system

is chosen, the performance of the system is computed with the data reserved for the

final test.

Then, it is necessary to manage and distribute the data available. Since we want a

fair results — that not only are not the consequence of a overfitted system, but that

represents a real scenario — we reserve some data from the target subject and all data

from a few impostors data. That will simulate a real scenario in which a new impostor
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not seen by the system tries to authenticate as the genuine user.

Another objective to take into consideration is the fact that the final product is

a biometric authentication system, so it is fundamental that the system is able to

verify one person’s identity within a reasonable time. That means that if the system

specification (see Section 1.2) is ability to authenticate in 3 seconds, the system has

to be trained with chunks of 3 seconds. In an attempt to reach the systems limit, it is

trained with 1 second signal blocks. Note that in a 60 bpm (beats per minute) Heart

Rate there is one beat each second, there is no data-partition preprocess to ensure that

a full peak is taken because every chunk contains a different signal, unless the subject

Heart Rate is stable at 60 bmp during all the acquisition, which is highly improvable.

As it can be seen in Table 4.1, data is distributed in 4 groups: Train, Validation,

Develop and Test. The data from the first 3 groups (training data) — that is, Train,

Validation and Develop — is from the same subjects. This data is used to define

and fit the neural network (NN) detailed in Section 4.1.1. The Train data is from

where the PPG features are extracted and all distinctive characteristics are discov-

ered. A combination of pairs (target, impostor) from the Train and Validation sets

are used for network training and validation, performing parameter updating based

on binary cross-entropy loss computed on the Validation set. The unusual Develop

group, corresponds to the amount of data used by the authors to test possible network

architectures as well as different parameters in order to obtain the best system setup.

It includes the threshold selection. Finally, the Test set composed of unseen impostor

subjects is employed for the fair assessment of the end-to-end proposed approach. This

partitioning model prevents biasing and is an approach to a real scenario, in which it

is impossible to have all impostors’ PPG signals.

Table 4.1: Partition data for the different sets of PulseID dataset. Trials are expressed in seconds of signal
and averaged per subject. Since the trial size of the experiments showed is one second, the number of Target
and Impostor data corresponds to number of trials or seconds

Dataset Label Train Validation Develop Test

PulseID
Target 135 45 30 30
Impostor 5, 220 1, 740 1, 890 2, 880

#Subjects 31 12

Troika
Target 144 80 48 48
Impostor 2, 014 1, 119 1, 343 1, 545

#Subjects 15 5
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4.1.1. Algorithm & Architecture

As it is mentioned before, the system algorithm and the models training as well as

the NN fine-tuning, is performed with the absolute transparency and strictness with

the intention to reproduce a real scenario.

The first thing is to split the data as the Table 4.1 shows. This basic partition is done

without any peak tracking preprocess and its saved into a Pandas Dataframe (Jones

et al., 2001–). Once the initial data partition is done, it takes place what we called ran-

dom shuffles creation. The idea behind random shuffles is to create balanced batches

— in a balanced batch, there are the same amount of target samples than impos-

tor samples — to use as Train batches in the NN. The intention is to have different

batches formed by the same target data but different impostors data. Hence, the Ran-

dom Shuffles are constituted by all Train data and then, random data excerpt from

the pool which contains all the impostors data labelled as Train. Now this random

shuffled batch is ready to be the input of the convolutional neural network (CNN)

detailed in Figure 4.1.

Figure 4.1: Proposed convolutional neural network architecture for end-to-end user verification using raw
PPG signals. First, the raw signal is filtered by three parallel 1-D convolutional layers composed of N filters
of lengths L1,2,3 followed by a global max-pooling operation. The resulting 3N features are then concatenated
into the feature vector f , which is used to perform the classification using a dense layer of dimensions 3NxM
and the final layer of 1 output. ReLU activation function is used across all layers but the output layer, where
a sigmoid activation is used to predict the verification score.

Let’s assume the PPG signal input to the CNN is a vector, x, whose elements are

raw PPG samples x = [xk, xk+1 . . . xk+K ] where xk is the PPG sample shifted by a

given stride. In this work we used a value of 1 for time shifting and the xk sample

with a fixed size from 1 second at 200 samples per second.

The activations at the first convolutional layer comprise N = 6 filters and we

denoted them as hn = [h1 h2 · · ·hN ]. Therefore, the convolutional layer operation

can be seen as a convolutional operation of each filter on the input raw PPG,
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hn = θ
(
wnx

T + bn
)
, (4.1)

where θ(x) is the activation function corresponding to Rectified Linear Units (ReLU)

(Section. 2.2.2), wn is the weighting vector and bn the bias term for filter hn. Following

the convolutional filters, max-pooling layers perform local temporal max operations

over the input sequence, selecting the maximum in a window of d size. More formally,

the transformation at starting sample vector n, cnk , corresponding to the filter output

sequence of the first convolutional layer and jth filter is:

max cns k − (d−1)
2
≤ s ≤ k + (d−1)

2
(4.2)

The pooling operation compacts even more the original signal by computing some

stats, commonly such as maximum, mean and variance, from the CNN output. Note

that the CNN-maxpooling feature learning architecture applies 1-dimensional con-

volutions and pooling operations performed along the time axis as previous works

in (Segura et al., 2016). For this work maximum pooling is used by selection of the

maximum values from the CNN filter outputs. Next, a flattering operation is per-

formed, see Figure 4.1, that aims at stacking together all the CNNs outputs, creating

a feature vector ready to be presented to the network classifier.

In overall, the end-to-end architecture comprises a total of 4 layers. In the input,

a convolutional layer with different amounts of filters and lengths (see Figure 4.1) fol-

lowed by a max pooling layer. At the back-end, a fully connected neural net composed

of 2 layers with 256 units. ReLu units are employed in all layers, including CNNs,

except for the output layer of the dense network, where we used a sigmoidal unit. The

dense layer is employed as a back-end for the modeling of the salient features computed

by previous convolutional steps and a Sigmoid activaction function (Eq. 4.3) used in

the output layer. It is worth to note that no dropout is used during network training.

S(x) =
1

1 + e−θx
(4.3)

The framework (Cortès et al., 2018) has been developed in Keras (Chollet et al.,

2015) and using Tensorflow (Abadi et al., 2015) as back-end. We do not perform an

exhaustive search of network parameters and we restrict experiments by using few

learned biomarkers. For instance, we compute 15 features before the dense layer for

the reported 1 second experiments, see vector f in Figure 4.1. The network is trained

using Stochastic Gradient Descent (SGD) attending to binary cross-entropy as a loss
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function and accuracy as a metric, with mini batches of size 270 composed of 135 target

trials and 135 impostor ones. Given a Train set of PPG excerpts from a subject, at each

training mini batch, the impostor samples are randomly picked up from the available

pool of impostor chunks so in each training iteration, new impostor data is seen as an

intention to maximise the variability, see table 4.1. An early stopping criteria is also

defined in order to speed up the training, yielding in most of the cases to few tens of

training mini batches before reaching patience steps.

4.2. Metrics

In binary classification there are only 2 types of real values: Positive values ’1’ and

negative values ’0’; therefore there are two possible prediction outcomes: 1 and 0. The

Table 4.2 is a graphic representation of a generic confusion matrix.

Table 4.2: Confusion Matrix Table
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P’ N’

The confusion matrix is very useful because its easy to see which are the main errors

in the predictions. Then, the system can be reconfigured and with this, increasing the

accuracy and the predictions and also, the performance in the Precision-Recall curve,

explained below.
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Figure 4.2: Precision and Recall representation. Adapted from (Walber, 2014)

Precision and recall are measures of relevance and give us an accurate evaluation of

the performance of a system. The precision is the answer to the question: From the

elements predicted as positive, how many of them are really positive? And the recall

answers the question: From all the elements that are really positive, how many of

them are predicted as positive? We can express it with the following equations using

the notation of Table 4.2:

Precision =
TP

P ′
=

TP

TP + FP
Recall =

TP

P
=

TP

TP + FN
(4.4)

One of the most used metrics when it comes to evaluate systems is the ROC curve

(Hanley and McNeil, 1982). It is very similar to the precision-recall (PR) curve and it

represents the same since both contain the same points. The key difference between the

two curves is that ROC curves will be the same no matter what the baseline probability

is, but PR curves may be more useful in practice for needle-in-haystack type problems

or problems where the positive class is more interesting than the negative class. So, in

order to answer the question ”How well can this classifier be expected to perform in

general, at a variety of different baseline probabilities?” the best option is to use the

ROC curve since it is a better metric for evaluating a performance in general (Davis

and Goadrich, 2006).

So, in this thesis we choose the best configuration of the system regarding the ROC
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plots of the experiments (see Chapter 5) and the best configuration corresponds to the

curve with better Area Under the Curve (AUC).

Once the best configuration is chosen, it is necessary to establish the operation point

that will determine the final performance by setting the False Match Rate (FMR) and

the False Non-Match Rate (FNMR) metrics. The ones that the standard (International

Organization for Standardization, 2006) in Biometrics establishes for the evaluation

of binary classification systems.

So, the FMR and FNMR represent the errors in the predictions. The False Match

Rate is related to security: the minimum FMR implies maximum security because

that means that there is no impostor predicted as the genuine subject. Otherwise,

the False Non-Match Rate is an indicator of usability: the minimum FNMR means

maximum usability because every time a genuine subject is authenticated, the system

will predict him as the genuine subject.

FMR =
FP

P ′ +N ′
FNMR =

FN

P ′ +N ′
(4.5)

If we relate this equation with the confusion matrix in Table 4.2 we can come up

to the conclusion that if maximum accuracy is desired, then its necessary to maximise

the diagonal of True positives (TP) and True Negatives (TN). The difficulty comes in

the decision of the threshold or operation point because, as it can be seen in Figure

5.3 there is a compromise between FMR and FNMR. If you enhance one, the other

will be deteriorated.

4.3. Demonstration / Final configuration

The only necessary thing to do to test the system is to load the model of the user

that will be the target user and define its fine-tuned threshold. With this, the system

is ready to authenticate.

One way to increase the performance of the system and its robustness, losing a

bit of a usability, is to combine X verification attempts of 1 second into one bigger

verification of X seconds. With this the system would be more robust in front of False

Matches, but it would also would reduce the probability of True Matches, so again,

there is a compromise between usability and security. We propose evaluating the

verification after 4 individual tries of 1 second. And considering genuine a candidate

if the result in 3 out of the 4 experiments is favourable, or otherwise, treating the

candidate as an impostor if in 2 or more experiments the conclusion is adverse.
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Chapter 5

Results

This Chapter presents the results of the evaluation of the system proposed in Chap-

ter 4. First, the evaluation of the configuration performances is shown. Then, once

the best configuration is established, the operation point is discussed.

The Figure 5.1 shows the ROC curves, per Validation and Develop sets in PulseID

and averaged per subjects, solid line, and its standard deviation, shadowed area. For

the sake of comparison, the same curves are depicted in Figure 5.2 (b) per each dataset

and partition.
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Figure 5.1: Average ROCs using N = 6 filters for each filter sizes of L1,2,3 = 50, 30, 20. The painted area
corresponds to the area within the standard deviation of the AUC. Dashed lines stands for each subject AUC
curves

Although an exhaustive search of the best network architectures or a fully tuning of

parameters is not performed, we experiment with different window and filter sizes. For
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the reported figures, we select 1, 2, 3 second excerpts extracted from original raw PPG,

homogeneously segmented and with no overlap for testing trials. The experiments are

performed in PulseID data and best values, in terms of number of filters and size, are

directly applied in Troika.

In overall, the results support the suitability of the end-to-end architecture in both

datasets, although as observed in ROC curves Figure 5.1, some subject’s AUC present

a not satisfactory behaviour suggesting more experimentation to understand possibles

sources of such variability.
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Figure 5.2: Average ROC performance comparison. The curves have been computed as in Figure 5.1,
averaged for all the subjects

Homogeneous segmentation of the input PPG likely degrades system performance

due to few samples are taken into account for training, see Table 4.1. However, it could

be easily bypassed, e.g., by a randomly picking of excerpts thus increasing samples and

segmentation variability in train and test.

The Figure 5.2 (a) and Table 5.1 report on the system performance for different trial

sizes, ranging from 1 to 3 seconds. We can observe the generalization of validation

results both in Develop and Test sets, showing high AUC values even for 1 second

trial condition, of 0.78 and 0.83 per each dataset. Note the higher AUC degradation

in Troika compared with the PPG data captured in the office condition and the AUC

trend observed by increasing the ct time (chunk time), not observed in Troika likely due

to motion artifacts. Obviously, the results in PulseID dataset, shows that is better to

increase the ammount of signal used to authenticate but this also reduce the usability

of the system and the scope of this thesis is to demonstrate that PPG signal can be

used to authenticate people’s identity.
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Table 5.1: Average AUCs for all subjects within the same experiment: N = 6 filters for each filter sizes of
L1,2,3 = 50, 30, 20. the ±variation corresponds to the AUC’s standard deviation

Dataset Trial size Validation Develop Test

PulseID
1s. 0.80±0.16 0.77±0.19 0.78±0.20
2s. 0.81±0.16 0.76±0.22 0.84±0.19
3s. 0.84±0.15 0.78±0.20 0.86±0.17

Troika
1s. 0.87±0.09 0.70±0.16 0.83±0.12
2s. 0.73±0.30 0.66±0.21 0.74±0.24
3s. 0.85±0.14 0.71±0.16 0.78±0.18

Another parameter to determine in authentication systems is the operating point

or decision threshold. It controls the trade-off between security, minimum FMR, and

usability, minimum FNMR. Related to the algorithm complexity for trial decision,

taking into account Li size of filters, pooling and dense layers operations, and 1s.

trial lead to a number of Multiplier-Accumulator (MAC) operations (Sze et al., 2017)

around 26K, that translates into roughly 20ms for a Raspberry in order to perform

person authentication every second.
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Figure 5.3: False Match Rate (FMR) and False Non-Match Rate (FNMR) ratio plots as function of threshold
Θ. The threshold line Θ, see Fig. 4.1, corresponds to the operating point where the FMR is below 0.1 and
the FNMR is minimum

Regarding the obtained results, our system has a good performance, reaching an

AUC averaged among 31 subjects, of 86% in PulseID dataset and 83% in Troika

dataset. Authenticating in 3 and 1 seconds, respectively. For a specific user, choosing

the optimal operation point, we have a FMR below 0.1 and a FNMR around 0.6. These

results reinforce the hypothesis that biometric authentication through PPG is possible

and demonstrates that our system can be used as a security application although it is

a feasibility study.
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Chapter 6

Budget

This chapter details the costs involved in the development of the project. There

are two main contributions to the cost of the project: labor, and computing and

development equipment.

This project has been developed using the resources provided by Telefónica I+D (Telefónica

I+D, 2018). Thus, the main costs of this projects comes from the salary of the re-

searches, the time spent in it and the server time used for the training of the system.

It is considered that the total duration of the project is 22 weeks, as depicted in the

Gantt diagram in Figure 1.1.

Labor Costs

Table 6.1 shows the contribution of labor to the cost of the project. We consider

that my position is that of a undergraduate engineer, while the supervisor who was

helping and advising me had a wage/hour of a senior engineer (for offering external

services).

Table 6.1: Labor cost

Dedication Wage / Hour Total Hours Total Cost

Undergraduate Engineer 30 h/week 8 EUR 660 h 5, 280 EUR
Senior Engineer 2 h/week 100 EUR 44 h 4, 400 EUR

TOTAL 9,680 EUR
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Equipment

Table 6.2 shows cost of the prototype. Prices were consulted at the official providers

-https://www.raspberry.org/, -https://learn.adafruit.com/ and -https://pulsesensor.com/.

Table 6.2: Prototype cost

Concept Cost

Raspberry Pi 3 29.47 EUR
MCP 3008 3.22 EUR
Pulsesensor 21.46 EUR

TOTAL 54.15 EUR

Table 6.3 shows the contribution of computing and development equipment to

the cost of the project. Prices were consulted at -https://www.avadirect.com/,

-https://backmarket.es/ and -https://nvidia.com/. We chose a processing server

as similar as possible to the one used throughout the project: 48-core Intel Xeon, 128

GB RAM, 4TB HDD storage.

All prices have been consulted in May, 2018. I find necessary to mention that the

price of the graphic cards has been afected directly by the cryptocurrency phenomena.

Another important point to mention is that it has been considered that the salvage

value of the equipment is 0 EUR.

Table 6.3: Equipment cost

Concept
Acquisition

Cost
Scrap
Value

Useful
Life

Yearly
Deprecation

Weekly
Cost

Total Cost
(22 weeks)

Processing server 13, 000 EUR 5, 000 EUR 5 years 1, 600 EUR 30.7 EUR 676.93 EUR
Nvidia GTX 1080 Ti 769 EUR 230 EUR 5 years 107.8 EUR 2.07 EUR 45.6 EUR
Dell Latitude E5530 269 EUR 80.7 EUR 3 years 62.77 EUR 1.2 EUR 26.5 EUR

TOTAL 14, 038 EUR 5, 310.7 EUR 4.3 years 1, 770.57 EUR 33.97 EUR 749.03 EUR

Total

The total cost of the project amounts to 10,483.18 EUR.
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Chapter 7

Conclusions

In this project an end-to-end architecture based on CNN is proposed to offer bio-

metric authentication using learned biomarker directly from PPG raw signals and

we reported evaluation results of the performance of our approach in two different

datasets, Troika and PulseID.

Our end-to-end authentication approach and automatic learned biomarkers show a

remarkable potential as authentication biometric method. Trial size dependent exper-

iments, reported AUCs ranging [78.2%, 86.4%] and [73.8%, 83.2%], averaged among

target subjects on PulseID and Troika datasets, respectively. Furthermore, the pro-

posed system results in a low complexity that permits for continuous authentication

in real-world scenarios.

The work reported accomplishes the requirements and specifications of Section 1.2

what suppose an absolute success. The system proposed is robust and usable (ability

to verify in 1 second), with an accuracy over the 70% and with a low computational

complexity that it can be embedded in a Raspberry, and all of this using deep learning

techniques. And last but not least, a new dataset with 43 subjects has been recorded

and its available to everyone for research purposes.

The Paper End-to-end Photoplethysmography (PPG) Based Biometric Authentica-

tion by Using Convolutional Neural Networks (Luque et al., 2018) is one of the results

of this Thesis and it has been accepted in the 26th European Signal Processing Con-

ference (EUSIPCO) that will be held in Rome, September 2018 1. It includes the

dataset, the architecture and the results already exposed here.

Despite the good results, this thesis represents a feasibility study and future work

is needed in case we want a reliable system that fulfils the strictest requirements of

1The Paper is attached to this Thesis in Appendix A
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security systems.

In order to increase the usability of the system, one alternative to our solution

could be substituting the convolutional neural network by a siamese network. With

this, there would be a unique model instead of a personal model for each subject that

has to be trained to be able to verify its subject identity. This unique model would be

able to determine the similarity or not of two signals, in other words, if the first signal

and the second belong to the same subject. A deep, conscious, sensible search of the

best parameters and architecture would be also needed.

Another thing that is important to mention is that this thesis is based in some results

of the experiments performed using two limited datasets. Enlarging the datasets is

basic to get more consistent results.

We have published the code from this project (Cortès et al., 2018), as a con-

tribution to the scientific community under the Apache License Version 2.0 (The

Apache Software Foundation, 2018). The code and its requirements can be found

at -https://bitbucket.org/guillemcortes/pulseid-eusipco. As it is mentioned

in Section 3.2, The PulseID dataset is available upon request from the authors and

agreement of EULA for research purposes.
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A. R. Kavsaoğlu, K. Polat, and M. R. Bozkurt. A novel feature ranking algorithm

for biometric recognition with ppg signals. Computers in Biology and Medicine, 49

(Supplement C):1 – 14, 2014. ISSN 0010-4825.

Q. V. Le. Building high-level features using large scale unsupervised learning. In

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Con-

ference on, pages 8595–8598, May 2013.

Yann LeCun et al. Generalization and network design strategies. Connectionism in

perspective, pages 143–155, 1989.

Jordi Luque, Guillem Cortès, Carlos Segura, Joan Fabregat, Javier Esteban, and

Alexandre Maravilla. End-to-end photoplethysmography (PPG) based biometric

authentication by using convolutional neural networks. In 2018 26th European Sig-

nal Processing Conference (EUSIPCO 2018), Roma, Italy, September 2018.

Microchip. 2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial Inter-

face. -https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf, 2008. [Online;

accessed 10-June-2018].

32

http://www.deeplearningbook.org
https://www.iso.org/standard/41447.html
"http://www.scipy.org/
https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf


J. Murphy and Y. Gitman. PulseSensor Open Hardware . -http://

pulsesensor.com/, 2018. [Online; accessed 10-June-2018].

Obi Ogbanufe and Dan J. Kim. Comparing fingerprint-based biometrics authentication

versus traditional authentication methods for e-payment. Decision Support Systems,

106:1–14, 2018. ISSN 01679236.

S. Patel, J. Pingel. Introduction to Deep Learning: What Are Convolutional Neural

Networks? -https://www.mathworks.com/videos/introduction-to-deep-

learning-what-are-convolutional-neural-networks--1489512765771.html,

March 2017. [Online; accessed 10-June-2018].

C. Segura et al. Automatic speech feature learning for continuous prediction of cus-

tomer satisfaction in contact center phone calls. In Advances in Speech and Language

Technologies for Iberian Languages, pages 255–265, Cham, 2016. Springer Interna-

tional Publishing. ISBN 978-3-319-49169-1.

Petros Spachos, Jiexin Gao, and Dimitrios Hatzinakos. Feasibility study of photo-

plethysmographic signals for biometric identification. 17th DSP 2011 International

Conference on Digital Signal Processing, Proceedings, pages 7–11, 2011. ISSN Pend-

ing.

V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of deep neural networks:

A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

T. Fox-Brewster. Apple Face ID ’Fooled Again’ – This Time By $200 Evil Twin Mask.

-https://www.forbes.com/sites/thomasbrewster/2017/11/27/apple-face-

id-artificial-intelligence-twin-mask-attacks-iphone-x/#255f55bf2775,

November 2017. [Online; accessed 10-June-2018].

Telefónica I+D. Telefónica Research and Development. -https://www.tid.es/, 2018.

[Online; accessed 10-June-2018].

The Apache Software Foundation. Apache License Version 2.0. -http://

www.apache.org/licenses/LICENSE-2.0.txt, 2018.

Eben Upton. Raspberry Open Hardware. -https://www.raspberrypi.org/, 2018.

[Online; accessed 10-June-2018].

Walber. Precision and Recall. -https://commons.wikimedia.org/wiki/File:

Precisionrecall.svg, November 2014. [Online; accessed 10-June-2018].

Z. Zhang, Z. Pi, and B. Liu. Troika: A general framework for heart rate monitoring

using wrist-type photoplethysmographic signals during intensive physical exercise.

IEEE Transactions on Biomedical Engineering, 62(2):522–531, Feb 2015. ISSN 0018-

9294. doi: -10.1109/TBME.2014.2359372.

33

http://pulsesensor.com/
http://pulsesensor.com/
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.forbes.com/sites/thomasbrewster/2017/11/27/apple-face-id-artificial-intelligence-twin-mask-attacks-iphone-x/#255f55bf2775
https://www.forbes.com/sites/thomasbrewster/2017/11/27/apple-face-id-artificial-intelligence-twin-mask-attacks-iphone-x/#255f55bf2775
https://www.tid.es/
http://www.apache.org/licenses/LICENSE-2.0.txt
http://www.apache.org/licenses/LICENSE-2.0.txt
https://www.raspberrypi.org/
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
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ABSTRACT

Whilst research efforts have traditionally focused on Electrocar-
diographic (ECG) signals and handcrafted features as potential bio-
metric traits, few works have explored systems based on the raw pho-
toplethysmogram (PPG) signal. This work proposes an end-to-end
architecture to offer biometric authentication using PPG biosensors
through Convolutional Networks. We provide an evaluation of the
performance of our approach in two different databases: Troika and
PulseID, the latter a publicly available database specifically collected
by the authors for such a purpose. Our verification approach through
convolutional network based models and using raw PPG signals ap-
pears to be viable in current monitoring procedures within e-health
and fitness environments showing a remarkable potential as a biom-
etry. The approach tested on a verification fashion, on trials lasting
one second, achieved an AUC of 78.2% and 83.2%, averaged among
target subjects, on PulseID and Troika datasets respectively. Our ex-
perimental results on previous small datasets support the usefulness
of PPG extracted biomarkers as viable traits for multi-biometric or
standalone biometrics. Furthermore, the approach results in a low
input throughput and complexity that allows for a continuous au-
thentication in real-world scenarios. Nevertheless, the reported ex-
periments also suggest that further research is necessary to account
for and understand sources of variability found in some subjects.

Index Terms— photoplethysmogram signal, ppg, biometric au-
thentication, biometric verification, convolutional neural networks

1. INTRODUCTION

User authentication based on monitoring the heart signal has raised
the interest of the research community due to the increasingly pop-
ularity of wereable biosensors. Wrist-type photoplethysmographic
(PPG) sensors have become a standard in health care and fitness
applications owing to their capabilities for low cost and long term
screening. Despite the fact that PPG signals can be easily obtained
from the finger or by wrist-type wearables and smart-watches, it
arises several questions about its potential and viability as a biomet-
ric trait, e.g. due to motion artifacts, as well as around the selection
of appropriate biomarkers.

The PPG sensor is a non-invasive electro-optical method [1] that
provides the PPG signal as illuminance variations measured by a
photo-detector. Usually, a source of light is placed on a finger and a
photo-detector placed right across the source detects the transmit-
ted light reflected back. Shortly after the systole, the amount of
blood in the arteries increase, thus reflecting it on the intensity of
received light which increases too. The contrary occurs during the
diastole, where the amount of blood in the arteries decreases leading

to a decrease in the light observed by the photo-detector. Blood flow-
ing characteristics are unique identifiers specific to different persons
while they are similar enough to recognize the same person [2, 3, 4],
keeping a strong relationship with person’s anatomy and physiology
as with the heart size and its dynamics.

Most of the approaches in the literature for biometric pulse iden-
tification rely both on involving Electrocardiography (ECG), based
on the electrical activity of the heart, and on a carefully design, seg-
mentation and extraction of expert features from the pulse signal
[5, 6]. A decoupled approach which comprises mainly two stages
is usually described [2, 7, 8]. Firstly, biomarkers or features are ex-
tracted from the pulse ECG or PPG signals, also known as front-end
processing. Then, template feature vectors feed a second stage that
performs model learning. Nonetheless, such features are designed by
hand and strongly depend on a high expertise both on the knowledge
of the addressed task and on acquisition nature of the pulse signal
itself. For instance, in [2] an experiment on a group of 17 subjects
was performed, where the authors studied four time domain charac-
teristics, as time intervals, peaks and slopes from the PPG signals
reporting successful accuracy rates of 94% for human verification.
In the work of [7], feature extraction on the PPG, ECG, EEG sig-
nals was performed based on eigenvector methods. Spachos et al.
[3] studied four feature parameters, peak number, time interval, up-
ward slope and downward slope. The study from [4] is intended for
exploring the time domain features acquired from its first and sec-
ond derivatives, where a group of 40 features were extracted and
ranked based on a k-nearest neighbor algorithm. The authors in [8]
perform a comparison of three methods based and proposed the pul-
satile beat-by-beat correlation analysis, the rejection or acceptance
of subject is performed based on the maximum similarity. Finally,
more recent works [9] make use of Deep Belief Networks and Re-
stricted Boltzman Machines as classifiers. With the advent of Deep
Neural Network architectures, such as convolutional based neurons,
end-to-end processing pipelines are gaining popularity by building
architectures capable of learning features directly from raw data. For
instance, in computer vision [10] or speech processing [11, 12] novel
feature learning techniques are applied directly on the raw represen-
tations of images and audio, avoiding the signal parameterization or
any other prior preprocessing.

This paper presents a new human verification approach using
photoplethysmogram (PPG) signals and deep neural network mod-
elling. The novelty of this work resides on the use of an end-to-end
deep neural network architecture for both automatic extraction of
biomarkers and low complexity allowing high continuous authenti-
cation rates. The proposed front-end, based on a Convolutional Neu-
ral Network, is jointly trained together with a dense neural net. Such
architecture allows for a joint optimization of the extracted patterns
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while maximizes the verification of the subject’s identity. In addi-
tion and for development and evaluation purposes a new database,
named as PulseID, is collected within a regular office environment,
comprising 43 subject’s IDs and their PPGs signals. Our proposed
verification approach through neural network learning and classifi-
cation appears to be viable as reported by the experiments performed
on the Troika [13] and PulseID datasets. The results are encourag-
ing, reaching AUCs around 83.1% by trials lasting just 1 second,
both showing the potential of learned PPG biomarkers as a stand
alone biometry and allowing for a continuous authentication in real-
world scenarios.

2. PPG BASED VERIFICATION METHODOLOGY

2.1. Datasets

Two different datasets are employed in this work to conduct person
verification experiments through PPG signals. Firstly, a new corpus
was collected aiming to fulfil a need of, to the best of authors’ knowl-
edge, a public domain dataset specifically created for PPG biometric
identification. For such a purpose, the authors collected a new PPG
dataset, named as PulseID1, in a quiet office environment. Secondly,
aiming to verify the robustness of our approach in more challeng-
ing conditions, the Troika [13] dataset is used. In contrast, Troika
recordings are acquired for subjects on a treadmill, walking and run-
ning at different speeds.

For the PulseID data acquisition, the pulse sensor described in
[14] is employed. It is essentially a photoplethysmograph, a well
known medical device used for non-invasive heart rate monitoring,
consisting of a green LED and a photo-detector. The heart pulse
signal that comes out of the pulse sensor is an analog fluctuation in
voltage, with associated waveform known as photoplethysmogram
or PPG, see figures 1(a) and (b). The pulse sensor responds to rel-
ative changes in illuminance. For a sensor placed in the subject’s
skin, the reflected light back to the photo-detector changes during
each pulse due to blood flowing what is perceived as variations in
the voltage signal. A Raspberry Pi 3 board was employed for hard-
ware acquisition together with a popular analog to digital converter
(ADC) MCP3008, accounting for 10 bits. The process of data ac-
quisition was provided by 43 volunteers (31 male and 12 female)
with ages ranging from 22 to 55. Subjects were seated down in a
calmed, relaxed and quiet office environment while the recordings.
The PPG sensor was attached to the fingertip of the right index fin-
ger by a belt. PPG acquisitions, lasting roughly one minute, were
recorded from each subject and repeated 5 times along the same ses-
sion. PPG analog signal was sampled at 200 Hz rate. For doing
so, a python code was developed aiming to perform sampling syn-
chronization while reading from the ADC and ensuring a tolerant
averaged sampling rate deviation of µ = 13.32 µs and σ = 202.58
µs per subject, see plot (c) in the figure 1 for an example. For com-
parison purposes, an ECG waveform from Troika is depicted in fig.

1The PulseID dataset is available upon request from the authors and
agreement of EULA for research purposes.

Table 1: Summary stats for both databases, Troika and PulseID. The ”dura-
tion” column stands for the average duration in seconds of the total acquired
samples per subject

Dataset Subjects Gender (m/f) Duration

PulseID 43 31/12 240s.
Troika 20 20/— 317s.
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Fig. 1: Five seconds PPG excerpts from PulseID (a) and Troika (b)
databases. (c) Time sampling deviation in µ seconds from the same PPG
signal in (a). In (d), a five seconds ECG excerpt from Troika

1(d). It is worth noting that no pre-processing is performed to the
raw PPG acquired signals. It can be seen in the higher noise levels
present in the acquired PPGs, where various artifacts are expected to
be found: like analog circuit noises or medium illuminance changes,
respiration or base deviation arising from movement.

In addition to PulseID database, the Troika dataset is employed
to verify the robustness of our approach. Biometric identification
using PPG should be possible even when the subject is in heavy
physical motion. Therefore, Troika introduces a suitable database
to benchmark learning models in practical day to day situations, by
presenting higher heart signal variability and physical motion arti-
facts, is in theory a more challenging scenario compared to a rela-
tively quiet office environment. During Troika recordings, subjects
walked or ran on a treadmill at different speeds. The data was col-
lected from 20 male subjects with ages ranging from 18 to 35. For
each subject, the PPG signals were recorded from wrist by two pulse
oximeters but only the first PPG channel is used in this work. The
pulse signals were sampled at 125 Hz, see [13] for further details.

2.2. End-to-end biomarker learning

Convolutional Neural Networks (CNN) have become broadly ap-
plied reporting great success for instance in image recognition tasks
[15, 16]. In the same sense, our deep CNN-based feature learning
architecture makes use of local filtering and feature pooling, used at
the output of the convolutional layers. The CNN architecture that we
used as a basis for all our experiments is depicted in figure 2.

The end-to-end is validated and tested using 31 target and 12
impostor subjects with total of 43 subjects for the PulseID database.
For the case of Troika, 15 target and 5 impostors accounting for a
total of 20 subjects were used. The total number of enrolled subjects
is 35 and 15, respectively. In the training phase, the waveform is
homogeneously segmented in chunks of duration 1 second for each
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Fig. 2: Proposed Convolutional Neural Network architecture for end-to-end user verification using raw PPG signals. First, the raw signal is filtered by three
parallel 1-D convolutional layers composed of N filters of lengths L1,2,3 followed by a global max-pooling operation. The resulting 3N features are then
concatenated into the feature vector f , which is used to perform the classification using a dense layer of dimensions 3NxM and the final layer of 1 output.
ReLU activation function is used across all layers but the output layer, where a sigmoid activation is used to predict the verification score.

of the subjects. The table 2 reports on the partition set in terms of
target and impostor trials for the case of excerpts lasting 1 second.
Note that in a 60 bpm (beats per minute) Heart Rate there is one
beat each second, there is no data-partition preprocess to ensure that
a full peak is taken because every chunk contains a different signal,
unless the subject Heart Rate is stable at 60bmp during all the ac-
quisition. A combination of pairs (target,impostor) from the Train
and Validation sets are used for network training and validation, per-
forming parameter updating based on cross-entropy loss computed
on the Validation set. The Develop set is used for final network test-
ing and threshold selection but note that impostor trials are drawn
from the same pool of identities than from previous sets. Finally, the
Test set composed of unseen impostor subjects is employed for the
fair assessment of the end-to-end proposed approach. Such data par-
titioning aims to prevent biasing and resembles a real use-case sce-
nario in which cross-validated model is benchmarked against new
enrolled users.

Note that the CNN-maxpooling feature learning architecture ap-
plies 1-dimensional convolutions and pooling operations performed
along the time axis as previous works in [11]. Let’s assume the
PPG signal input to the CNN is a vector, x, whose elements are raw
PPG samples x = [xk, xk+1 . . . xk+K ] where xk is the PPG sample
shifted by a stride. In this work we used a value of 1 for time shifting
and the xk sample with a fixed size from 1 second at 200 samples
per second. The activations at the first convolutional layer comprise
N = 6 filters and we denoted them as hn = [h1 h2 · · ·hN ].
Therefore, the convolutional layer operation can be seen as a con-
volutional operation of each filter on the input raw PPG,

Table 2: Partition data for the different sets. Trials are expressed in seconds
of signal and averaged per subject Since the trial size of the experiments
showed is one second, the number of Target and Impostor data corresponds
to number of trials or seconds

Dataset Label Train Validation Develop Test

PulseID
Target 135 45 30 30
Impostor 5, 220 1, 740 1, 890 2, 880

#Subjects 31 12

Troika
Target 144 80 48 48
Impostor 2, 014 1, 119 1, 343 1, 545

#Subjects 15 5

hn = θ
(
wnx

T + bn
)
,

where θ(x) is the activation function corresponding to Rectified
Linear Units (ReLU), w is the weighting vector and bn the bias term
for filter hn. Following the convolutional filters, max-pooling lay-
ers perform local temporal max operations over the input sequence,
selecting the maximum in a window of d size. More formally, the
transformation at starting sample vector n, cnk , corresponding to the
filter output sequence of the first convolutional layer and jth filter is:

max
k− (d−1)

2
≤s≤k+

(d−1)
2

cns

The pooling operation compacts even more the original signal
by computing some stats, commonly such as maximum, mean and
variance, from the CNN output. For this work maximum pooling
is used by selection of the maximum values from the CNN filter
outputs. Next, a flattering operation is performed, see figure 2, that
aims at stacking together all the CNNs outputs, creating a feature
vector ready to be presented to the network classifier. In overall, the
end-to-end architecture comprises a total of 4 layers. In the input,
a convolutional layer with different amounts of filters and lengths
(see figure 2) followed by a max pooling layer. At the back-end,
a fully connected neural net composed of 2 layers with 256 units.
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Fig. 3: Average ROC for validation (a) and develop (b) sets using N = 6
filters for each filter sizes of L1,2,3 = 50, 30, 20. The painted area corre-
sponds to the area within the standard deviation of the AUC. Dashed lines
stands for each subject AUC curves
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Fig. 4: Average ROC comparison according to (a) the size of the chunk time,
ct=1, 2, 3 s. and (b) set of data. The curves have been computed as in figure
3, averaged for all the subjects

ReLu units are employed in all layers, including CNNs, except for
the output layer of the dense network, where we used a sigmoidal
unit. The dense layer is employed as a back-end for the modeling of
the salient features computed by previous convolutional steps and a
Sigmoid activaction function is used in the output layer. It is worth
to note that no dropout is used during network training.

The framework [17] has been developed in Keras [18] and us-
ing Tensorflow [19] as back-end. We do not perform an exhaustive
search of network parameters and we restrict experiments by using
few learned biomarkers. For instance, we compute 15 features be-
fore the dense layer for the reported 1s. experiments, see vector
f in fig. 2. The network is trained using Stochastic Gradient De-
scent (SGD) attending to binary cross-entropy as a loss function and
accuracy as a metric, with mini batches of size 270 composed of
135 target trials and 135 impostor ones. Given a Train set of PPG
excerpts from a subject, at each training mini batch, the impostor
samples are randomly picked up from the available pool of impostor
chunks. Thus, in each training iteration, new impostor data is seen
as an intent to maximize variability, see table 2. An early stopping
criteria is also defined in order to speed up the training, yielding in
most of the cases to few tens of training mini batches before reaching
patience steps. The figure 3 shows the ROC curves, per Validation
and Develop sets in PulseID and averaged per subjects, solid line,
and its standard deviation, shadowed area. For the sake of compari-
son, the same curves are depicted in figure 4(b) per each dataset and
partition.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Although an exhaustive search of the best network architectures or
a fully tuning of parameters is not performed, we experiment with

Table 3: Average AUCs for all subjects within the same experiment: N = 6
filters for each filter sizes ofL1,2,3 = 50, 30, 20. the ±variation corresponds
to the AUC’s standard deviation

Dataset Trial size Validation Develop Test

PulseID
1s. 0.80±0.16 0.77±0.19 0.78±0.20
2s. 0.81±0.16 0.76±0.22 0.84±0.19
3s. 0.84±0.15 0.78±0.20 0.86±0.17

Troika
1s. 0.87±0.09 0.70±0.16 0.83±0.12
2s. 0.73±0.30 0.66±0.21 0.74±0.24
3s. 0.85±0.14 0.71±0.16 0.78±0.18
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Fig. 5: False Match Rate (FMR) and False Non-Match Rate (FNMR) ratio
plots as function of threshold Θ. Threshold line Θ, see fig. 2, corresponds to
the operating point where the FMR is below 0.1 and the FNMR is minimum

different window and filter sizes. For the reported figures, we select
1, 2, 3 second excerpts extracted from original raw PPG, homoge-
neously segmented and with no overlap for testing trials. The ex-
periments are performed in PulseID data and best values, in terms
of number of filters and size, are directly applied in Troika. Homo-
geneous segmentation of the input PPG likely degrades system per-
formance due to few samples are taken into account for training, see
table 2. However, it could be easily bypassed, e.g., by a randomly
picking of excerpts thus increasing samples and segmentation vari-
ability in train and test. The figure 4(a) and table 3 report on the
system performance for different trial sizes, ranging from 1 to 3 sec-
onds. We can observe the generalization of validation results both in
Develop and Test sets, showing high AUC values even for 1s. trial
condition, AUC=0.78 and 0.83 per each dataset. Note the higher
AUC degradation in Troika compared with the PPG data captured in
the office condition and the AUC trend observed by increasing the ct
time, not observed in Troika likely due to motion artifacts. In over-
all, the results support the suitability of the end-to-end architecture
in both datasets, although as observed in ROC curves fig.3, some
subject’s AUC present a not satisfactory behaviour suggesting more
experimentation to understand possibles sources of such variability.

Another parameter to determine in authentication systems is the
operating point or decision threshold. It controls the trade-off be-
tween usability, minimum FNMR, and security, minimum FMR. The
fig. 5 reports on the Equal Error Rate (EER) 0.1 (a) and 0.174 (b) for
a specific user in both datasets. Related to the algorithm complex-
ity for trial decision, taking into account Li size of filters, pooling
and dense layers operations, and 1s. trial lead to a number of MAC
operations [20] around 26K, that translates into roughly 20ms for a
Raspberry in order to perform person authentication every second.

4. CONCLUSIONS

An end-to-end architecture based on CNN is proposed to offer bio-
metric authentication using learned biomarker directly from PPG
raw signals. We reported evaluation results of the performance of our
approach in two different datasets, Troika and PulseID. Our end-to-
end authentication approach and automatic learned biomarkers show
a remarkable potential as authentication biometric method. Trial size
dependent experiments, reported AUCs ranging [78.2%, 86.4%] and
[73.8%, 83.2%], averaged among target subjects on PulseID and
Troika datasets, respectively. Furthermore, the proposed system re-
sults in a low complexity that permits for continuous authentication
in real-world scenarios.
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