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ABSTRACT


Whilst research efforts have traditionally focused on Electrocar-
diographic (ECG) signals and handcrafted features as potential bio-
metric traits, few works have explored systems based on the raw pho-
toplethysmogram (PPG) signal. This work proposes an end-to-end
architecture to offer biometric authentication using PPG biosensors
through Convolutional Networks. We provide an evaluation of the
performance of our approach in two different databases: Troika and
PulseID, the latter a publicly available database specifically collected
by the authors for such a purpose. Our verification approach through
convolutional network based models and using raw PPG signals ap-
pears to be viable in current monitoring procedures within e-health
and fitness environments showing a remarkable potential as a biom-
etry. The approach tested on a verification fashion, on trials lasting
one second, achieved an AUC of 78.2% and 83.2%, averaged among
target subjects, on PulseID and Troika datasets respectively. Our ex-
perimental results on previous small datasets support the usefulness
of PPG extracted biomarkers as viable traits for multi-biometric or
standalone biometrics. Furthermore, the approach results in a low
input throughput and complexity that allows for a continuous au-
thentication in real-world scenarios. Nevertheless, the reported ex-
periments also suggest that further research is necessary to account
for and understand sources of variability found in some subjects.


Index Terms— photoplethysmogram signal, ppg, biometric au-
thentication, biometric verification, convolutional neural networks


1. INTRODUCTION


User authentication based on monitoring the heart signal has raised
the interest of the research community due to the increasingly pop-
ularity of wereable biosensors. Wrist-type photoplethysmographic
(PPG) sensors have become a standard in health care and fitness
applications owing to their capabilities for low cost and long term
screening. Despite the fact that PPG signals can be easily obtained
from the finger or by wrist-type wearables and smart-watches, it
arises several questions about its potential and viability as a biomet-
ric trait, e.g. due to motion artifacts, as well as around the selection
of appropriate biomarkers.


The PPG sensor is a non-invasive electro-optical method [1] that
provides the PPG signal as illuminance variations measured by a
photo-detector. Usually, a source of light is placed on a finger and a
photo-detector placed right across the source detects the transmit-
ted light reflected back. Shortly after the systole, the amount of
blood in the arteries increase, thus reflecting it on the intensity of
received light which increases too. The contrary occurs during the
diastole, where the amount of blood in the arteries decreases leading


to a decrease in the light observed by the photo-detector. Blood flow-
ing characteristics are unique identifiers specific to different persons
while they are similar enough to recognize the same person [2, 3, 4],
keeping a strong relationship with person’s anatomy and physiology
as with the heart size and its dynamics.


Most of the approaches in the literature for biometric pulse iden-
tification rely both on involving Electrocardiography (ECG), based
on the electrical activity of the heart, and on a carefully design, seg-
mentation and extraction of expert features from the pulse signal
[5, 6]. A decoupled approach which comprises mainly two stages
is usually described [2, 7, 8]. Firstly, biomarkers or features are ex-
tracted from the pulse ECG or PPG signals, also known as front-end
processing. Then, template feature vectors feed a second stage that
performs model learning. Nonetheless, such features are designed by
hand and strongly depend on a high expertise both on the knowledge
of the addressed task and on acquisition nature of the pulse signal
itself. For instance, in [2] an experiment on a group of 17 subjects
was performed, where the authors studied four time domain charac-
teristics, as time intervals, peaks and slopes from the PPG signals
reporting successful accuracy rates of 94% for human verification.
In the work of [7], feature extraction on the PPG, ECG, EEG sig-
nals was performed based on eigenvector methods. Spachos et al.
[3] studied four feature parameters, peak number, time interval, up-
ward slope and downward slope. The study from [4] is intended for
exploring the time domain features acquired from its first and sec-
ond derivatives, where a group of 40 features were extracted and
ranked based on a k-nearest neighbor algorithm. The authors in [8]
perform a comparison of three methods based and proposed the pul-
satile beat-by-beat correlation analysis, the rejection or acceptance
of subject is performed based on the maximum similarity. Finally,
more recent works [9] make use of Deep Belief Networks and Re-
stricted Boltzman Machines as classifiers. With the advent of Deep
Neural Network architectures, such as convolutional based neurons,
end-to-end processing pipelines are gaining popularity by building
architectures capable of learning features directly from raw data. For
instance, in computer vision [10] or speech processing [11, 12] novel
feature learning techniques are applied directly on the raw represen-
tations of images and audio, avoiding the signal parameterization or
any other prior preprocessing.


This paper presents a new human verification approach using
photoplethysmogram (PPG) signals and deep neural network mod-
elling. The novelty of this work resides on the use of an end-to-end
deep neural network architecture for both automatic extraction of
biomarkers and low complexity allowing high continuous authenti-
cation rates. The proposed front-end, based on a Convolutional Neu-
ral Network, is jointly trained together with a dense neural net. Such
architecture allows for a joint optimization of the extracted patterns
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while maximizes the verification of the subject’s identity. In addi-
tion and for development and evaluation purposes a new database,
named as PulseID, is collected within a regular office environment,
comprising 43 subject’s IDs and their PPGs signals. Our proposed
verification approach through neural network learning and classifi-
cation appears to be viable as reported by the experiments performed
on the Troika [13] and PulseID datasets. The results are encourag-
ing, reaching AUCs around 83.1% by trials lasting just 1 second,
both showing the potential of learned PPG biomarkers as a stand
alone biometry and allowing for a continuous authentication in real-
world scenarios.


2. PPG BASED VERIFICATION METHODOLOGY


2.1. Datasets


Two different datasets are employed in this work to conduct person
verification experiments through PPG signals. Firstly, a new corpus
was collected aiming to fulfil a need of, to the best of authors’ knowl-
edge, a public domain dataset specifically created for PPG biometric
identification. For such a purpose, the authors collected a new PPG
dataset, named as PulseID1, in a quiet office environment. Secondly,
aiming to verify the robustness of our approach in more challeng-
ing conditions, the Troika [13] dataset is used. In contrast, Troika
recordings are acquired for subjects on a treadmill, walking and run-
ning at different speeds.


For the PulseID data acquisition, the pulse sensor described in
[14] is employed. It is essentially a photoplethysmograph, a well
known medical device used for non-invasive heart rate monitoring,
consisting of a green LED and a photo-detector. The heart pulse
signal that comes out of the pulse sensor is an analog fluctuation in
voltage, with associated waveform known as photoplethysmogram
or PPG, see figures 1(a) and (b). The pulse sensor responds to rel-
ative changes in illuminance. For a sensor placed in the subject’s
skin, the reflected light back to the photo-detector changes during
each pulse due to blood flowing what is perceived as variations in
the voltage signal. A Raspberry Pi 3 board was employed for hard-
ware acquisition together with a popular analog to digital converter
(ADC) MCP3008, accounting for 10 bits. The process of data ac-
quisition was provided by 43 volunteers (31 male and 12 female)
with ages ranging from 22 to 55. Subjects were seated down in a
calmed, relaxed and quiet office environment while the recordings.
The PPG sensor was attached to the fingertip of the right index fin-
ger by a belt. PPG acquisitions, lasting roughly one minute, were
recorded from each subject and repeated 5 times along the same ses-
sion. PPG analog signal was sampled at 200 Hz rate. For doing
so, a python code was developed aiming to perform sampling syn-
chronization while reading from the ADC and ensuring a tolerant
averaged sampling rate deviation of µ = 13.32 µs and � = 202.58
µs per subject, see plot (c) in the figure 1 for an example. For com-
parison purposes, an ECG waveform from Troika is depicted in fig.


1The PulseID dataset is available upon request from the authors and
agreement of EULA for research purposes.


Table 1: Summary stats for both databases, Troika and PulseID. The ”dura-
tion” column stands for the average duration in seconds of the total acquired
samples per subject


Dataset Subjects Gender (m/f) Duration


PulseID 43 31/12 240s.
Troika 20 20/— 317s.


(a) (b)


(c) (d)


Fig. 1: Five seconds PPG excerpts from PulseID (a) and Troika (b)
databases. (c) Time sampling deviation in µ seconds from the same PPG
signal in (a). In (d), a five seconds ECG excerpt from Troika


1(d). It is worth noting that no pre-processing is performed to the
raw PPG acquired signals. It can be seen in the higher noise levels
present in the acquired PPGs, where various artifacts are expected to
be found: like analog circuit noises or medium illuminance changes,
respiration or base deviation arising from movement.


In addition to PulseID database, the Troika dataset is employed
to verify the robustness of our approach. Biometric identification
using PPG should be possible even when the subject is in heavy
physical motion. Therefore, Troika introduces a suitable database
to benchmark learning models in practical day to day situations, by
presenting higher heart signal variability and physical motion arti-
facts, is in theory a more challenging scenario compared to a rela-
tively quiet office environment. During Troika recordings, subjects
walked or ran on a treadmill at different speeds. The data was col-
lected from 20 male subjects with ages ranging from 18 to 35. For
each subject, the PPG signals were recorded from wrist by two pulse
oximeters but only the first PPG channel is used in this work. The
pulse signals were sampled at 125 Hz, see [13] for further details.


2.2. End-to-end biomarker learning


Convolutional Neural Networks (CNN) have become broadly ap-
plied reporting great success for instance in image recognition tasks
[15, 16]. In the same sense, our deep CNN-based feature learning
architecture makes use of local filtering and feature pooling, used at
the output of the convolutional layers. The CNN architecture that we
used as a basis for all our experiments is depicted in figure 2.


The end-to-end is validated and tested using 31 target and 12
impostor subjects with total of 43 subjects for the PulseID database.
For the case of Troika, 15 target and 5 impostors accounting for a
total of 20 subjects were used. The total number of enrolled subjects
is 35 and 15, respectively. In the training phase, the waveform is
homogeneously segmented in chunks of duration 1 second for each
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Fig. 2: Proposed Convolutional Neural Network architecture for end-to-end user verification using raw PPG signals. First, the raw signal is filtered by three
parallel 1-D convolutional layers composed of N filters of lengths L1,2,3 followed by a global max-pooling operation. The resulting 3N features are then
concatenated into the feature vector f , which is used to perform the classification using a dense layer of dimensions 3NxM and the final layer of 1 output.
ReLU activation function is used across all layers but the output layer, where a sigmoid activation is used to predict the verification score.


of the subjects. The table 2 reports on the partition set in terms of
target and impostor trials for the case of excerpts lasting 1 second.
Note that in a 60 bpm (beats per minute) Heart Rate there is one
beat each second, there is no data-partition preprocess to ensure that
a full peak is taken because every chunk contains a different signal,
unless the subject Heart Rate is stable at 60bmp during all the ac-
quisition. A combination of pairs (target,impostor) from the Train
and Validation sets are used for network training and validation, per-
forming parameter updating based on cross-entropy loss computed
on the Validation set. The Develop set is used for final network test-
ing and threshold selection but note that impostor trials are drawn
from the same pool of identities than from previous sets. Finally, the
Test set composed of unseen impostor subjects is employed for the
fair assessment of the end-to-end proposed approach. Such data par-
titioning aims to prevent biasing and resembles a real use-case sce-
nario in which cross-validated model is benchmarked against new
enrolled users.


Note that the CNN-maxpooling feature learning architecture ap-
plies 1-dimensional convolutions and pooling operations performed
along the time axis as previous works in [11]. Let’s assume the
PPG signal input to the CNN is a vector, x, whose elements are raw
PPG samples x = [xk, xk+1 . . . xk+K ] where xk is the PPG sample
shifted by a stride. In this work we used a value of 1 for time shifting
and the xk sample with a fixed size from 1 second at 200 samples
per second. The activations at the first convolutional layer comprise
N = 6 filters and we denoted them as hn = [h1 h2 · · ·hN ].
Therefore, the convolutional layer operation can be seen as a con-
volutional operation of each filter on the input raw PPG,


Table 2: Partition data for the different sets. Trials are expressed in seconds
of signal and averaged per subject Since the trial size of the experiments
showed is one second, the number of Target and Impostor data corresponds
to number of trials or seconds


Dataset Label Train Validation Develop Test


PulseID
Target 135 45 30 30
Impostor 5, 220 1, 740 1, 890 2, 880


#Subjects 31 12


Troika
Target 144 80 48 48
Impostor 2, 014 1, 119 1, 343 1, 545


#Subjects 15 5


hn = ✓
⇣
wnx


T + bn
⌘
,


where ✓(x) is the activation function corresponding to Rectified
Linear Units (ReLU), w is the weighting vector and bn the bias term
for filter hn. Following the convolutional filters, max-pooling lay-
ers perform local temporal max operations over the input sequence,
selecting the maximum in a window of d size. More formally, the
transformation at starting sample vector n, cnk , corresponding to the
filter output sequence of the first convolutional layer and jth filter is:


max
k�


(d�1)
2 sk+


(d�1)
2


cns


The pooling operation compacts even more the original signal
by computing some stats, commonly such as maximum, mean and
variance, from the CNN output. For this work maximum pooling
is used by selection of the maximum values from the CNN filter
outputs. Next, a flattering operation is performed, see figure 2, that
aims at stacking together all the CNNs outputs, creating a feature
vector ready to be presented to the network classifier. In overall, the
end-to-end architecture comprises a total of 4 layers. In the input,
a convolutional layer with different amounts of filters and lengths
(see figure 2) followed by a max pooling layer. At the back-end,
a fully connected neural net composed of 2 layers with 256 units.


(a) (b)


Fig. 3: Average ROC for validation (a) and develop (b) sets using N = 6
filters for each filter sizes of L1,2,3 = 50, 30, 20. The painted area corre-
sponds to the area within the standard deviation of the AUC. Dashed lines
stands for each subject AUC curves
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(a) (b)


Fig. 4: Average ROC comparison according to (a) the size of the chunk time,
ct=1, 2, 3 s. and (b) set of data. The curves have been computed as in figure
3, averaged for all the subjects


ReLu units are employed in all layers, including CNNs, except for
the output layer of the dense network, where we used a sigmoidal
unit. The dense layer is employed as a back-end for the modeling of
the salient features computed by previous convolutional steps and a
Sigmoid activaction function is used in the output layer. It is worth
to note that no dropout is used during network training.


The framework [17] has been developed in Keras [18] and us-
ing Tensorflow [19] as back-end. We do not perform an exhaustive
search of network parameters and we restrict experiments by using
few learned biomarkers. For instance, we compute 15 features be-
fore the dense layer for the reported 1s. experiments, see vector
f in fig. 2. The network is trained using Stochastic Gradient De-
scent (SGD) attending to binary cross-entropy as a loss function and
accuracy as a metric, with mini batches of size 270 composed of
135 target trials and 135 impostor ones. Given a Train set of PPG
excerpts from a subject, at each training mini batch, the impostor
samples are randomly picked up from the available pool of impostor
chunks. Thus, in each training iteration, new impostor data is seen
as an intent to maximize variability, see table 2. An early stopping
criteria is also defined in order to speed up the training, yielding in
most of the cases to few tens of training mini batches before reaching
patience steps. The figure 3 shows the ROC curves, per Validation
and Develop sets in PulseID and averaged per subjects, solid line,
and its standard deviation, shadowed area. For the sake of compari-
son, the same curves are depicted in figure 4(b) per each dataset and
partition.


3. EXPERIMENTAL RESULTS AND DISCUSSION


Although an exhaustive search of the best network architectures or
a fully tuning of parameters is not performed, we experiment with


Table 3: Average AUCs for all subjects within the same experiment: N = 6
filters for each filter sizes of L1,2,3 = 50, 30, 20. the ±variation corresponds
to the AUC’s standard deviation


Dataset Trial size Validation Develop Test


PulseID
1s. 0.80±0.16 0.77±0.19 0.78±0.20
2s. 0.81±0.16 0.76±0.22 0.84±0.19
3s. 0.84±0.15 0.78±0.20 0.86±0.17


Troika
1s. 0.87±0.09 0.70±0.16 0.83±0.12
2s. 0.73±0.30 0.66±0.21 0.74±0.24
3s. 0.85±0.14 0.71±0.16 0.78±0.18


(a) (b)


Fig. 5: False Match Rate (FMR) and False Non-Match Rate (FNMR) ratio
plots as function of threshold ⇥. Threshold line ⇥, see fig. 2, corresponds to
the operating point where the FMR is below 0.1 and the FNMR is minimum


different window and filter sizes. For the reported figures, we select
1, 2, 3 second excerpts extracted from original raw PPG, homoge-
neously segmented and with no overlap for testing trials. The ex-
periments are performed in PulseID data and best values, in terms
of number of filters and size, are directly applied in Troika. Homo-
geneous segmentation of the input PPG likely degrades system per-
formance due to few samples are taken into account for training, see
table 2. However, it could be easily bypassed, e.g., by a randomly
picking of excerpts thus increasing samples and segmentation vari-
ability in train and test. The figure 4(a) and table 3 report on the
system performance for different trial sizes, ranging from 1 to 3 sec-
onds. We can observe the generalization of validation results both in
Develop and Test sets, showing high AUC values even for 1s. trial
condition, AUC=0.78 and 0.83 per each dataset. Note the higher
AUC degradation in Troika compared with the PPG data captured in
the office condition and the AUC trend observed by increasing the ct
time, not observed in Troika likely due to motion artifacts. In over-
all, the results support the suitability of the end-to-end architecture
in both datasets, although as observed in ROC curves fig.3, some
subject’s AUC present a not satisfactory behaviour suggesting more
experimentation to understand possibles sources of such variability.


Another parameter to determine in authentication systems is the
operating point or decision threshold. It controls the trade-off be-
tween usability, minimum FNMR, and security, minimum FMR. The
fig. 5 reports on the Equal Error Rate (EER) 0.1 (a) and 0.174 (b) for
a specific user in both datasets. Related to the algorithm complex-
ity for trial decision, taking into account Li size of filters, pooling
and dense layers operations, and 1s. trial lead to a number of MAC
operations [20] around 26K, that translates into roughly 20ms for a
Raspberry in order to perform person authentication every second.


4. CONCLUSIONS


An end-to-end architecture based on CNN is proposed to offer bio-
metric authentication using learned biomarker directly from PPG
raw signals. We reported evaluation results of the performance of our
approach in two different datasets, Troika and PulseID. Our end-to-
end authentication approach and automatic learned biomarkers show
a remarkable potential as authentication biometric method. Trial size
dependent experiments, reported AUCs ranging [78.2%, 86.4%] and
[73.8%, 83.2%], averaged among target subjects on PulseID and
Troika datasets, respectively. Furthermore, the proposed system re-
sults in a low complexity that permits for continuous authentication
in real-world scenarios.
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