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Abstract 

It is a fact that air pollution is a major environmental health problem that affects everyone, 
especially in urban areas. Furthermore, the cost of high-end air pollution monitoring 
sensors is considerably high, so public administrations are unable to afford to place an 
elevated number of measuring stations, leading to the loss of information that could be 
very helpful. 

Over the last few years, a large number of low-cost sensors have been released, but its 
use is often problematic, due to their selectivity and precision problems. 

A calibration process is needed in order to solve an issue with many parameters with no 

clear relationship among them, which is a field of application of Machine Learning. 

The objectives of this project are first, integrating three low-cost air quality sensors into a 

Raspberry Pi and then, training an Artificial Neural Network model that improves 

precision in the readings made by the sensors. 
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Resum 

Està demostrat que la contaminació de l’aire és un gran problema per a la salut a nivell 
mundial, especialment en zones urbanes. A més, el cost dels sensors de contaminació 
de gama alta és considerablement alt, motiu pel qual els organismes públics no es poden 
permetre emplaçar una gran quantitat d’estacions de mesura, perdent informació que 
podria resultar molt útil. 

Al llarg dels últims anys, han sorgit molts sensors de contaminació de baix cost, però el 
seu ús és sovint complicat, ja que tenen problemes de selectivitat i precisió. 

Els objectius d’aquest projecte són primer de tot integrar tres sensors de contaminació de 
baix cost en una Raspberry Pi i sobre tot, entrenar un model basat en una xarxa neuronal 
artificial que millori la precisió de les lectures realitzades pels sensors. 
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Resumen 

Es un hecho que la contaminación del aire es un gran problema para la salud a nivel 
mundial, especialmente en zonas urbanas. Además, el coste de los sensores de 
contaminación de gama alta es considerablemente alto, por lo que los organismos 
públicos no pueden permitirse emplazar un gran número de estaciones de medida, 
perdiendo información que podría ser muy útil. 

A lo largo de los últimos años, han surgido muchos sensores de contaminación de bajo 
coste, pero su uso suele ser complicado, ya que tienen problemas de selectividad y 
precisión.  

Los objetivos de este proyecto son primero integrar tres sensores de contaminación de 
bajo coste en una Raspberry Pi y sobre todo, entrenar un modelo basado en una red 
neuronal artificial que mejore la precisión de las lecturas realizadas por los sensores. 
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1. Introduction 

1.1. Overview 

It is a fact that air pollution is a major environmental health problem that affects everyone, 
especially in urban areas. Numerous studies, as [1], have determined that outdoor air 
pollution is carcinogenic to humans, as well as it increases notably the risk of suffering 
from cardiovascular and respiratory diseases. 

The first step to address the problem is to measure it. However, the cost of current high-

end air pollution monitoring sensors is considerably high. Consequently, public 

administrations are unable to afford to place an elevated number of measuring stations, 

leading to the loss of information that could be very helpful. 

The obvious solution is to use low-cost sensors, but its selectivity and precision are 

problematic. A calibration process is needed in order to solve an issue with many 

parameters with no clear relationship among them, which is a field of application of 

Machine Learning 

1.2. Objectives 

The aim of this project is to integrate three air quality sensors into a Raspberry Pi and 

implement a Machine Learning algorithm that improves precision in the readings made by 

the sensors. 

In order to train the model, the Raspberry Pi and the sensors were placed alongside a 

high-end air quality measuring station at CSIC (Centro Superior de Investigaciones 

Científicas) for 7 days. The measures taken there should have played an essential role in 

the development of the algorithm but, due to an unexpected issue that was not possible 

and the model had to be build based on a public dataset provided by the ENEA (National 

Agency for New Technologies, Energy and Sustainable Economic Development). For 

more information on that issue, please refer to Section 1.3.1. 

1.3. Work Plan 

This section presents the structure of the project, divided into work packages, along with 

a Gantt diagram with the temporary planning. In addition, incidents that occurred during 

the realization of the project are explained. 

The project has been divided from the beginning into six work packages, which are the 

following: 

 WP1: Introduction to Machine Learning 

 WP2: Pollution and sensor research 

 WP3: Sensing platform building 

 WP4: Data acquisition 

 WP5: Calibration with an Artificial Neural Network model 
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 WP6: Documentation 

 

1.3.1. Incidents and delays 

As the project progressed, some incidences were found, which delayed the work package 

completion and ultimately led to the non-completion of the original plan. 

First of all, the biggest incident was that the data acquisition done at CSIC did not work 

as expected. The sensing platform was placed alongside the high-end measuring station 

for seven days, but it only retrieved ten hours of data. The cause of that issue was 

investigated, but the conclusion was that it was caused by a programming error, due to 

the fact that until that moment, the acquisition script had not been running for so much 

time. 

Fortunately, there was an alternative plan in order to be able to fulfill the objective of the 

project. The learning model had to be built based on a dataset provided by the ENEA 

(National Agency for New Technologies, Energy and Sustainable Economic 

Development) that contains the hourly responses of a gas multisensor device deployed in 

an Italian city for one year, recorded along with gas concentrations references from a 

certified analyzer. Adapting to the new plan was not extremely difficult because, during 

the data acquisition process, the first trials on applying learning models had been 

computed on that dataset. 

Moreover, delays in relation with the original work plan were caused by two main factors: 

 Lack of experience with the Raspberry Pi, which led to a slight delay in the setup 

and sensor integration. 

 Schedule incompatibilities with the project supervisor, which led to slight delays in 

some stages of the project.  

 

 

 

 

  

W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4 W1 W2 W3 W4

1. INTRODUCTION TO MACHINE LEARNING 03/02/2018 16/02/2018 13

1.1 Basic Machine Learning Concepts 03/02/2018 07/02/2018 4

1.2 Machine Learning with Python 07/02/2018 19/02/2018 12

2. POLLUTION AND SENSOR RESEARCH 19/02/2018 06/03/2018 15

2.1 Air pollution and health 19/02/2018 26/02/2018 7

2.2 Air quality sensors 26/02/2018 07/03/2018 9

3. SENSING PLATFORM BUILDING 07/03/2018 15/05/2018 69

3.1 Raspberry Pi Setup 07/03/2018 18/04/2018 42

3.2 Sensor configuration 18/04/2018 15/05/2018 27

4. DATA ACQUISITION 15/05/2018 20/06/2018 36

4.1 Preparation 15/05/2018 23/05/2018 8

4.2 Joint data acquisition with CSIC 13/06/2018 20/06/2018 7

5. CALIBRATION WITH ANN MODEL 01/06/2018 19/06/2018 18

6. DOCUMENTATION 19/06/2018 02/07/2018 13

TASKS START END DURATION
FEBRUARY MARCH APRIL MAY JUNE

Figure 1: Project Gantt diagram 
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2. State of the art 

The first section consists of a brief overview of the most common pollutants found in our 

environment, as well as a reference to numerous studies on low-cost air pollution 

monitoring. 

The second section is the main section of this chapter and at first is focused on 

introducing the concept of Machine Learning. 

A more thorough overview on Artificial Neural Networks is then provided, allowing that by 

the end of this chapter, the reader will have the necessary background for this project. 

2.1. Air quality monitoring 

As previously stated, it is a fact that air pollution is a major concern due to its significant 

impacts on human health and global environment. A huge number of hazardous 

compounds have been identified in our environment, but six of the most common 

pollutants are carbon monoxide (CO), nitrogen dioxide (NO2), ground-level ozone (O3), 

sulphur dioxide (SO2), particulate matter (PM) and lead (Pb). A detail on their effects on 

human health can be found on [2]. 

In order to reduce effects on the population, governments and organizations have put 

limits on these pollutants. The table below shows the acceptable thresholds for these 

compounds, as stated by the WHO (World Health Organization) [3] 

 

Table 1: WHO Guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide. 

Pollutant Thresholds 

Carbon Monoxide (CO) 

100 mg/m3 (15 min) 

15 mg/m3 (1 h) 

10 mg/m3 (8 h) 

7 mg/m3 (24 h) 

Nitrogen Dioxide (NO2) 
200 µg/m3 (1 h) 

40 μg/m3 (1 year) 

Ozone (O3) 100 μg/m3 (8 h) 

Sulphur Dioxide (SO2) 
500 μg/m3 (10 min) 

20 μg/m3 (24 h) 

Particulate Matter (PM2.5) 
25 μg/m3 (24 h) 

10 μg/m3 (1 year) 

Particulate Matter (PM10) 
50 μg/m3 (24 h) 

20 μg/m3 (1 year) 

Lead (Pb) 0.5 μg/m3 (1 year) 
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With the objective of retrieving as much information as possible keeping a low cost, 

numerous studies have been carried out about the architectures of Wireless Sensor 

Networks for air quality monitoring and the effective calibration of the low-cost sensors, 

such as [4]–[9]. 

2.2. Machine Learning 

Machine learning is one of the mainstays of modern-day information technology and is all 

around us, although we may not even realise we are using it. 

Arthur Samuel, who coined the term machine learning in 1959, defined it as: "the field of 

study that gives computers the ability to learn without being explicitly programmed." [10] 

It basically relies on algorithms allowing computers to find patterns in big chunks of data, 

just as a human might be able to do, although at a more extensive scale. 

In general, any application of Machine Learning can be assigned to one of two broad 

classifications: supervised learning and unsupervised learning. 

2.2.1. Supervised learning 

In supervised learning, the dataset that is fed to the algorithm is formed by input and 

output values so, throughout the training process, the algorithm can establish a kind of 

relationship between the input and the output. That relationship will be used to predict the 

output when given a new dataset where only the input is known. 

There are two different types of supervised learning problems: regression and 

classification. 

In a regression problem, we are trying to predict results within a continuous output, 

meaning that we are trying to map input variables to some continuous function. In a 

classification problem, we are instead trying to predict results in a discrete output. In other 

words, we are trying to map input variables into discrete categories. [11] 

An example of a regression problem would be trying to estimate the price of a house 

given its characteristics, such as size, number of bedrooms and neighbourhood where it 

is located. 

An example of a classification problem would be trying to determine if given an image of 

an animal, trying to predict its species.   

2.2.2. Unsupervised learning 

In unsupervised learning, there is no knowledge of the output values, so it is not possible 

to train an algorithm to predict a certain outcome. Unsupervised learning is instead used 

to discover the underlying structure of the data, making clustering1 possible. 

An example of unsupervised learning would be classifying the customers of a certain 

business into market segments. 

                                                
1 Clustering: Finding subsets of data that are similar 
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2.2.3. Artificial Neural Networks 

2.2.3.1. Human neurons 

Artificial neural networks were developed mimicking how neurons interact in our brain. So, 

in order to introduce them, let’s start by looking how a single brain neuron looks like. 

 

Figure 2: Representation of a single human neuron 

A neuron has a cell body with a number of input wires, called dendrites, which receive 

inputs from other cells, and an output wire, called an axon, which is used to send signals 

to other neurons. 

So, at a simplistic level, a neuron is a computational unit that gets a number of inputs, 

does some computation and sends an output, a little electric pulse, through its axon to 

other neurons in the brain. Those neurons, in turn, do further computation and send 

outputs to other neurons. Basically, this is the process by which all human thought 

happens. 

2.2.3.2. Perceptron 

The first step into Artificial Neural Networks was made by Frank Rosenblatt who, inspired 

by earlier work by Warren McCulloch and Walter Pitts, developed the perceptron in the 

late 1950’s - early 1960’s, also known as Single layer Neural Network. [12] 

 

Figure 3: Structure of a perceptron 
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Figure 3 depicts the structure of a simple perceptron, or neuron. In this case, it has three 

inputs but in general, it could have any amount of them. In order to compute the output, 

Rosenblatt introduced the concept of ‘weights’, which are real numbers expressing the 

relevance to the output of the respective inputs. A bias unit is usually added to help to 

tune the desired outcome. 

The output of a neuron is computed by a certain function, called the activation function 

(see section 2.2.3.4) In the case of Rosenblatt’s perceptron, a step function is applied, 

leading to the following output: 

𝑓(𝒙, 𝒘) = {
1, 𝑖𝑓 𝒘 · 𝒙 + 𝑏 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 1: Step function used in Rosenblatt's perceptron 

where 𝒙  and 𝒘  are vectors whose components are the inputs and weights of the 

perceptron and b is the bias unit. 

Therefore, the output depends on a weighted sum of the inputs (𝒘 · 𝒙 =  ∑ 𝑤𝑗𝑥𝑗𝑗 ), where 

the importance of each input is taken into account. 

2.2.3.3. Multi-layer neural networks 

Typically neurons are arranged into layers that all together form a network of neurons, 

just as in a human brain. Different layers may perform different kinds of transformations 

on their inputs.  

The naming for the layers in an ANN is the following: 

 Input layer: The layer that deals with the input values directly. 

 Output layer: The layer that is responsible for outputting a value or a vector of 

values, relevant to the problem. 

 Hidden layers: The layers that are neither an input nor an output layer and 

therefore are not exposed to the outside of the network. When there are many 

hidden layers, it is said that the network is a deep neural network. 

 

Figure 4: Structure of a common Artificial Neural Network 

2.2.3.4. Activation functions 

Firstly, when the perceptron was developed, the only activation function was the step 

function, as we have just seen. 
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Nowadays, a wide range of functions can be used. The main reason behind using 

activation functions is to introduce non-linearity in the model, leading to a smoother 

behaviour. The idea is that small changes in the weights cause small changes in the 

output and therefore, the learning process is easier.  

Some of the common activation functions are shown below: 

 

Figure 5: Common activation functions 

It is important to keep in mind that, as an exception, when using neural networks applied 

to a regression problem, like we will do, the activation function in the output layer must be 

linear so the outcome is as expected. 

2.2.3.5. Backpropagation 

Now that we know the elements of a neural network, it’s time to understand its most 

essential process, the learning process, which is called backpropagation. 

The learning process takes the inputs and the desired outputs and updates the model’s 

weights. Then, an output is generated recursively according to past training experience. 

An iteration of the learning process can be decomposed into five blocks: 

1. Model initialization: Neural networks can start from anywhere and the most 

common is to initialize the model randomly because no matter from where it starts, 

after the process the most accurate model will be achieved.  

2. Forward propagation: After initializing the model, the natural step is to check its 

performance. Therefore, training input values are passed through the network and 

an output is obtained. 

3. Evaluating loss: The actual output obtained at first is almost always wrong, 

because, at this stage, the network is unable to make any reasonable conclusion. 

Therefore, we need to compare it with the desired output we would like the 

network to learn. 

To do so, a loss or cost function is computed. The most common loss function is 

the Mean Squared Error (MSE): 
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𝐶(𝒘, 𝒃) =  
1

𝑁
∑‖𝑦̂𝑖 −  𝑦𝑖‖2

𝑁

𝑖=1

 

Equation 2: Minimum Square Error cost function 

where 𝑦𝑖 is the desired output, 𝑦̂𝑖 is the predicted output, 𝒘 represents the weights 

in the network and b, the biases. 

From now on, the objective will be to minimize that function tuning the values of 

weights and biases.  

4. Backpropagation: The following step is to propagate the error backwards 

through the network, finding the contribution of each weight to the loss function. 

After backpropagation, we obtain the gradient of the loss function(𝛻𝐶), influenced 

by all weights in the network. 

5. Weight update: Once 𝛻𝐶 is computed, weights have to be updated in order to 

minimize error. The gradient 𝛻𝐶  indicates the direction of increase of the loss 

function, so each weight will be updated along the negative gradient direction. 

 

That is done through the gradient descent algorithm: 

𝑤𝑗  ←  𝑤𝑗 −  𝛼𝛻𝐶 

Where 𝑤𝑗 is any weight and 𝛼 is the learning rate. 

The learning rate is a parameter that can be chosen by the creator of the model. A high 

learning rate means that bigger steps are taken in the weight updates and thus, it may 

take less time for the model to converge to an optimal set of weights. However, an 

excessively high learning rate will result in too large steps and the algorithm may fail to 

converge. 

However, in practice, improved optimization algorithms are used. Adam [13] is one of the 
most recent optimization algorithms, which has two main features: 

 Each weight has its own individual learning rate. 

Figure 6: For simplicity, we can portray the loss 
function as a 3D function. Through each iteration 
of the gradient descent algorithm, we pursue the 
coordinates at the minimum 



 

 18 

 Learning rates are not constant. Instead, they keep adapting with each iteration 
based on the average of recent magnitudes of the gradients of the weight that 
represent how quick it is changing. 
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3. Methodology 

3.1. Problem Statement 

The main objective of this project is to build a model formed by an Artificial Neural 

Network that improves precision in the readings made by low-cost air quality sensors. In 

order to do so, a low-cost sensing platform has been built on top of a Raspberry Pi. 

However, due to the issue stated in Section 1.3.1, it has been impossible to retrieve 

valuable data and the model has been built using a public dataset containing readings 

from low-cost and high-end reference sensors. 

3.2. Sensing platform 

The low-cost air quality sensing platform built for this project is made of the following 

elements: 

 Raspberry Pi 3 

The Raspberry Pi is a single-board computer developed in the United Kingdom by the 

Raspberry Pi Foundation in order to promote the teaching of computer science in 

schools. Due to its low cost, it has become very popular, even for uses outside its 

original target market, such as robotics. 

The official operating system is called Raspbian, an adapted version of Debian. Even 

though, other operating systems are supported. 

In this project, we are working with a Raspberry Pi 3 Model B, which is the latest 

model as of today. 

 SDS-011 PM sensor 

The SDS-011 is a particulate matter sensor developed by Inovafit, a spin-off company 

from the University of Jinan. It uses the principle of laser scattering2 to detect particle 

concentration in the air between 0.3 and 10 µm with a relative error of 10 %, 

according to the datasheet [14]. 

It is connected to the Raspberry Pi through a USB port and it outputs two different 

categories, PM10 and PM2.5. 

 Grove Multichannel Gas sensor 

The Grove Multichannel Gas sensor is developed by Seeed Studio and has a built-in 

MICS-6814 analogic sensor. 

It is connected to the Raspberry Pi through the I2C interface and in this project, it will 

be used to measure: 

 CO concentrations, with a detection range between 1 and 1000 ppm 3  and a 

sensitivity factor4 between 1.2 and 50 [15]. 

                                                
2 Laser scattering is a technique used to determine the size of small particles in suspension. The 
presence of particles is transformed into electrical signals. 
3 PPM: parts per million 
4 The sensitivity factor is defined as the change in the output of the sensor per unit change in the 
parameter being measured. 
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Figure 7: Schematic representation of the connections between the sensors 
and the Raspberry Pi 

 NO2 concentrations, with a detection range between 0.05 and 10 ppm and a 

sensitivity factor of 2. 

 DHT-22 sensor 

The DHT-22 sensor is developed by rDuinoStar and outputs values for temperature 

and relative humidity with a ±2 % error, which increases to ±5 % at the extreme limits. 

It is connected to the Raspberry Pi through a GPIO pin. 

 

 

 

3.3. Data collection 

The Raspberry Pi is programmed with Python to retrieve data from each of the three 
sensors every 30 seconds. Data is actually retrieved every 80 seconds, due to the fact 
that the execution of the script in charge of the PM sensor reading causes an extra delay 
of 60 seconds. 

When the station is turned on, an internal timer is started that, knowing the starting date 
and time, allows to relate each measurement to a date and time. This is done due to the 
fact that it is impossible to directly retrieve a timestamp during the measuring campaign 
because we have not been able to get access to an Internet connection at CSIC facilities. 

In order to retrieve values from each sensor, the following external libraries have been 
used: 

 Adafruit Python DHT Sensor Library, written by Tony DiCola [16]. 

 Grove Multichannel Gas Sensor Library, written in C by Paul van Haastrecht [17]. 
A Python wrapper has been written in order to interact with the sensor more easily. 

 Nova PM Sensor Library, written in Python by Martin Luetzelberger [18]. 

Once they have been retrieved, the measurements are registered in an SQLite database 

that is queried at the end of the measuring campaign. 
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Figure 8: Structure of the SQLite database 

3.4. Provided data 

Due to the issues stated in Section 1.3.1, the model has been built based on a dataset 

provided by the ENEA (National Agency for New Technologies, Energy and Sustainable 

Economic Development) [7], hosted on the UCI Machine Learning Repository [19]. 

The dataset contains 9358 instances of hourly averaged responses from a device with 5 

low-cost air quality sensors. The device was located in a significantly polluted area within 

an Italian city. Data was recorded from March 2004 to February 2005 (one year) along 

with a certified analyzer that provided ground truth values. 

Missing values are tagged with the ‘-200’ value. 

The provided attributes are the following: 

 0: Date (DD/MM/YYYY)  

 1: Time (HH.MM.SS)  

 2: True hourly averaged CO concentration in mg/m^3 (reference analyzer)  

 3: Hourly averaged CO targeted sensor response 

 4: True hourly averaged Non-Methane Hydrocarbons (NMHC) concentration in 

µg/m^3 (reference analyzer)  

 5: True hourly averaged Benzene concentration in µg/m^3 (reference analyzer)  

 6: Hourly averaged NMHC targeted sensor response 

 7: True hourly averaged NOx concentration in ppb (reference analyzer)  

 8: Hourly averaged NOx targeted sensor response 

 9: True hourly averaged NO2 concentration in µg/m^3 (reference analyzer)  

 10: Hourly averaged NO2 targeted sensor response 

 11: Hourly averaged O3 targeted sensor response 

 12: Temperature in °C  

 13: Relative Humidity (%)  

 14: Absolute Humidity 

3.5. Model building 

The objective of this project is to build a model capable of predicting accurately CO and 

NO2 concentrations. 

In order to improve the precision of the predictions, two separate models have been 

trained: one for each compound. Their input features will be the readings provided by the 

low-cost and reference sensors (excluding the reference sensor of the compound to be 

predicted), as well as extra features whose addition is considered appropriate. 
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3.5.1. Framework 

In order to manipulate data, build the model and evaluate the results, different software 

has been used. A summary can be found below: 

 Pandas [20] and Numpy [21] have been used for data manipulation. 

 Keras [22] has been used to build the model. It is a high-level framework that runs 

on top of Tensorflow, one of the most used libraries for machine learning, 

developed by Google. 

 Scikit-learn [23] has been used for the training of the model, data pre-processing 

and metrics evaluation. 

 Matplotlib [24] has been used for data visualization. 

3.5.2. Data pre-processing 

First of all, data is obtained from a CSV file with the structure stated in Section 3.4. 

After inspecting the file, two empty columns were found (columns 15 and 16), as well as a 

column with more than 90 % missing values (column 4, related to the true hourly NMHC 

concentration). Therefore, those three columns were excluded from the dataset. 

Moreover, data was found with missing values, which were marked as ‘-200’. As a 

consequence, all readings with missing values were also excluded from the dataset. 

The next step was to visualize the evolution of the two compounds upon which the model 

was going to be built. 

Figure 9 shows the evolution of the CO and NO2 concentration, as measured by the 

reference analyzer. This suggests a seasonality, where pollution values are higher on 

certain months, especially the ones that correspond to winter. 

 

Figure 9: Temporal evolution of the CO and NO2 concentrations along the measuring campaign. In order to 
obtain a clearer plot, only the weekly mean of the concentrations is shown.  
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To take that into account, an extra variable was added, assigning to each measurement 

an integer number relative to the month when it was taken. 

Furthermore, figure 10 shows the average CO and NO2 concentrations for each day of 

the week and it can be seen clearly that concentrations decrease on weekends. 

 

Figure 10: Average CO and NO2 concentrations for each day of the week 

To take that into account, another extra variable was added, assigning to each 

measurement an integer number relative to the day of the week when it was taken. 

Finally, in order to be able to obtain reasonable results, the MinMaxScaler algorithm (in 

Scikit-learn library) was applied, which converts all values in each feature into the range 

[0,1]. 

𝑥𝑖_𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥𝑖_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − min (𝑥)

max(𝑥) − min (𝑥)
 

 

3.5.3. Model architecture and training 

As previously stated, two different models have been trained in order to improve the 

precision of low-cost CO and NO2 measurements, with the objective to minimize the 

Minimum Square Error (MSE) of the predictions made by the model. 

For each case, a neural network has been trained with the following hyperparameters 

fixed from the start: 

 Adam optimizer. As explained in Section 2.2.3.5, Adam is one of the most recent 

optimization algorithms and it generalises well to most machine learning problems, 

without any need to tune its parameters. 
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 Batch size5. The batch size is set to 32, due to the fact that larger batches 

degrade the quality of the model, reducing its ability to generalize [25]. 

 Activation function in the hidden layers: ReLU. As there are not any negative 

values in the dataset, the Rectified Linear Unit function has provided the best 

results. 

There are other hyperparameters and configurations that were tested in order to find the 

best possible model. These are: 

 Number of layers and the number of neurons per layer 

 Number of epochs6. 

3.5.3.1. K-Fold Cross-Validation 

K-Fold cross-validation has been used to validate the model performance. It is a popular 

method because it generally results in a less biased estimate of the model skill than other 

methods, such as a simple train/test split. 

The general procedure is the following: 

1. The dataset is shuffled randomly and split into k groups 

2. For each unique group/fold: 

1. The group is taken as a test dataset 

2. The remaining groups are taken as a training dataset. 

3. The model is fit on the training set and evaluated on the test set. 

4. The evaluation score of the fold is retained 

3. The skill of the model is summarized computing the mean of the obtained scores 

It is important to take into account that, after the whole procedure is completed, each data 

sample has been given the opportunity to be used in the test set one time and used to 

train the model k-1 times. 

In this project, 10-Fold Cross-Validation has been used, as this value has been shown 

empirically to minimize bias and variance in test error rates. Therefore, in each fold, 10% 

of the dataset has been used as training data and 90% as test data. 

 

Figure 11: Representation of 10-Fold Cross-Validation 

                                                
5 The dataset is divided into batches in order to be able to pass it through the network. The batch 
size is the number of training examples contained in a single batch. 
6 The number of epochs determines how many times the entire dataset is passed (forward and 
backwards) through the dataset in the training phase. 
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4. Results 

In this section, results from both the CO and NO2 targeted models are shown. Some of 

the different configurations are discussed along with the different result interpretations. 

Performance is measured by computing the Mean Square Error (MSE) because it is a 

metric that especially penalizes large errors, which are particularly undesirable. The Root 

Mean Square Error (RMSE) is computed at the end of the section in order to provide a 

clearer idea of the error magnitude. 

The importance of each feature with respect to the reference targets is also shown, as 

computed through the Extra Trees algorithm7. This allows us to visualize the features 

(readings from certain sensors or extra variables) that make a bigger contribution to the 

final model. 

4.1. CO targeted model 

4.1.1. Feature importance 

Figure 12 shows the importance of each feature in relation to the CO reference 

concentration. 

 

Figure 12: CO targeted model feature importance. Features labeled as (ref) correspond to the high-end 
reference sensors, while those labeled by (lc) correspond to low-cost sensors 

As expected, the feature corresponding to the low-cost CO sensor is the most important 

of them all by far. Data retrieved by the NMHC and O3 sensors is also relevant, which 

exposes the existing correlation among readings from different sensors. Relative humidity 

is also a relevant feature, showing that there is also a relation between the presence of 

CO and ambient factors. 

4.1.2. Network architecture and results 

In order to find the model with the lowest possible error, different architectures have been 

tested, tuning both the width (number of neurons per layer) and depth (total number of 

layers) of the neural network. The results can be seen in the table below: 

 

                                                
7 The Extra Trees algorithm is a variant of the Random Forest algorithm, that computes a metric 
called the Gini Importance that allows us to visualize the importance of each feature in relation to 
the output of the model 
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Table 2: Error (MSE) of the CO targeted model for different network architectures 

# of neurons 1 hidden layer 2 hidden layers 3 hidden layers 

5 0.001503 0.001447 0.002672 

10 0.001511 0.001518 0.00152 

15 0.001591 0.001629 0.001612 

20 0.001672 0.001644 0.001666 

 

The conclusion is that the architecture that minimizes MSE is that composed of two 

hidden layers with five neurons each. 

Trying to improve performance, the training and validation errors were plotted for one fold 

in the cross-validation process. 

 

Figure 13: Plot of the CO targeted model training and validation errors during a single fold of the cross-
validation process 

We can see that there is a slight increase in validation error from epoch number 30 

onwards. Therefore, in order to reduce error and training time, the number of epochs is 

set to 30. The MSE value is then reduced to 0.001360.  

4.2. NO2 targeted model 

4.2.1. Feature importance 

Figure 14 shows the importance of each feature in relation to the NO2 reference 

concentration. 

 

Figure 14: CO targeted model feature importance. Features labeled as (ref) correspond to the high-end 
reference sensors, while those labeled by (lc) correspond to low-cost sensors 
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In this case, the feature corresponding to the NO2 low-cost sensor is only the fifth most 

important, which hints that it has a weak performance. Even though, the existence of a 

correlation between this compound, air temperature and the extra variables 

corresponding to the month and weekday of every measure helps the model obtain 

decent results. Correlation between NO2 and another species whose sensors show good 

performance also help. 

4.2.2. Network architecture and results 

As we have done with the CO targeted model, different architectures have been tested, 

tuning both the width and depth of the neural network. The results can be seen in the 

table below: 

Table 3: Error (MSE) of the NO2 targeted model for different network architectures 

# of neurons 1 hidden layer 2 hidden layers 3 hidden layers 4 hidden layers 

5 0.005050 0.004952 0.005007 0.011981 

10 0.004737 0.004543 0.004423 0.004880 

15 0.004657 0.004363 0.004265 0.004541 

20 0.004388 0.003891 0.003995 0.004145 

The conclusion is that the architecture that minimizes MSE is that composed by two 

hidden layers with twenty neurons each. 

Training and validation errors were also plotted for this model (see figure 15). In this 

scenario, validation error remains fairly constant over the last epochs. Then, the number 

of epochs is set to 80. The MSE value is then reduced to 0.003886, which is practically 

equal to what we had obtained with 100 epochs, but training time is reduced. 

 

Figure 15: Plot of the NO2 targeted model training and validation errors during a single fold of the cross-
validation process 

4.3. Final discussion 

After having found the models that provide the best results for both cases, it would be 

interesting to compare their results along with their architecture.  
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Table 4: Final performance metrics for both the CO targeted and the NO2 targeted model, expressed in MSE 
and RMSE 

Model Error (MSE) Error (RMSE) 

CO targeted model  0.001360 0.036878 mg/m3 

NO2 targeted model 0.003886 0.062338 µg/m3 

 

The CO targeted model has ended up with a lower error than its NO2 analogue. The most 

feasible explanation for that is the weak performance of the NO2 sensor when compared 

to the CO sensor, as hinted in Section 4.2.1. However, it is not a huge drawback due to 

the existence of correctly performing sensors of species correlated with NO2 and the 

inclusion of relevant extra variables, which make the error remain reasonable. 

The same circumstances trigger the difference in architecture between both models, as 

can be seen in figure 16. While both have two hidden layers, the one targeted for CO has 

five neurons per layer and the one targeted for NO2 has twenty. This is caused by the 

increase in capacity needed to compensate for the weak performance of the NO2 sensor 

with other features. 

 

Figure 16: Diagram of the Artificial Neural Networks that form the CO targeted model (left) and the NO2 
targeted model (right) 
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5. Budget 

The aim of the project was to build a low-cost air quality monitoring station and improve 
its precision through a Machine Learning algorithm. 

Therefore, we only have to take into account the cost of the prototype (Raspberry Pi + 
Essential accessories + Sensors) and the approximate salary of a Junior Engineer along 
the five months that the project has lasted. 

There are no software costs due to the fact that open-source software was used at all 
times and the dataset was compact enough to avoid the need for external servers. 

With all this in mind, a table with the project’s budget breakdown can be found below: 

Table 5: Budget breakdown 

  Item Cost 

Raspberry Pi 39.99 € 

MicroUSB Cable 6.59 € 

32 GB MicroSD Card 12.12 € 

SDS-011 Sensor 20.81 € 

Grove Multichannel Gas 
Sensor 

34.53 € 

DHT-22 Sensor 6.99 € 

Junior Engineer 400 hours * 15 €/hour = 6000 € 

Final budget 6121.03 € 
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6. Environmental Impact 

The result of this project definitely has a remarkable positive environmental impact. 
Having the possibility of obtaining accurate air quality measurements through low-cost 
sensors provides a broad range of possibilities. 

Currently, public administrations are unable to afford placing an elevated number of 
measuring stations because the cost of high-end sensors is considerably high. That leads 
to the loss of information that could be very helpful in order to find ways to address the 
issue of air pollution. 

Knowing that the retrieved data is reliable, a high number of low-cost sensors could be 
placed, for instance, on public shared bikes or buses. That would offer much more 
relevant information about pollution within a certain area and pave the way for future work 
in that field. 
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7. Conclusions and future development  

The objectives of this project were integrating three low-cost air quality sensors into a 

Raspberry Pi and training an Artificial Neural Network model that improved precision in 

the readings made by the sensors. 

To my mind, these objectives have been accomplished, but not as originally planned. The 

Raspberry Pi-based air quality monitoring station was built, but it failed to retrieve seven 

consecutive days of data when placed alongside a high-end measuring station. The 

cause of the failure was a programming issue. 

Fortunately, there was an alternative plan in order to be able to fulfill the second objective 

of the project. The learning model was then built on a public dataset with hourly 

responses of a low-cost gas multisensor device deployed for one year along with a 

certified high-end monitoring station. 

So, all in all, it has been proved that the imprecision of low-cost air quality sensors can be 

corrected through the application of models based on Artificial Neural Networks. The 

application of those models to the Raspberry Pi-based station is left for a future work that 

solves the existing issues. A future work could also explore the application of LSTM 

(Long Short-Term Memory) neural networks, which in theory work well with data based 

on time series. 

As a personal remark, this project has allowed me to learn the basics of machine learning 

and neural networks, as well as its application to a real problem with Python, which I 

consider that will be a decisive addition to my formation as a Telecommunication 

Engineer.  
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Glossary 

Acronym Name 

ANN  Artificial Neural Network 

CSIC  Centro Superior de Investigaciones Científicas 

MSE  Mean Square Error 

RMSE  Root Mean Square Error 

ReLU  Rectified Linear Unit 

I2C  Inter-integrated Circuit 

GPIO  General Purpose Input-Output 

PM  Particulate Matter 

NMHC  Non-Methane HydroCarbons 

CO  Carbon monoxide 

NO2  Nitrogen dioxide 

NOx  Nitrogen oxides (in general) 

O3  Ozone 

LSTM  Long Short-Term Memory 

 

 

 

 


