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Abstract
Classical signal processing techniques are developed under prior statistical knowledge of the kind of data
we are processing. Unfortunately, one does not know too much about reality in practice, therefore inferring
information about the statistical behaviour of our data is needed in addition of processing. To properly infer
information about the statistics, one may need more than one realization of the experiment, although this is
not possible in some real-life environments, as one may have just a single realization of the random process
or low amount of available samples. If one would like to tackle both issues at once using classical signal
processing approaches, it may lead to an almost impossible problem. This is where Bootstrap statistical
inference shines, which suits perfectly this kind of problems.

Moreover, we want to fuse all available data, which comes from di�erent sources, to improve our knowledge
of the working environment and eventual accuracy in further operations, such as estimating some parameter.
However, there is a risk of fusing too much corrupted data without taking into account how contaminated
a data set is, so the integrity of the �nal estimation gets compromised. Again, we will still consider small
amount of data available to tackle this issue.

In reponse to the mentioned problems, the purpose of this project is to explore and analyze the potentials of
the Bootstrap techniques. In particular, we will focus on the issues of data integrity and getting bene�ts from
data redundancy in Precise Point Positioning receivers, whose context suits perfectly this kind of framework.
Studying data integrity can be considered equivalent to detecting whether our data has been a�ected by the
most harmful disturbances, such as scintillation or related e�ects, and pro�ting from data redundancy can
be interpreted as the optimal estimation of a certain parameter that comes from the received signal, which
comes from several satellites.



Nomenclature

GNSS Global Navigation Satellite System

PPP Precise Point Positioning

x Column vector

A Matrix

()T Transpose operator

1N N × 1 all ones vector

0N N × 1 all zeroes vector

H0 Null Hypothesis

H0 Positive Hypothesis

PD Detection probability

PFA False alarm probability

i.i.d Independent and identically distributed

WSS Wide Sense Stationary

MVUE Minimum Variance Unbiased Estimator
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1 Introduction

1.1 General context

GNSS Satellites

The inspiring context for this project is the one depicted by GNSS PPP satellites [1], where the determination
of position and receiver's clock consists on carrier phase observations to be able to achieve milimetrical
precision. One of the biggests issues in this kind of data acquisition, is the problem of dealing with cycle-slips
due to scintillation, receiver clock jumps and satellite-receiver dynamics, among other disturbances. Among
these disturbances, cycle slips are the kind of disturbances that motivates this project. Cycle slips are caused
by scintillation which is due to the scattering and modi�cations of radio signals by reason of disturbances
on concentrations of varying densities of free electrons that can be found throughout the ionosphere [12].
Therefore, in this project we will propose methods to tackle this kind of disturbances, but we will follow a
general path, so the methods can be applied to other environments.

The �rst one is the one, explained in section 2, that is focused on detecting the integrity of the received
data by previously estimating the frequency of the received signal which can also be used for further processing
(i.e. doppler analysis), from where integrity, in this context, means the property of not having any kind of
disturbance in the measured data. On the second algorithm, shown in section 3, we will have as an ultimate
objective, cancelling cycle slips. Finally, the last algorithm in section 4, is the integration of the previous
algorithms, so we will be able to avoid or cancel this kind of disturbances.

However, the third algorithm is also implementing an optimal Data Fusion framework which �ts this GNSS
satellites environment. The mentioned framework is suitable because generally in navigation, a minimum
of four satellites on the line of sight are needed to deliver a positioning solution. Usually, these satellites
are chosen from a set of visible satellites on the basis of the signal to noise ratio of the received waveforms.
However, even if the selected satellites have su�ciently high signal to noise rations, it could possibly be
a�ected by cycle slips. Then, if a satellite a�ected by cycle slips is erroneously selected as candidate from
which deliver the navigation solution, this e�ect will be translate to a poor quality of position determination,
and thus losing the milimetrical precision.

Data Fusion

This is the description of the framework we will be using during this project especially concerning the
nomenclature, which is based on [2]. On several Signal Processing environments, one could have several
sources of information that come from di�erent antennas, sensors, experiments or other type of sources. In
those kind of environments, it is reasonable to expect that a single source of information cannot contain the
su�cient amount of information to fully depict the aforementioned environment. With this idea in mind, the
concept of Data Fusion makes an appearance.

As de�ned in [2] and reformulated to �t a typical estimation scenario in Signal Processing, Data Fusion
is the analysis of several data sets such that each data set contributes with an added value that cannot be
obtained from combining the remaining data sets, so it provides a proper estimation of the desired parameter
or even improve this estimation. In this reformulation, there are implicitly several key concepts that will be
explored through this document, but �rst there is a need to introduce and relate these concepts.

One of the basic concepts is the modality which consists on each acquisition method that gives a data set
as an output, so from our point of view, referencing a given modality is equivalent to reference its output
data set. As we start to link several modalities, we consider that our framework has become multimodal and
that is where Data Fusion plays an important role. A key feature of multimodality is the complementarity
between every single modality, which is the added value that has been metioned, that will be related to
statistical independence between di�erent modalities in section 3. Finally, the key concepts in Data Fusion
are the ones related to what has been mentioned as proper estimation or improved estimation, which are the
so called diversity and redundancy.

In the case of diversity, it has been heuristically de�ned in [2] as the property of Data Fusion that enhances
the estimation of the parameter, or latent variables, which cannot be achieved just using a single modality.
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However, this is somehow obvious in a Data Fusion environment and needs to be reformulated so we can
have a proper contrast between diversity in Signal Processing and in Communications. Last but not least,
redundancy is something we will make pro�t in section 3, which consists on having some common information
between modalities, yet maintaining a certain complementarity, so we can provide a better estimation.

Our main challenge to face in Data Fusion is to face heterogeneous noise on the multimodal data, which
means having di�erent noises with di�erent powers for each single modality. Having heterogeneous noise is an
issue when one is not implementing an optimal data fusion scheme, in a sense that if there is no mechanism
to cope with these kind of noise,

Main scope

The main scope of this project is to analyze and explore Bootstrap Signal Processing in a way that it
implements the Data Fusion framework in environments that are similar to the GNSS PPP context and
being able to test whether our data has been a�ected by disturbances.

The most natural �ow of tackling these kind of problems is, �rstly, to estimate the quality of a given
estimator, in order to be able to detect when a given outlier phenomena has been ocurred, which we can
relate to the issues of providing integrity to a set of estimations and not having enough data to be able to
perform this estimation, which one can found the main assumptions for these problems and the proposed
solution in section 2. Secondly, we must be able to exploit the available redundancy in our multimodal
environment, again, under the conditions of not having enough data to be able to properly estimate the
needed parameters to perform this data fusion. The key that links these problems to an acceptable solution,
which is la raison d'être of this project, are the so called Bootstrap Techniques. Bootstraping consists on a
computer-intensive resampling technique, with the main aim to get a better approximation of the sampling
distribution of a statistic, such as the variance, p-values, con�dence intervals,... [11]

The approaches that have been presented in sections 2, 3 and 4 are original to this project, which are based
on several reference papers such as [3] or [4]. In order to have a general idea of what will be implemented in
each section and which are the relevant context, Figure 1 can be used as a useful guide.

Figure 1: General Summary

1.2 Basic Tools

Throughout the documents sections where there is some algorithm explanation, we will be constantly using
Bootstrap techniques to face the proposed challenges. In ordert to make it easier, we will start by explaining
all the basic techniques we will be using, so there is a general reference for this document.

As a special remark to these basic tools, there is a Bootstrap Toolbox developed by the inspiring paper's
author [3] of this project, which joins all these kind of techniques, and can be found in [7].
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1.2.1 Bootstrap variance estimate

Let's start by presenting the basic idea for estimating variance using Bootstrap resampling, which is shown
in a single modality environment (no redundancy). Consider as reference the problem of estimating the mean
µ in a simple model, where the total number of available samples is N .

y = µ1 + w (1)

In this setting, we assume no knowledge of the noise statistics, with the exception of the samples being
statistically independent between each other. Then, we choose the sample mean as a robust estimator:

µ̂ =
1

N
yT1 (2)

Let yl be a resampling with replacement of y [3], with dimentions L × 1. This resampling is obtained as
follows: Let q be a uniform random variable from 1 to N . Let a resampling index vector rl obtained from N
independent realizations of the random variable q. Then, using Matlab notation, we have:

yl = y[rl] (3)

We do that Lσ times (l goes form 1 to Lσ) and obtain Lσ resampled data vectors. From them we obtain Lσ
bootstrap sample mean estimates:

µ̂l =
1

N
1Tyl (4)

and estimate the variance of sample mean from bootstrap estimates as:

σ̂2
µ̂ =

1

Lσ − 1

Lσ∑
l=1

(µ̂− µ̂l)2 (5)

It was possible to do this resampling in a straight forward way because of the assumption of independency
between noise sampling. In the case of correlated data, block resampling techniques are formally needed.
However, it was not required, as it could be avoided where there is some need to apply it, which is section
2.1.

1.2.2 Bootstrap p-value estimation

Basic Bootstrap estimation implicitly estimates the CDF/PDF in order to compute all necessary statistical
parameters, such as in [3] or [4]. Hovever, we need to highlight some features to be able to estimate the
upper/lower tail p-value, which will be necessary especially in the Hypothesis testing section.

Now, taking advantage of the previous problem, let's assume that we would like to estimate the upper-tail
and also the lower-tail p-value of the previous mean estimator. We can start from obtaining LCDF bootstrap
sample mean estimates as in (4), so we can store those sample mean estimates in a vector as:

µ̂ = [µ̂1, ..., µ̂L] (6)

The next step, will be to order the vector µ̂ such as its elements satisfy µ̂1 < µ̂2 < ... < µ̂L, therefore the
desired p-values, pL for the lower-tail p-value and pU for the upper-tail p-value, can be computed as simply
as:

pL = µ̂[pLLCDF ] pU = µ̂[(1− pU )LCDF ] (7)

Note that after the sorting, µ̂ is approximately equivalent to the inverse CDF and thus, this is a non-
parametrical approach of estimating the CDF.

3



2 Bootstrap Hypotesis Testing

In this block, we will introduce our own proposed hypotesis test in the detection of disturbances when
estimating the frequency based on Kay's frequency estimator [5] and Bootstrap resampling techniques. As it
has been mentioned in the Introduction, this frequency estimation can be helpful in further processing in a
GPS PPP environment, for doppler processing as an example, and it enables the user to be able to determine
whether the e�ects of scintillation have been occurred or not due to some of its phase disturbances nature.
Thus, the main scope of this hypothesis test is to determine the integrity of a certain data set, which can be
used to apply a Data Fusion algorithm in a GPS PPP environment.

Motivation

From one hand, we have a set of data that carries information about frequency, from which we know limited
information about its statistics, such as its distribution but limited in a sense that we do not know the
parameters that determine such distribution. On the other hand, there is a set of disturbances that could
potentially a�ect our data, which can have very di�erent natures such as a strong bias or an unexpected
increase of variance that can destroy the information we want to get from the estimation of the carrier
frequency.

One of the biggest issues when facing real-life detection applications is facing a problem where one has
little to no information about the statistics of the di�erent hypotesis, where we note H0 as the null hypotesis
which is the one that it is usually easier to �nd its statistic model data and H1 as the positive hypotesis, or
also the detection itself, which usually its statistic model is unknown as contraposed to H0. Thus, if we are
considering to detect a variety of disturbances, the modelation of the resulting hypotesis may be complicated
but feasible, but we may have troubles when deriving a threshold from the Test Function, and this is where
Bootstrap Hypotesis Test as proposed in this section can be useful, as it inherently computes the necessary
parameters or functions to be able to detect those aforementioned disturbances.

Basic Tools

• Kay's frequency estimator, and more speci�cally, Kay windows.

• Bootstrap techniques, which consists of Bootstrap resampling and p-values estimation

2.1 Initial Set-up. Kay's Frequency estimation

Firstly, we will consider an accurate estimator of the frequency that gets as close as possible to the CRLB.
The ideal candidate that permits to apply any kind of Bootstrap technique in a frequency estimation, is the
Kay's estimator of the frequency [5], and thus from now on we will consider this simpli�ed model of the
received signal:

sRx[n] = Aej(2π
F0
Fs
n+φ) + w[n] (8)

this signal consists on N samples of a pure complex tone immersed in AWGN, being A the amplitude of the
tone, F0 the tone frequency, Fs the sampling frequency which satis�es the Nyquist criterion, φ the phase
o�set and w[n] ∼ CN(0, N0) where N0 is the noise power and all noise samples are i.i.d. Now, let's assume
it has a su�ciently high SNR and following a similar procedure in order to simplify the phase expresion as
in [5], we can get an approximated linear model to the received signal's phase:

phase(sRx[n]) = p[n] ≈ 2π
F0

Fs
n+ φ+ w̄[n] , θn+ φ+ w̄[n] (9)

where now w̄[n] ∼ N(0, N̄0), N̄0 relates to the previous parameters as N̄0 = N0

2A2 and its role is the variance of
the phase disturbance due to the receiver's noise under the assumption of H0, which will be further discussed
in the integrity detection section. Finally, θ is the parameter that we want to estimate, which is related to
F0 as θ = 2π F0

Fs
.
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The next step still follows Kay's approach to estimate the received frequency. It consists on computing
the discrete derivative with respect to n of (9), so the undesired terms, such as φ, are cancelled out and the
whole estimation problem gets simpli�ed as the ML estimation of a parameter under AWGN. Note that this
step reduces the total number of samples from N to N − 1 and correlates the noise between the samples
n− 1, n and n+ 1.

diff(p[n]) = d[n] = θ + ω[n] (10)

this correlation implies that if one is interested in estimating some statistics from d[n], such as theN−1×N−1
correlation/covariance matrix, using Bootstrap techniques, it is necessary to apply a block resampling instead
of a independent data resampling in order to emulate this correlation [3]. However, if one is just interested
in estimating the variance of d[n], there is no need to use block resampling as it just brings unnecessary
extra complexity (block length, more operations,...) in an estimation that, as a �nal objective, does not need
information about the dependence structure. On the following paragraphs a method to avoid this need of
using block resampling in the estimation of variance, in this context, will be shown.

Reaching up to this point, we need to �nd the MVUE of θ. There are several ways to �nd this estimator,
such as �nding the ML estimator, remember that if MVUE exists, ML and MVUE are equivalent, or using
Fischer's matrix derivation. Our proposed approach to �nd this estimator that simpli�es the estimation of
the estimator's behaviour, which relates to the integrity of the estimation. The mentioned approach consists
on an estimator of the form θ̂ = gTd, where g is such that this estimator is unbiased and minimizes its
variance, and is P × 1. It can be summed up as the following optimization problem. (The whole derivation
is proved in the annex)

arg ming gTCωg subject to gT1N−1 = 1 (11)

where Cω is the P ×P covariance matrix of ω[n], which in this case, P = N−1, so we will have more freedom
in further steps. The solution to this optimization problem is:

gopt =
C−1ω 1P

1TPC
−1
ω 1P

(12)

as it has been mentioned, this estimator also corresponds to the MVUE estimator of θ, but this approach
shows some properties that are useful and make simpler to compute the estimation of the variance of the
frequency estimator (or in this case, θ), denoted as σ̂2

θ . Let's show how this can be useful to estimate the
variance of the estimator. Here we got the expression of the analytic variance of the aforementioned estimator:

σ2
θ = E{(θ̂ − θ)2} = gToptCωgopt

CRLB
=

1

1TPC
−1
ω 1P

(13)

from this expression, we can obtain the estimated version just by introducing the estimation of Cω and this
enhances to obtain an alternative expression that is simpler in terms of bootstrap resampling, as it does
not need that the correlation structure is emulated with block resampling. Applying the simple bootstrap
resampling to enhance the estimation by enlarging the number of residuals samples, we can obtain σ̂2

F as:

σ̂2
θ = gToptĈωgopt = gTopt(

1

Lσ(P − 1)

Lσ∑
i=1

rir
T
i )gopt =

1

Lσ(P − 1)

Lσ∑
i=1

|gToptri|2 (14)

where Ĉω is the estimation of Cω, ri are the i-th P × 1 resampled residuals of d[n] and Lσ are the total
Bootstrap realizations. The mentioned residuals are just resamplings of the following vector

r = d− θ̂1P (15)

where now d is the P × 1 vector that contains P values of d[n]. A remarkable condition between these
parameters is B > P and it has 2 interpretations: It should be satis�ed so the virtual Covariance matrix
has full rank or also, is the minimum required value so we do not have any simulation errors in this case,
although is recomended to take a higher value. Also, the assumption of the di�erent resamplings being
linearly independent,
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The last expression simpli�es the estimation of σ̂2
θ as it is not necessary to directly compute Ĉω to obtain

it, we just need the residuals and gopt. There's still an error associated to this estimation if we just apply
independent Bootstrap resampling, considering the amount of correlation in this scenario, but we can neglect
it, as it will be discussed in the next section. In this scenario, we can accept this amount of error, as we are
interested in applying a hypotesis testing, not in estimating precisely the estimator's variance, σ2

θ.

2.2 Hypotesis testing

Now that we are able to estimate θ, we would like to detect whether an extra undesired disturbance, other
than the receiver's noise, a�ects our signal with the condition of being able to determine a threshold just
using previously validated data. These disturbances can have of very di�erent natures and can have many
di�erent behaviours in our model. To simplify this issue, we will model and process disturbances that are
manifested as either an increment of variance or an added bias in the signal model in (9), therefore, the
hypothesis that we are considering are the following:

H0 : p[n] = θn+ φ+ w̄[n]

H1 : p[n] = θn+ φ+ w̄[n] + c[n]

where the parameters that compose H0 were explained in the previous section. The new parameter in H1

is the sequence c[n], which can be modeled in di�erent ways, but we consider 2 independent components
regarding an increment of variance or added bias, c[n] = w̃[n] + z[n]. The �rst of them, w̃[n], is the term
associated to an increment of variance which can be modeled as a random variable i.i.d, independent of w̄[n],
with satistics N(0, D) and the second one, z[n], is the one related to added bias in di�erent instants, which
can be interpreted as our signal being a�ected to sudden steps or jumps that can be perfectly characterized
with a jump probability, Pj , and the jump's height, h. These jumps results into impulsive noise when applying
the discrete derivative as in (10).

The combination of these 2 components can be useful in di�erent contexts, such as the already mentioned
scintillation issues in GNSS receivers, where we can �nd a suddent increments in variance, or also a measur-
ament error in some other contexts, and also the so called cycle slips, which are the ones that we model as
steps.

Assumptions

• Having prior knowledge about the models under H0 (includes statistic distributions).

• No prior knowledge about the values of the parameters.

• We have a training set of data, which is known to be under H0, to initialize the algorithm.

• No prior knowledge about the statistics under H1 (It will be explained).

In a hypothesis testing problem, one should start by de�ning a criterion of �nding a suitable Test function
T (X) for the particular problem we are facing. Ideally, in a given context where these models make some
sense, one of which could be the already mentioned GPS PPP, the optimum approach would be applying
a Reversed Neyman-Pearson Criterion that consists on minimizing PFA, given a certain PD, in order to
derive the mentioned Test Function. In such way, we can assure a certain degree of data integrity (PD),
which is necessary for further processing steps as detecting scintillation/cycle slips can be helpful for either
cancellating this phenomena or disconecting the a�ected satellite.

Under these assumptions, which are reasonable in an actual environment, we do not have all the necessary
information to apply a suitable classical approach to this problem, as we are assuming we do not have enough
information of the statistics under H1. Instead, we will make use of the information that can be extracted
from statistical moments to extract both the Test Function and the Test Threshold, TH . Taking into account
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that we have set our data to estimate θ, directly related to F0, and we know that under H0 equation (13)
tends to be equal to the CRLB, which in the case of frequency it is:

CRLB =
1

1TPC
−1
ω 1P

∝ 1

P 3SNR
(16)

where ∝ indicates the CRLB tendency with respect to those parameters. Then, it is reasonable to set
T (X) = σ̂θ as the considered set of disturbances cause an unexpected increment of variance, especially the
step disturbance as a single step can break the model, so it also breaks the 1

P 3 behaviour.

2.2.1 Threshold estimation

Now that we have estimated the frequency in an optimal way under H0, we now want to test whether in a
new block of N samples in the next time window k+ 1, denoted as pk+1 is a�ected by disturbances, which is
the same as asking if the hypothesis H0 holds in the given set of data. We will consider T (X) = σ̂θ, which is

the estimation of the variance of θ̂ under the assumption that H0 holds. In the newest set of data we expect
this variance to be much higher, if the data comes from an environment where the hypothesis H1 holds than
in a set of data that is known to be under H0. It is assumed a Wide Sense Stationary process through all
time windows that �t H0. There are di�erent ways of implementing a theshold estimation/hypothesis testing
with using Bootstrap techniques, such as the ones described in [4] or [8], however the following hypothesis
test will be based on the former, as it is the simplest, but e�ective, way to implement it.

First, we need to compute the upper tail empirical p-value, to determine the threshold TH , in order to
�x a PFA to α which can also be called the level of signi�cance of this hypothesis, but note that we cannot
determine how PD will behave as we are under a Blind data context. It is needed much more data to be
able to �x PD than to �x PFA, which just needs to have a statistically rich set of data to be determined. To
compute the desired p-value, we just need to estimate the Cumulative Density Function of σ̂2

θ as explained
in section 1.2, using p[n]train as explained in the previous subsection, using LCDF Boostrap realizations of
the mentioned estimator. Then, assuming F [n] is the CDF of σ̂2

θ , where n is the number of the n-th biggest
realization, the threshold TH is such as:

TH = F−1[ceil((1− α)LCDF )] (17)

where the ceil function rounds its argument to the closest integer smaller than it. Now, having computed
this threshold, whenever a new set of N samples, pk+1, is available, we will just need to proceed as in the
frequency estimation section, so then we can compute the residuals such as:

r = dk+1 − θ̂train1P (18)

Still, there are some issues that should be remarked from this algorithm. First, TH is just an approximation
to the desired p-value, so the actual PFA will be as closer to α as L increases and also as N increases. The
justi�cation of this, will be explained deeply in section 3.4, but it can be advanced that L is related to a
simulation error and N to a statistical error, related to the statistical richness of our data. The �rst one
can be solved by forcing L to be a function of N , i.e. L = 100N , but the second one is limited by each
environment. It could also be possible to increase this threshold by a certain amount, ∆th, so it gives some
margin to hypothesis H1.

And �nally, the other issue that has been mentioned is the fact that we are not taking care properly of
PD with this approach, so depending on the context, this approach could be futile if the statistics of H1

are similar to the ones under H0. An appropiate theoretical way to quantize this similarity would be the
Kullback-Leibler divergence between the PDF of both hypothesis, if one could know the statistics under H1

[9].

2.3 Simulation results

It is necessary to show the aforementioned algorithm for hypothesis testing, which in the end is testing the
integrity of the data, under certain conditions to see in which environments does it suit better. In order
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to better characterize the environment that we are facing in the mentioned hypothesis test, we will have to
introduce a new paramenter that will determine the similarities between both hypothesis. This parameter
will be called Jump to Noise Ratio and it will be de�ned as:

JNR ,
h√
N̄0

(19)

where both parameters involved were de�ned in previous paragraphs. For simplicity, we will get rid of the
added variance in H1 hypothesis, as it does not give any interesting insight in the solution of this problem,.
Let's now recall both resulting hypothesis.

H0 : p[n] = θn+ φ+ w̄[n]

H1 : p[n] = θn+ φ+ w̄[n] + c[n]

from where now, c[n] = z[n], as we have already noted. The full list parameters that we will take into account
in this study will be shown in the following table, with their respective default values:

Parameter Value Description

JNR 8 Jump to noise ratio. Critical in detection
Pj 0.01 Jump's probability for each sample
N̄0 10 Normalized Noise Power
θ 10 Latent variable, related to Frequency
N 100 Number of samples in each time window

LCDF 1000 Total number of values in the inverse CDF
Lσ 10N Number of Bootstrap Samples
α 0.005 Level of Signi�cance

There is something that should be noticed before getting into the simulations. For this kind of hypothesis
testing a Receiver Operation Characteristic or related plots (PFA-PMD ROC, Area Under the Curve, 1-
AUC,...) that are not suitable for showing the behaviour of this integrity detector. These plots are not
suitable, in a sense that there are some regions in the domains of these plots that show some features that do
not make sense for a usual detector, especially in the boundaries of these plots. For example, it is possible
that when evaluating PFA = 1, we do not get the expected value PD = 1. This is due to the nature of
the environment, remember that we consider a blind hypothesis test, where we do not know, in principle,
any information about H1 and even less about the statistics of T (X) under H1. What is more, we will not
emphasize on Lσ, as this parameter is mostly related to the variance estimation, which can be found on the
simulation results in section 3, as the latter is focused on Bootstrap estimation.

The performance study of this hypothesis testing algorithm will be separated into two blocks: The �rst
block will be the analysis of the performance of PD, where we will vary the parameters related to the
de�nition of H1, from which the JNR will be highlighted (remember, in the point of view of the algorithm
these parameters are unknown), and more general parameters like N , so it can be quantized a certain degree
of integrity of the studied set of data as a function of the mentioned parameters.

The remaining block is focused on PFA. We will focus the study in α, as this is the most interesting
feature of this algorithm. The main objective of this second block is to see how well does Bootstrap techniques
can approximate the threshold in order to get closer to the desired value of PFA.

2.3.1 Study of detection probability PD

To study the behaviour of PD, all the studied sets of data must be under H1 hypothesis and we should
determine �rst all the parameters that somehow have a potential impact in this performance �gure. The
�rst two candidates would be the ones directly related to H1, which are Pj and JNR. The reason why these
two parameters are of interest in detection probability is because essentially we are measuring a variance to
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perform the hypothesis test and therefore the threshold will be proportional to N̄0. This fact implies that
in order to study the distance between both hypothesis, which is essentialthe distance between σ̂2

θ under H1

and σ̂2
θ under H0, we will have to focus on the features that add variance in the estimation under H1, which

are the number of jumps, related to Pj , and the height of each jump with respect to the standard deviation
of the noise, JNR.

As Pj is related to how many jumps are present in the testing set of data, but we are assuming that under
H1 the given set of data has at least one jump, we will ensure that there is at least one jump in the testing
data because otherwise the given set of data would be under H0.

Impact of JNR In this test, we have linearly varied JNR from 0.5 to 30 to see its impact in PD, main-
taining the other parameters in their respective default values. We have done 1000 Monte Carlo realizations
in order to estimate PD in the following way, taking into account that all the test data sets are under H1:

PD ≈
1

MonteCarlo

MonteCarlo∑
m=1

I(σ̂2
m > TH) (20)

where now σ̂2
m is the measured estimator's variance in the m-th realization and I(·) denotes the indication

function, which returns 1 if the argument is true, 0 otherwise. The resulting plot is the one shown in Figure
2.

Figure 2: Impact of JNR in PD

In this plot, it can be noted that up to a certain saturation value, JNR has a high impact in PD, as one
could have previously expect. Furthermore, this saturation value of JNR determines the operational jump's
height, which can be considered to be the JNR that ensures 0.9PDMAX , which in this case JNROP = 7.5 and
PDMAX = 0.745. In conclusion, we cannot ensure a certain level of integrity for JNR below the saturation
value JNROP . Note that the typical value ofJNR in sets of data a�ected by cycle slips is around 10.

Another feature that can be extracted from this plot is that there is a maximum PD, for a given set of
parameters excluding JNR, so if there is a need of a higher PDMAX , we shall modify those values to enhance
the detection, as we will see in the following paragraphs.

Impact of Pj Now, it is time to see the number of jumps' impact in detection. To do so, we have done
two simulations for two values of JNR, where we used JNR = 10 and JNR = 5, to show two di�erent
scenarios. Furthermore, we also performed a Monte Carlo simulation of 1000 realizations to estimate PD as
in (18) and we have swept Pj logarithmically between 0.001 and 0.1. The resulting plot can be found in
Figure 3.
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Figure 3: Impact of Pj in PD

Unlike in JNR, the number of jumps does not sature the PD, which means that the higher Pj , the closest
to 1 gets PD. It was expected since the larger the number of jumps, the more impulses will be found in
the residuals, so it translates into more variance in the frequency estimation. As for the di�erent values
of JNR, we can see that they start from di�erent lower or higher depending on its value. In addition,
as JNR = 10 > JNROP if we increase this value, we will not get better performance, so this should be
taken into account to determine the level of integrity after this block, as this is tighly related to the speci�c
environment.

Impact of N The last but not least important parameter to study in detection is N , which is also
impactful due to being related to the statistical richness of our data set. This simulation consists on the
logaritmic increment of N from 10 to 500, from where we estimate PD as in (18), using 1000 realizations.
Note that this simulation is computationally costly, so we could not extend it to larger values of N . The �nal
result is shown in Figure 4.

Figure 4: Impact of N in PD

As it was expected, when N is being increased, PD also increases, in a way it assymptotically approaches
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Figure 5: Impact of L in PFA

1. This tendency is due, among other reasons such as the values of the remaining parameters, to the gain of
statistical richness of our data, so the statistical error is inherently reduced.

2.3.2 Study of false alarm probability PFA

Studying false alarm probability, in this kind of detector, is tightly related to the study of the estimation
of the threshold, TH , in a sense that it is closer to the actual p-value that we wanted to compute. The
candidates that relates to this estimation are L and N , both related to the simulation error and statistical
error, respectively. This step is really important, as the main objective of this detection algorithm was to �x
PFA for the integrity's detection for a given data set. For now on, all data sets are under H0.

Impact of L In this simulation, we set the rest of parameters to their default values and we will just
focus on L, so the experiment consists on 3 di�erent realizations of a training data, so it is possible to see if
this algorithm is more or less dependable of the training data. As it has been emphasized, and will revisit in
section 3, L must be a function of N , and that is the reason why we have logarithmically swept this parameter
between N and 100N . In addition, we have estimated PFA in a similar way than the PD, by using Monte
Carlo simulations as

PFA ≈
1

MonteCarlo

MonteCarlo∑
m=1

I(σ̂2
m > TH) (21)

where now we are considering that all our data is under H0. You can �nd this plot in Figure 5.
Even though it has been masked by applying a smooth function, in this plot there was more evidence of

the randomness of this technique, which was somehow masked in previous �gures. We can see that, for the
given set of parameters, the estimation of PFA is not accurate, yet we can remark that there is a tendency
towards (decreasing) the desired level of signi�cance as L increases, up to a certain point where the algorithm
converged to a certain P ′FA.

As for this P ′FA, in none of these realizations have converged to the expected value of α, which is 0.005.
This phenomena is tightly related to the amount of samples N , as when N increases, the statistical error
is reduced, so we can estimate more accurately the estimator's variance CDF. Still, this shows that there is
more room for improvement in this block.
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Impact of N As in the previous simulation, we will just emphasize in N and set the rest of parameters
to their default values, so we have increased logarithmically N between 10 and 500, as in the study of PD.
Again, we estimated PFA as in (21), using 1000 Monte Carlo realizations. The �nal result is shown in Figure
6.

Figure 6: Impact of N in PFA

This plot makes more evident the implicit randomness of this algorithm, which in this case a smoothing
function was applied again to observe the general tendency. It again shows a high dependence of this
performance �gure on the training data set, as it could either increase a lot or being reduced a lot by just
changing the training data set. Note that the updating of the training data set was necessary since we are
increasing N . Nevertheless, it should be highlighted that there is a tendency towards reducing this PFA as
we increase N , for the same reasons that PD tends to 1, due to the nature of this detector.
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3 Bootstrap Data Fusion

Motivation

In this section we will explore the concept of redundancy in optimal data fusion when facing a multimodality
environment [2] for estimating a certain parameter and from which we do not know the statistics of the
available data. The main goal is to optimallly fuse the available data to yield an estimate as precise as
possible by exploiting the available redundancy and diversity, so we can automatically discard or down-
weight contaminated measurements. A desired feature that the system should implement is the capability of
cancelling out added biases just using the available data and extra information that can be given from the
detection of data integrity, in the previous section.

Being solved the issue of data integrity by the previous section 2 and that we have to be aware of added
biases, another important issue in this block, will be facing with heterogeneous noise [2]. Heterogeneous noise
has a relevance in a sense that, when fusing data without too much care, the whole latent variables' estimate
is corrupted by those sources that are a�ected with high variances. What is more, disconecting those sources
can also be harmful for the estimate due to the loss of necessary information, or also some redundancy, that
can be produced by the lack of sources of data.

3.1 Initial set-up. Multimodal environment

Now, we will present an environment and an algorithm that can exploit multimodality and diversity to deliver
an optimal data fusion, based on Bootstrap resamplings. We consider a case where we have redundancy in
the available data with respect to the latent variable. The objective is to exploit the Bootstrap capacity of
delivering integrity, so it improves the data fusion stage in forming the estimate. To be speci�c, we focus on
a spatio-temporal model described as follows:

Y = m(x)1TN + W (22)

note that time is in the horizontal domain and space is in the vertical domain, as in array processing. We
assume that the columns of W are independent between them, as the spatial measurements come from
di�erent modalities, but not equally distributed. We also assume that the rows of W are i.i.d, as this could
be interpreted as the noise that comes from a given sensor and thus, every independent row from this model
is what we already pointed out as a modality [2]. As W is the noise term, it has mean 0N , which is a full
zeroes vector N × 1.

In the model, Y and W are M × N (with M < N), m(x) is M × 1 and 1N is N × 1. The latent
variables, denoted as x, are D×1 with D < M , which is the redundancy condition. In the context of satellite
navigation, we can make an interpretation of these parameters, where N is the number of observed samples
(in time), M is the number of available satellites and the dimension of the latent variables, D = 4, which
consists on the three positioning parameters: longitude, latitude and altitude; plus the temporal parameter:
the received satellite clock. One of the key parameters of this model is the relationship between variances
of di�erent rows, which can be expressed as Cw, the covariance matrix between di�erent modalities, which
ideally is a diagonal matrix M ×M , as it is in our initial assumption. It can be de�ned as:

Cw = E{WWT } (23)

the vector m(x) is the generalized mean vector for a given x. From now on, for simplicity, and as a �rst
approximation to the problem, we consider a simpli�ed linear model:

m(x) = Ax (24)

In positioning, this model has plenty of sense in tracking conditions, where A is the Hessian matrix, which
is M ×D, or derivatives of the positioning observables with respect to the user position, which is valid up
to 1 or 2 Kilometers, so we can assume a stationary process. This is similar to the approach followed by the
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classical Extended Kalman Filter. For futher Bootstrap operations, the sample mean has to be estimated,
so the M sample mean estimate can be expressed as:

m̂ =
1

N
Y1N (25)

from the sample mean estimates, a linear reduced noisy model can be extracted and it will be useful to
understand some feature that will �orish in the Bootstrap estimation. This reduced model can be written as:

m̂ = Ax + u (26)

where u is the measurement noise associated to the sample mean estimators. The relationships between u
and the rows of W can be easily be proven: The mean of the i-th component of u is exactly the mean of the
i-th row of W and the u covariance matrix, denoted by Cu is:

Cu =
1

N
Cw (27)

3.2 Classical approaches

In order to undersand why Bootstrap techniques will be applied in such way in the next section, we will
start by explaining how this Data Fusion can be performed, having some extra knowledge of the statistics.
Let's start by considering a known covariance matrix, Cu or Cw, under the asymptotic approximations which
is assuming that the distribution between rows of W or each realisation of di�erent rows of m̂, is such as
N (0,Cw ) or N (0,Cu) respectively, remember that in the same row, it is assumed a Gaussian Wide Sense
Stationary process. Therefore, in order to achieve the closed form MVUE we could just derive the Maximum
Likelihood estimator:

arg maxx
1

(2π)N/2det(Cu)1/2
exp(−1

2
(m̂−Ax)TC−1u (m̂−Ax)) (28)

whose solution is already known and is known that the MVUE of this problem exists, which in this case is
the same as a Weighted Least Squares approach, under complete knowledge of the statistics:

x̂CRLB =
(
ATC−1u A

)−1
ATC−1u m̂ (29)

as this estimator is MVUE, it achieves the Cramer-Rao Lower Bound (CRLB) for the variance, which is what
it is called an e�cient estimator and thus, it is the best estimation we can achieve under complete knowledge
conditions, the optimal estimation, and the reason why we want to estimate Cu, Cw or any covariance matrix
related to the noise in our environment. In addition, this estimation can be seen as an oblique projection,
but this idea will be further developed in a future paragraph.

Another approach, which in advance can be considered in data fusion as the risky option, under asymptotic
approximations is assuming the previous distributions to be distributed as N (0, σ2

wI) or N (0, σ2
uI). Then,

if we follow a similar path as in the previous assumption, which is achieving the MVUE under the previous
asumption, we get as a solution the Least Squares approach:

x̂LS =
(
ATA

)−1
AT m̂ (30)

note that this case has been labeled as risky because the lack of need in estimating the variances, a single
noisy source can destroy the whole estimation.

3.3 Bootstrap Techniques in Blind Data Fusion

Now that we have set the main issue in this data fusion environment, the next step should be extend the
previous classical approaches to a blind context, in which we do not have any information about the statistics
of the received signals, and enhancing the estimation of the critical parameters, which in this case are Ĉu or
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Ĉw, with Bootstrap Techniques. The fact that Bootstrap Techniques are proposed to face this problem, is
that they are extremely useful in environments that there are not much available data, which means that N
will be bounded.

There are several ways to resample the data, but all of them full�l a key requirement: It should, somehow,
emulate another realization of the experiment we are interested in, so there is enough data to estimate. On
the following paragraphs, 2 variations will be shown, as we consider that they are the most suitable in this
scenario.

3.3.1 Straight forward bootstrap resampling

This is the straight forward Bootstrap resampling option. It consists on the usual Bootstrap Resampling
approach [3] which consists on calculating the residuals (depending on the problem it could be the estimated
noise, modeling errors,...) using the mean estimation or other kind of estimations from the data. In this
particular case we are facing, the residuals are estimations of noise. Using the resampling idea explained in
the �rst block:

R̂ = Y − m̂1TN (31)

using the resampling with replacement idea already explained in Basic Tools (1.2), we obtain L estimates of
the Residuals matrix, by resampling the received data columns, denoted as R̂L in the case of R̂ and YL in
the case of Y, from which we can estimate the diagonal covariance matrix, for the rows, as:

Ĉw =
1

(L− 1)
R̂LR̂

T
L =

1

(L− 1)
(YL − m̂1TL)(YL − m̂1TL)T (32)

where Ĉw is the bootstrap estimated noise covariance matrix W. It could also be more accurate if it was
done by resampling columns of each row independently, as this kind of resampling takes into account the
denpencency between rows, but it could be potentially ine�cient if the data is independent, which is the
assumption that we have adopted between modalities and also an usual assumption for noise in RF receivers.

3.3.2 Reduced model bootstrap resampling

Taking advantage of the simplicity of the reduced model, the statistics of m̂ can be easily characterized,
with the aid of Bootstrap Signal Processing. We propose the same resampling principle, as in the previous
method, but estimating the covariance matrix Ĉu in a simpler way, making use of a simpler matrix notation.
First, we calculate a matrix containing L Bootstrap estimates of m̂l by columns, denoted as ML that has
M × L as dimensions. These estimates are estimates of multiple realizations of m̂

Ĉu =
1

(L− 1)
(ML − m̂1TL)(ML − m̂1TL)T (33)

where all the parameters involved in (33), have already been mentioned except for the 1L vector, which in
this case has L× 1 as dimensions and, as a remark. Note that we will be getting the same results as in the
previous resampling due to the fact that the same computations are made in both methods.

There are other variants of bootstrap estimation of Ĉw, Ĉu or even Ĉx, which is the covariance matrix
from the latent variables estimation, but they o�er similar results as the previosly mentioned resamplings.
The main thing to remark, and possibly its biggest �aw, in this estimation algorithm is that it has to assume
a WSS process during the time window we are analyzing.

3.3.3 Estimation of latent variables

Now that we have estimated m̂ and Ĉ, which can be either Ĉu or Ĉw, we will follow a parametric way of data
fusion that has already been advanced in 3.2, which is a Weighted Least Squares estimation. It is parametric
in a sense that we just have to estimate 2 set of parameters to de�ne these estimations. Consider a Weighted
Least Squares estimate of x, where Ĉ is Bootstrap estimations of the respective Covariance matrixes. The
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solution is equivalent for both matrixes due to the fact that the relationship between them is a constant that
will cancel out:

Minx (m̂−Ax)
T
Ĉ−1 (m̂−Ax) (34)

From eq. (34), it can be deduced that what we are doing is minimizing the distance between m̂ and Ax

weighted by Ĉ−1, which means it is down-weighting those rows, or single modalities, that have high variances
or are highly contaminated with noise. The solution to the optimization is:

x̂ =
(
AT Ĉ−1A

)−1
AT Ĉ−1m̂ (35)

x̂ =
1

N

(
AT Ĉ−1A

)−1
AT Ĉ−1Y1 (36)

from the estimate of the free parameter x we can now obtain a re�ned estimate of the sample mean vector
as:

m̂′ = Ax̂ =
1

N

[
A
(
AT Ĉ−1A

)−1
AT Ĉ−1Y

]
1 (37)

which can be seen as the sample mean of the data after applying a soft projector to the subspace created
by A column vectors as in [6]. The soft projector takes bene�t of the available redundancy of the data and
from its bootstrap integrity estimate, in order to reduce the impact of the corrupted data in the detrending
process.

Recapitulating to the GNSS PPP context, it is expected that those satellites a�ected by strong variances
or strong biases, the latter being caused by accumulated phase cycles slips, be progressively downweighted in
the estimation process. In the case of the added biases, its processing will be explored in the next subsection,
but �rst, we have to advance that there is a need of prior knowledge about the integrity of the received
data, to know whether or not is a�ected by cycle slips, which means that every row has to be processed in a
integrity detector block, such as the explained in section 2.

3.3.4 Dealing with strong biases

Up to this point, we are able to estimate the covariance matrix Ĉ to estimate the latent variables, x, under
nominal conditions, which means that we had the certainty that every single source of data is not a�ected
by an unexpected bias. Now, we would like to provide some robustness to this estimation by handing
some information about each row's integrity before processing this data the same way we have already been
explained, for each time window, and using previously estimated data. By previously estimated data, we
mean the latest block in which it has been ensured the integrity in every row, remember we have assumed a
WSS over the whole data set. Let's assume now, that our linear model has been modi�ed to:

Yk = Ax1TN + W + bk1
T
N (38)

where now bk is a vector full of zeroes, except for those rows that are known to have an added bias in the
k-th time window. In this case, we can cancel out this bias by using the sample mean estimate from the last
block that his integrity has been ensured, this mean will be noted as m̂i. Our main objective is to turn this
bias problem to a variance problem, so we will down-weight those rows where there is an added bias. Then,
for both resampling methods in this note, we will compute the residuals as:

R̂ = Y − m̂i1
T
N → R̂L (39)

R̂L = ML − m̂i1
T
L (40)

note that (39) corresponds to section 3.3.1 and (40) to section 3.3.2 and subindex L denote L Bootstrap
resamples by columns. Both residuals matrixes have been expressed in a similar way and have the same
dimentions M × L, so there is no ambiguity in the following explanation.

16



Let's consider that the j-th component of bk is di�erent from 0. In this case, the j-th component of R̂L

is also a�ected by this added mean that has not been eliminated. If we just detrend this row, we will not be
full�lling our objective, which is to down-weight this row by transforming this bias to variance. Therefore, to
heuristically transform this undesired mean to variance the j-th row of R̂L, denoted as rj (L× 1), we have
to apply an elementwise product to rj by a vector containing −1 and 1. The mentioned vector has to have
an equal number of −1's than the number of 1's, so the resulting mean is 0M , so L has to be even. It has
been proposed the following approach to face this issue:

r̄j = rj � cos(πn) (41)

where � denotes the Hadamard product, or also the elementwise product between matrixes, r̄j is the trans-

formed vector, which will substitute the j-th row of R̂L and n is such that it contains L consecutive integers,
note that cosine function returns a vector of the same length of n. In the case that the mean is still much
di�erent to 0, one could still detrend the resulting data.

Having performed these operations, we can just estimate the covariance matrixes the same way that has
been explained and the principal objective in this subsection has been achieved, converting bias into variance
with additional information of the integrity of each time window. As an additional remark, it will be equal
to Ĉu or Ĉw depending of how the residuals have been computed:

Ĉ =
1

(L− 1)
R̂LR̂

T
L (42)

3.4 Simulation results

We have already proposed algorithms to achieve near optimum estimates using just informtation we can
get from our data. However, there is still the need to show the performance we can get from Bootstrap
Estimation on several aspects. As we have already advanced in previous sections, the key estimation in this
context is the Covariance matrix estimation, so we will make more emphasis in this step of the estimation.

In order to have proper simulations, a general environment will be set for the simulations. First, let's
remember the assumed model in (38), which is the most general scenario.

Yk = Ax1TN + W + bk1
T
N

A remark that has to be done in advance, is that we have generated matrix A with random Gaussian
values using a known seed so the resulting matrix can be reproducible and known. Whose parameters have
the following values:

Parameter Value Description

A Random Linear transformation to the Latent variables
bk 0M (default) Bias vector
x 1D Latent variables
N 35 (default) Number of samples in each time window
M 7 (default) Number of independent modalities
D 4 Latent variables' dimensions
Cw diag(100, 50, 10, 100, 30, 100, 0.1) Intermodal covariance matrix
L 40N (default) Number of Bootstrap Samples

3.4.1 Bootstrap Covariance matrix estimation

Having set and de�ned the environment where the simulations will be made, there is a need to identify
the parameters that could a�ect somehow the Covariance matrix estimation. Most of the parameters have
already been mentioned in the previous reminder, but there are some that need some special care. Let's start
by studying the Bootstrap related parameters, which are: L and N .
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As it is said in the literature [3] using Bootstrap techniques, there comes 2 types of errors: The statistical
error, which depends on the actual sample size N , that consists on the lack of statistical richness of the
sample data. We cannot do much about it, as it is dependent of the data we have been received. The other
kind of error, is what it is called the simulation error, similar to Monte Carlo's simulation errors, which is
minimized by increasing the number of Bootstrap samples L. The objective is to reduce the latter up to
being smaller than the statistical error. Note that, in order to achieve the mentioned objective, L has to
be a function of N . In some literature [10], it is proposed heuristically to choose L to be in between 10
and 100 times N . This is appropriate in many applications, but the optimal value is still dependant of each
application, this is why a proper study has to be done.

In all Bootstrap simulations, the mean Bootstrap samples estimations will be prefered, since both resam-
pling methods that have been previously explained are equivalent, in a sense that both methods can estimate
either Cu or Cw through a linear transformation with an equivalent performance

Impact of L For the study of this parameter, we will show 2 plots related to the estimation of Cw.
During the experiment, for one of the plots we have plotted the evolution of the main diagonal component
of Ĉw as a function of L, in dBs for readibility reasons, then, the expected values of the diagonal values
in dB are diag(20, 17, 10, 20, 15, 20,−10). The aim of this plot is to show the overall bias, or whether it is
unbiased, of the Bootstrap estimation, so it consists on the average of 50 Monte Carlo realizations of the
estimation of the diagonal components of Ĉw, remember that we have assumed that this matrix is diagonal,
so the estimation assumes that it is diagonal.

Note that this average also reduces the variability of the estimation, which also contains information about
the overall performance. For this reason, there is also a second plot, which consists on just the evolution of
L for a single realization, so it is possible to appreciate the variability of the estimation. We have swept L
logaritmically between N and 100N . Note that it makes no sense starting from a value less than N , as it is
just worsening the estimation. The resultant plots are seen in Figure 7.

(a) Single realization (b) Multiple averages

Figure 7: Main diag evolution as a function of L

As it can be seen from the plot that displays just a single realization, the variance of each diagonal
component's is proportional to the actual estimated value. This dependency between the parameter and its
actual value is expected, as it is known that the variability of the variance estimation is directly proportional
to the square of the estimated parameter. However, as L increases, it can be observed that the variability is
being reduced due to the reduction of the simulation error.
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Another remarkable feature is the little bias can be appretiated in the �gure, which is also proportional
to the value it is estimating. This little bias is related to the statistical error that we have already mentioned.
This is the reason why in the plot that displays the average, we can see that this bias tends to be cancelled,
because we are arti�cially providing richness by adding more data into the estimation, so the statistical error
is reduced. There is still a little bias, but as we increase the number of Monte Carlo averages, this bias is
reduced.

Impact of N In this simulation, we are testing how the data richness a�ects the performance of a
Bootstrap estimation. One of the key features of Bootstrap Techniques [3] is the capability of delivering an
acceptable performance having a small amount of available data.

We have �xed the value L = 40N for this simulation, since it is a number of Bootstrap samples high
enough so the simulation error in the Bootstrap estimation is low enough that we can consider it to be lower
than the statistic error in a given realization. As in the previous simulation, the evolution is presented in dB,
but it will not use Monte Carlo averages. The evolution of the estimation as a funcion of N can be observed
in Figure 8.

Figure 8: Main diag. evolution as a function of N

This �gure shows, again, that this estimation is asymptotically unbiased, and also that the bias which is
obtained due to thestatistical error, for a certain N , depends on the realization. As it happened when we
varied L, the variance of the covariance matrix diagonal components, with respect to N , also depends on the
estimated parameter, as we would expect in an estimation of the variance.

It can be concluded from these simulations that Bootstrap estimation of covariance matrixes is a sort of
booster to classical approaches of variance estimation up to a certain limit due to lack of statistical richness
in the data, but as we give it more data, the estimation improves, as it was already expected.

3.4.2 Latent variables' estimation

Let's now take a look on the true objective in this estimation problem, which is the estimation of the latent
variables, x. One of the key issues (estimation of Cw) has already been solved, but there are still 2 important
issues that have been developed through the whole note that should be taken into account: The diversity
gain as we increase the redundancy, which is connected to the impact of having a larger M , and the issue of
having a bk di�erent from 0M , which can be related to the cycle slips cancellation problem. Having studied
the Boostrap statistical related parameters, let's now focus on the previously mentioned parameters. For the
next simulations, the parameters that are not mentioned have their default value.
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Impact of M The total number of modalities,M , plays positive role in the estimation of x, which means
the larger the value, the better the estimation. However, we have already advanced that if a given modality
is contaminated by noise with a high variance, this single source can corrupt the estimation. In order to
illustrate this phenomenon, we will compare the estimation of 3 estimators that have been explained through
the section 3: The �rst one will be the Least Squares approach, which needs no special information about
the data, the second one is the Weighted Least Squares with knowledge of Cw and the third one will be the
Bootstrap Approach. Also, we will modify the values of Cw to be initially diag(500, 50, 10, 100, 30, 100, 10),
so this phenomenon is more obvious. For all these approaches, we will compute the Mean Square Error by
1000 averages of Monte Carlo simulation. The MSE de�nition that will be used is (where x̂m is the m-th
Monte Carlo realization of x):

MSE = E{(x̂− x)T (x̂− x)} ≈ 1

MonteCarlo

MonteCarlo∑
m=1

(x̂m − x)T (x̂m − x) (43)

Increasing the total number of modalities, M , means that we have to modify Cw and A in each iteration
so the model is still consistent. For the matrix Cw, we will just add more diagonal components in an
ascending way, so we stay in an heterogeneous noise context. This means the increased Cw would look
like diag(500, 50, 10, 100, 30, 100, 10, 15, ...40), for example. As for matrix A, we will just generate a random
matrix with the same random seed for each value ofM , as there is no other way to maintain the same matrix
for each realization, for obvious reasons. The swept of M are consecutive values between 7 and 20. Note
that the minimum value is higher than the latent variables' dimension D, as this is necessary because as a
rule of thumb, to have an acceptable estimation, M −∆ has to be higher than D, where ∆ is the number of
contaminated channels. The resulting plot, which has been slightly smoothed, can be seen in Figure 9.

Figure 9: Mean Square Error evolution with respect to M

There are some features to remark from this plot. The �rst one of them is the obvious outperformance
of Weighted Least Squares and Bootstrap approaches over the Least Squares approach, especially when M
is low. This is the evidence of data fusion without taking care of contaminated data, where the estimation
corrupted by a single source. Then, we can observe that the Bootstrap approach performs slightly worse than
the Weighted Least Squares with full knowledge of Cw, this is mainly because the WLS with full knowledge
corresponds to the CRLB to this problem, so it is the optimum way of estimating the latent variables. Still,
Bootstrap approach is a great approximation of the CRLB, considering the fact that little knowledge about
the model and small amount of data was needed.
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Time varying variance Now, we would like to observe how well the system adapts to a gradually
increasing variance in a speci�c modality, and compare this evolution to the CRLB estimator (known vari-
ances). To perform this test we had to modify Cw, so it could evolve progresively to study the adaptability
of the algorithm. The evolution of Cw is the gradually increasing of a single component, from epoch 1 to
20, so we could express it as Cw = diag(500, 50, 10, 100, 30, 10, 0.1 + 5n), for n = 1...20, so then we maintain
this new covariance matrix for an additional 20 epochs, Cw = diag(100, 50, 10, 100, 30, 10, 100.1). In Figure
10, we will show two plots, one that containt the evolution of a single realization and the other that contains
the Mean Square Error as computed in (43), using 1500 Monte Carlo realizations.

(a) Single realization (b) Multiple averages

Figure 10: Evolution of the square error, in a varying context

From the multiple averages �gure, we can see an obvious loss of quality in the general estimator, due to
the loss of redundancy, which is caused by the suddent increment of the noise power of a given modality.
This was expected to this experiment, as it ends with just having 4 lightly contaminated sources and 3 highly
contaminated sources, but still, these estimators adapt well to this kind of evolutions as there are no clear
outliers in this evolution. On the other side, in the single realization plot, we can observe the whole evolution.
However, we can just note that it is just a random evolution with no clear tendency at all.

Bias cancellation The main objective of this simulation is to test the proposed algorithm in subsection
3.3.4, therefore, we will compare between the implementation of the proposed algorithm and the implemen-
tation with straight Bootstrap Data Fusion, without considering this bias. The simulation will start with
20 Epochs of nominal data fusion, which means bk = 0M , so then it continues with 20 more epochs with
bk = [0, 0, 0, 0, 0, 0, 10]T , so it is a�ecting the most uncontaminated data. It also implements 500 averages of
Monte Carlo realizations as in (43). The results can be seen in Figure 11.

We can observe from this �gure that in both cases there is an increment of the MSE when in presence of
an added bias. However, in the case of no cancellation, an obvious destruction of the whole estimation can be
noted, which was expected since biases are the biggest threats in data fusion. On the contrary, when applying
the algorithm in 3.3.4, we can see that, althought there is a little increment of the MSE, this algorithm could
still be able to mitigate the contamination of the added bias.
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(a) Cancelled bias evolution zoomed (b) General comparison

Figure 11: Evolution of the square error, in presence of an added bias
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4 Integration of Hypothesis Testing and Data Fusion

Even thought it was not in the scope of this project, this project reached up to a point where some sort of
integration of the previously explained algorithms was needed. The main objective in long term was to provide
an added integrity block to an optimal Data Fusion framework, making use of Bootstrap Techniques and
approaches that have been explained and explored during this project. Despite the main Signal Processing
techiques were focused to be Bootstrap based in this project, as this last section targets a higher level
functionality than the previously mentioned algorithms, this last section pretends to consider general methods
for Data Fusion and for data integrity detection, and thus this framework can be useful for Signal Processing
contexts that are similar to the GNSS PPP satellites.

We have advanced some features of this integration through this document, specially in section 3, where
we needed some prior information to cancel out added biases, but now it is time to generalize it. Let's
assume now that we have K time windows, which can be overlapped or not, for N samples of multimodal
data, which consists on M independent single modalities of N samples. Then, the proposed integrity Data
Fusion framework can be seen in Figure 12.

Figure 12: Integrity Data Fusion scheme

Note that all Integrity Detector blocks and the Generalized Data Fusion block can be the ones that we
have explained in sections 2 and 3, which is the main idea in this project. In this scheme, the proposed
algorithm would implement the Integrity Detector blocks, the Logical unit block and the Data Fusion block.
As we have already explained the Data Fusion and Detector blocks, we will focus in this section in the Logical
Unit, but �rst, let's recall some of the key feature that each block needed from this Logical Unit.

In each Integrity Detection block, there is a need of adaptive updating of the training data set if one is
interested on monitoring a certain type of disturbances such as the so mentioned, cycle slips. To be able to
adaptively perform this tracing, this logical unit must store every rejection of H1 and store the data related
to this rejection and this modality as the new training data set for the related modality. In such way, we
can permit some adaptability of our algorithm to slight changes of the environment statistics, although some
regularization must be implemented in those detectors. By regularization, we mean some preference towards
reducing PFA or increasing PD, and for example, in the detector proposed in section 2, we can regularize it
by adding some regularization value to the threshold TH , so the PFA could be e�ectively reduced.

On the other hand, the Logic Unit could also modify the behaviour of the Data Fusion block in a way
that we can perform a hard integrity Data Fusion or a soft Integrity Data Fusion. In a hard integrity Data
Fusion, we would like to priorize the integrity of the global estimation over the added information that we
can get from having more redundancy, so in order to achieve this kind of preference, the algorithm could
just disconnect all modalities that did not reject H1 and perform the Data Fusion as in section 3, excluding
subsection 3.4. However, in such way we may lose too much redundancy and thus, provide a poor quality
estimation. To avoid this issue we could implement a soft integrity Data Fusion, where approaches as in
subsection 3.4 are highly welcomed. In addition, a mixture of both aforementioned methods of integrity Data
Fusion can be implemented in order to have a compromise between integrity and added redundancy.
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5 Project plan

With the aid of the following Gantt diagram, in Figures 13 and 14, one could understand the path that this
project has followed.

Figure 13: Gantt Description

Figure 14: Gantt Diagram
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6 Conclusions and future development

The main goal of this project was to study and explore a Bootstrap Signal Processing approach to an issue of
delivering integrity to a framework of Data Fusion, inspired by GNSS PPP issue of cycle slips. In particular,
we explored how well Bootstrap techniques could enable us to determine whether a received signal was
being a�ected by some kind of disturbance and the generalization of Bootstrap variance estimation into
a Covariance matrix estimation, although the mentioned matrix had some particularities. It is extremely
useful in a way that it can also be used in Machine Learning classi�cation problems, when facing Data Bases
which work better with linear discriminant classi�er rather than other Machine Learning approaches, as it
has been shown in the annex document that shows some Bootstrap performance in a Pattern Classi�cation
competition. After exploring both algorithms, we have proposed a framework were both algorithms could
deliver a certain level of integrity to an estimation of a given parameter.

In section 2 we have shown an approach to detect a certain set of disturbances, which can be englobed
as the ones that increase the Frequency estimator's variance. The main conclusion for this analysis is that
we found out that the estimated threshold may be too much data dependent, but it was a risk that we
have assumed when we tried some non-parametric estimation of the mentioned threshold, hence there is
still room for more improvements in this kind of approach. Another idea to highlight that appeared when
this algorithm was being developed, is the idea of implementing a Reversed Neyman-Pearson's Detector,
which came out when consulting gAGE research group. They commented that it was prefered to �x a high
detection probability, PD, and minimizing the false alarm probability, PFA, rather than the original version of
this Detection criteria. Nevertheless, this was too ambitious for a Bootstrap approach like the one presented
in section 2, so this may be a topic for future research.

In section 3 we explored Bootstrap techniques to the estimation of a Covariance matrix, but also explored
an approach to deal with added biases using prior information about these biases. It appeared that Bootstrap
approach can be used as an acceptable booster to traditional variance, or Covariance matrixes, estimation
problems, with the great advantage of being able to achieve an acceptable estimation with relatively low
number of samples.

To conclude, we achieved the initial objective of doing the impossible, as we were capable of delivering
information inferring solutions with the possibility of being operational with a small amount of available
data.

Impact of this project

This project has been impactful in several aspects, which can be englobed as educational, research and social

media. The �rst one of them, the eduactional aspect, this project has been used as an inspiration for a
Signal Processing test this term. It showed the concepts of Data Fusion and Integrity, which are two of the
main pillars of this project, by considering the estimation of a parameter that is present in two independent
modalities, jointly with the basic concepts of estimation's theory such as ML estimators, MVUE, etc... This
test can be found in the Annex.

The next aspect is related to research, as this project could potentially have some contributions in a
multidisciplinar team with gAGE and some Signal Processing researchers as a result of the project carried
out by ESA called SCIONAV, especially contributing with the estimation of the integrity in cycle slips
detection. Finally, in the social media aspect, it has been observed that Bootstrap techniques are extremely
useful in a way that it can also be used in Machine Learning classi�cation problems, when facing Data Bases
which work better with linear discriminant classi�er rather than other Machine Learning approaches, as it
has been shown in the annex document that shows some Bootstrap performance in a Pattern Classi�cation
competition.

25



7 Annex

The annex of this project consists on the following documents:

Proofs_varMVUE Contains a proof that did not �t in this document

G117_LopezMolinaCA_Prac7 Contains the impact of Bootstrap Techniques in a Pattern Classi�cation
competition

psavc2018riba Contains the Signal Processing test that showed some of the main concepts of this project
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